JPS6043117B2 - Method for producing volatile organic compounds, especially ethanol, by continuous fermentation - Google Patents
Method for producing volatile organic compounds, especially ethanol, by continuous fermentationInfo
- Publication number
- JPS6043117B2 JPS6043117B2 JP54008803A JP880379A JPS6043117B2 JP S6043117 B2 JPS6043117 B2 JP S6043117B2 JP 54008803 A JP54008803 A JP 54008803A JP 880379 A JP880379 A JP 880379A JP S6043117 B2 JPS6043117 B2 JP S6043117B2
- Authority
- JP
- Japan
- Prior art keywords
- stream
- ethanol
- yeast
- fermenter
- concentration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 title claims description 164
- 238000000855 fermentation Methods 0.000 title claims description 45
- 230000004151 fermentation Effects 0.000 title claims description 45
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000012855 volatile organic compound Substances 0.000 title description 2
- 238000004821 distillation Methods 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 28
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 23
- 239000000758 substrate Substances 0.000 claims description 19
- 239000012141 concentrate Substances 0.000 claims description 14
- 238000000926 separation method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 8
- 239000000126 substance Substances 0.000 claims description 8
- 150000001720 carbohydrates Chemical class 0.000 claims description 6
- 238000010924 continuous production Methods 0.000 claims description 2
- 238000009928 pasteurization Methods 0.000 claims description 2
- 239000012465 retentate Substances 0.000 claims description 2
- 210000005253 yeast cell Anatomy 0.000 claims description 2
- 238000005119 centrifugation Methods 0.000 claims 1
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 18
- 235000013379 molasses Nutrition 0.000 description 9
- 238000000605 extraction Methods 0.000 description 8
- 239000002994 raw material Substances 0.000 description 8
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical class O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 238000009434 installation Methods 0.000 description 5
- 235000000346 sugar Nutrition 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical group CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 4
- 235000014633 carbohydrates Nutrition 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 238000007700 distillative separation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007873 sieving Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 241000235346 Schizosaccharomyces Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000001944 continuous distillation Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- -1 ethanol Chemical class 0.000 description 1
- 238000004508 fractional distillation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 125000003147 glycosyl group Chemical group 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 230000003134 recirculating effect Effects 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 238000001577 simple distillation Methods 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002351 wastewater Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Apparatus Associated With Microorganisms And Enzymes (AREA)
Description
【発明の詳細な説明】
本発明は発酵器内での炭水化物を含む基質の連続発酵
によるエタノールの製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a process for producing ethanol by continuous fermentation of a carbohydrate-containing substrate in a fermenter.
本文で称する発酵器とは好ましくは1ケの単体発酵器を
意味する。技術的な面からエタノールを考察すれば、こ
れは主としてエチレンからの、もつぱ・ら合成方法によ
り製造され、このエチレンは石油あるいは天然ガスから
得られる。化石質原料の供給に限度があるため、然料お
よび化学製品が再生可能な資源すなわち植物性のものか
ら得ることの可能性を見積る調査が始められた。The fermenter referred to herein preferably means one single fermenter. Considering ethanol from a technical point of view, it is mainly produced by a synthetic method from ethylene, which can be obtained from petroleum or natural gas. Due to the limited supply of fossil raw materials, research has begun to estimate the potential for natural and chemical products to be obtained from renewable sources, i.e., plant-based sources.
その結果、広く定義された炭水化物からのエタノール製
造の旧い方式は更新された実用性を得た。第2次大戦後
発達したスエーデン有機化学工業がエチレンおよびさら
にエチレン酸化物などに変換される亜硫酸塩一アルコー
ルに基礎をおいていたということは注目されるべきであ
る。変動する原材料の状況は、このようにしてそのよう
な合成方法を興味あるものにした。もし20%までの無
水エタノールがガソリンの中に混合されると、オクタン
価は改善されかつ内燃機関においてこれらをこのような
混合燃料で運転するために、わずかな変更のみを実施す
ればよい。安価な砂糖あるいは利用可能な澱粉を基にし
た原料を多量にもつ多くの国々では、ぼう大な開発作業
がこのような線に沿つて進行中である。最近の調査結果
によれば、セルローズを発酵可能な糖分に変換すること
が経済的に成り立つということを信じさせるようになつ
た。セルローズは世界中、見たところ無制限の量が利用
できかつエタノール製造に充当する見込みとして理想的
な原材料である。As a result, the old method of producing ethanol from broadly defined carbohydrates has gained renewed utility. It should be noted that the Swedish organic chemical industry that developed after World War II was based on ethylene and sulfite monoalcohols which were further converted to ethylene oxide and the like. The changing raw material situation has thus made such synthetic methods interesting. If up to 20% anhydrous ethanol is blended into gasoline, the octane number is improved and only minor changes need to be made to operate these blended fuels in internal combustion engines. Significant development work is underway along these lines in many countries with large amounts of cheap sugar or starch-based raw materials available. Recent research leads us to believe that converting cellulose into fermentable sugars is economically viable. Cellulose is available in seemingly unlimited quantities around the world and is an ideal raw material for potential use in ethanol production.
現在のところ発酵によるエタノール製造用のほとんどの
現在する設備は簡単な1群の作業に基礎をおいて、比較
的希薄になつた原材料が利用されている。Currently, most existing equipment for the production of ethanol by fermentation is based on a simple set of operations and utilizes relatively dilute raw materials.
このようにして多量の無駄な水すなわちスロツプが得ら
れもしこれらが未処理のまま容器に残されると、容器に
対する極めて高い生物学上一の負担を意味する。発酵に
よる大規模なエタノールの製造は、もし無駄な水が環境
の悪化なしに経済的に合理性のある方法で処理されるな
らばその時に限つて成り立つ。今まで発酵によるエタノ
ール製造用に使用されζてきた方法の穴点は、希釈され
た基質に、主として関係をもち、これは大容量の稀釈廃
水に関連した困難な問題を投げかけている。A large amount of wasted water or slop is thus obtained which, if left untreated in the container, represents a very high biological burden on the container. Large-scale production of ethanol by fermentation is only possible if wasted water is disposed of in an economically rational manner without environmental degradation. The shortcomings of the processes that have been used to date for ethanol production by fermentation primarily concern diluted substrates, which present difficult problems associated with large volumes of diluted wastewater.
通常のエタノール発酵において、基質濃度は発酵後エタ
ノール濃度が発酵液中で約7%(重量)になるようなも
の1である。もし糖密が基質として使用されるならば、
その初期の濃度は約27/Brjxであり、糖密は完全
にエタノールに発酵される。糖密の高濃度のものは、エ
タノールが発酵に阻画するから完全には発酵しない。発
酵器中に蓄積された阻害エタノールによる欠点を除去す
るために、常温でエタノールを沸騰蒸発させるように減
圧状態に発酵器を保持し、その温度を発酵を悪化させな
い十分低い程度に保持すべきであると提案されている。In normal ethanol fermentation, the substrate concentration is such that the ethanol concentration after fermentation is about 7% (by weight) in the fermentation liquid. If molasses is used as a substrate,
Its initial concentration is about 27/Brjx, and the molasses is completely fermented to ethanol. If the sugar concentration is high, ethanol will inhibit fermentation, so it will not be completely fermented. In order to eliminate the disadvantages of inhibiting ethanol accumulated in the fermenter, the fermenter should be kept under vacuum to boil off the ethanol at room temperature, and the temperature should be kept low enough not to deteriorate the fermentation. It is proposed that there is.
この方法に特有の1つの重要な欠点は、発酵中に生成さ
れる二酸化炭素化合物がすべて、減圧するのに用いられ
る装置によつて除去されるべきであつてこれにより漠)
大なエネルギの消費を招来することである。生成される
エタノールは共沸点混合物生成剤の助けをかりて基質か
ら発酵中に除去されるべきであることを提案されている
。この場合、エタノールは水および溶媒とともに、所謂
共沸点混合物を・生成し、これに対応するエタノール・
水混合液よりも低い沸点を有する。そののち、エタノー
ルは共沸点混合物から分離される。このような方法には
多くの特有な欠点がある。就中、好ましくない影響を酵
母の活性度に与えない共沸点混合物生成・溶剤を発見す
ることは極めて困難である。本発明の目的は、高い炭水
化物濃度の基質を供給しうる、および無害でありもしく
は効果的、経済的方法で利用できる濃縮廃流を生じ得る
上述の方法を提供するにある。本発明は発酵性及び非発
酵性物質よりなる炭水化物を含有する基質を連続工程回
路中に含まれる発酵器中で、一定のエタノール生産性を
達成するための活性酵母細胞の一定量を酵母の連続的再
巡環により発酵器中で維持しつつ連続的に発酵させてエ
タノールを製造する方法において、該回路中に該基質の
供給流れを連続的に導入することにより発酵器中での安
定条件が維持されており、該供給流れは、発酵器中に発
酵性物質の安定な濃度を維持するために該エタノールの
生産性に調和させて発酵性物質の供給についの量きめが
されており、該発酵器から発酵液の排出流が、その中に
含まれるエタノール濃度を発酵作用を阻害しない濃度に
維持するような流速で連続的に排出されており、該排出
流は少なくとも1つの連続的な酵母濃縮流と連続的な本
質的に酵母を含まない流れとに連続的に分離されており
、該酵母濃縮流は発酵器に循環されており、該酵母を含
まない流れは、エタノール分離ステップに於いて、エタ
ノール濃縮流と残余流とに連続的に分離されており、該
エタノール濃縮流は連続的に排出されており、該残余流
の一部は連続的に排出されており、又残りの残余流は連
続的に発酵器に循環されており、更に又エタノール分離
ステップから発酵器へ循環される物質の60−100′
Cの温度範囲での低温殺菌操作を工程中に含んでいるこ
とを特徴とするものである。One important drawback specific to this method is that all carbon dioxide compounds produced during the fermentation must be removed by the equipment used to reduce the pressure, thereby reducing the
This results in a large amount of energy consumption. It is proposed that the ethanol produced should be removed from the substrate during fermentation with the aid of an azeotrope-forming agent. In this case, ethanol forms a so-called azeotropic mixture with water and the solvent, and the corresponding ethanol and
It has a lower boiling point than the water mixture. The ethanol is then separated from the azeotrope. Such methods have a number of inherent drawbacks. In particular, it is extremely difficult to find an azeotrope-forming solvent that does not have an undesirable effect on yeast activity. It is an object of the present invention to provide a process as described above, which is capable of supplying a substrate with a high carbohydrate concentration and which is capable of producing a concentrated waste stream that is harmless or can be utilized in an effective and economical manner. The present invention utilizes a carbohydrate-containing substrate consisting of fermentable and non-fermentable materials in a fermenter included in a continuous process circuit, in which a certain amount of active yeast cells is continuously added to yeast to achieve a constant ethanol productivity. In a method for producing ethanol by continuously fermenting the substrate while maintaining it in a fermenter by circular recirculation, stable conditions in the fermenter are maintained by continuously introducing a feed stream of the substrate into the circuit. the feed flow is sized for the feed of fermentable material in keeping with the productivity of the ethanol to maintain a stable concentration of fermentable material in the fermentor; A discharge stream of fermentation liquor is continuously discharged from the fermenter at a flow rate that maintains the concentration of ethanol contained therein at a concentration that does not inhibit the fermentation process, and the discharge stream is continuously discharged from the fermenter at a flow rate such that the concentration of ethanol contained therein is maintained at a concentration that does not inhibit the fermentation process. The yeast concentrate stream is continuously separated into a continuous essentially yeast-free stream, the yeast concentrate stream being recycled to the fermenter, and the yeast-free stream being subjected to an ethanol separation step. The ethanol concentrate stream is continuously separated into an ethanol concentrate stream and a residual stream, the ethanol concentrate stream is continuously discharged, a portion of the residual stream is continuously discharged, and a remaining residue stream is continuously separated. The stream is continuously recycled to the fermenter and also contains 60-100' of material recycled from the ethanol separation step to the fermenter.
It is characterized in that the process includes a pasteurization operation at a temperature range of C.
遠心分離作用は分離機によるものが多い。The centrifugal action is often achieved by a separator.
酵母の濃縮液を発酵器に再循環することによつて、酵母
はエタノールを分離する際の劣質化から保護される。酵
母の再循環はまた、一層高い酵母の濃縮が維持されるこ
とを意味し、これによりさらに多くの発酵量を意味する
こととなる。発酵液の排出量は3つの流れ、すなわち連
続的な酵母濃縮流、連続的な酵母を含まない流れおよび
不純物を含む1つの残滓流とに最終的には分離すること
も出来る。これは遠心分離機によつて実施され、発酵液
の流入流を、1部は1つの連続した酵母濃縮流と連続し
た酵母を含まない流れに、また1部は1つの間欠的な残
滓流に分離する。このことは残滓が遠心分離機のロータ
の円周方向部分に蓄積され、そこから間欠的に排出され
ることを意味する。この方法によつて不純物がシステム
内に蓄積されるのを防止する。このような遠心分離機の
好適な1実施例において酵母濃縮液流は1対のバイブを
用い、および酵母を含まない流れは1対の板を用いて排
出される。従来のエタノール発酵技術において、エタノ
ール濃度が発酵終了後約7%(重量)であるような基質
濃度が用いられた。By recycling the yeast concentrate to the fermenter, the yeast is protected from degradation during ethanol separation. Recirculating the yeast also means that a higher yeast concentration is maintained, which means a higher fermentation volume. The fermentation liquor output can also be ultimately separated into three streams: a continuous yeast concentrate stream, a continuous yeast-free stream and one residue stream containing impurities. This is carried out by means of a centrifuge, which divides the fermentation liquid inlet stream into one part into one continuous yeast concentrate stream and one part into one continuous yeast-free stream and one part into one intermittent retentate stream. To separate. This means that residue accumulates in the circumferential portion of the centrifuge rotor and is intermittently discharged therefrom. This method prevents impurities from building up within the system. In one preferred embodiment of such a centrifuge, the yeast concentrate stream is discharged using a pair of vibrators and the yeast-free stream is discharged using a pair of plates. In conventional ethanol fermentation techniques, substrate concentrations were used such that the ethanol concentration was approximately 7% (by weight) after the end of fermentation.
もし糖密が基質として使用されれば、最初の糖密の濃度
は約22とBrixである。このような基質は完全に発
酵される。さらに高い糖密の濃度はこれらが7%(重量
)以上の高いエタノール濃度を生じさせこれが発酵作用
に対し阻害効果を呈するから、完全には発酵されない。
本発明によれば、もしエタノールが発酵液の循環回路か
らエタノールを連続的に除去して約5%(重量)を超え
て増加するのを防ぐならば、50〜60量Brixの高
い濃度をもつた糖密が発酵されるであろう。本発明によ
る方法の1実施例によれば、遠心分離機により得られた
酵母を含まない基質流が蒸留によりエタノールに富む1
つの流れと、少なくともその1部が発酵器に再循環され
、一方その1部の流れがスロツプの形で循環回路から排
出されるような1つの残余流とに分離される。If molasses is used as a substrate, the initial glycosyl concentration is about 22 and Brix. Such substrates are completely fermented. Even higher concentrations of molasses are not completely fermented, since they give rise to high ethanol concentrations of more than 7% (by weight), which have an inhibitory effect on the fermentation process.
According to the invention, ethanol has a high concentration of 50-60% Brix if continuous removal of ethanol from the fermentation broth circulation prevents it from increasing by more than about 5% (by weight). The molasses will be fermented. According to one embodiment of the method according to the invention, the yeast-free substrate stream obtained by the centrifuge is enriched in ethanol by distillation.
and a residual stream, at least a portion of which is recycled to the fermenter, while a portion of the stream is discharged from the circulation circuit in the form of a slop.
本発明によれば、このスロツプは、従来エタノール発酵
とともに実施されてきた蒸溜方法において得られるスロ
ツプよりもはるかに濃度が大きい。According to the invention, this slop is much more concentrated than the slop obtained in distillation processes traditionally practiced with ethanol fermentation.
本発明の他の大きな利点は、供給液が高濃度であること
及び高再循環であることに起因して得られることである
が、蒸留ステップ中の流れの中の可溶性の非発酵性物質
が高濃度になるときにはエタノールのための蒸留曲線が
かなり改善されることである。Another major advantage of the present invention is that, due to the high concentration of the feed and the high recirculation, soluble non-fermentable materials in the stream during the distillation step are The distillation curve for ethanol is considerably improved when high concentrations are reached.
非発酵性物質の濃度が発酵液中において一層高い場合に
は、或るエタノール濃度をもつ発酵液と平衡状態にある
蒸気中のエタノール濃度はこれによつてさらに高くなる
。エタノールを循環発酵液から分離する蒸留方法の代案
として抽出方法が用いられ、すなわちエタノールは当該
化合物に対しては大きい親和力をもつが水に対してその
親和力は僅かであるような如何なる適当な循環溶媒によ
つても抽出される。If the concentration of non-fermentable substances is higher in the fermentation liquor, the ethanol concentration in the vapor in equilibrium with a fermentation liquor with a given ethanol concentration will thereby be higher. As an alternative to distillation methods to separate ethanol from the circulating fermentation liquid, extraction methods are used, i.e. ethanol has a high affinity for the compounds in question, but its affinity for water is low, using any suitable circulating solvent. It is also extracted by
このような溶媒の1例としてはオクタノール溶液がある
。後者は発酵によつてオクタノール溶液から得られる。
この抽出方法は良好な熱経済性をもつている。エタノー
ルの蒸留あるいは抽出分離は、ほぼ大気圧力で、適切に
行なわれる。An example of such a solvent is an octanol solution. The latter is obtained from octanol solution by fermentation.
This extraction method has good thermoeconomics. Distillation or extractive separation of ethanol is suitably carried out at about atmospheric pressure.
事実、真空における熱分離は一層低い温度が保持される
という利点をもつが真空を保持するための運転費用は欠
点を意味する。本発明方法の好ましい実施態様の1つに
於いては、蒸留あるいは抽出分離によつて得られる残余
流は、それが発酵器へ循環される以前に、60℃乃至1
000Cの温度で低温殺菌される。In fact, thermal separation in vacuum has the advantage that lower temperatures are maintained, but the operating costs of maintaining the vacuum represent a disadvantage. In one of the preferred embodiments of the process of the invention, the residual stream obtained from the distillation or extractive separation is heated to 60°C to 1°C before it is recycled to the fermenter.
Pasteurized at a temperature of 000C.
本発明方法の一つの大きな利点は、エタノールを得る手
段に無関係に、物質濃度の高い廃液流が得られることで
あり、該廃液は適当な経済的手段で処分することが出来
る。One major advantage of the process of the invention is that, irrespective of the means by which the ethanol is obtained, a waste stream with a high concentration of substances is obtained, which can be disposed of in any suitable economic manner.
かくて、従来のエタノール蒸留に関連して得られるスロ
ツてよりも4乃至6倍以上の濃縮されたスロツプが得ら
れ、且つそのスロツプは燃焼熱の正値を持つており、こ
れは本発明方法の良好な運転経済性に寄与する。有機物
の高濃度を考慮すると、たとえばフルフロールのような
製品の製造原料として使用することもできる。以下本発
明を図面を参照しつつ詳細に説明する。Thus, a slop is obtained that is 4 to 6 times more concentrated than that obtained in connection with conventional ethanol distillation, and that slop has a positive value of the heat of combustion, which is achieved by the method of the present invention. contributes to good operating economy. Given the high concentration of organic matter, it can also be used as a raw material for the production of products such as Furflor. The present invention will be described in detail below with reference to the drawings.
第1図において、Fは発酵器、Cは遠心分離機、RUは
エタノールを除去するためのユニット、Mは混合器を示
す。In FIG. 1, F is a fermenter, C is a centrifuge, RU is a unit for removing ethanol, and M is a mixer.
これらのユニットはライン1,2,3,4を経由して、
循環回路に接続されている。さらに、遠心分離機Cは、
ライン5を経由して直接混合器Mに接続されている。循
環回路に対する入口ライン6は混合器Mに接続されてい
る。さらに、発酵器Fにはガス出口7が、遠心分離機C
には残滓出口8が、ユニットRUにはエタノールに富ん
だ流れ用の出口9が設けられ、一方ライン3には循環回
路からの排出用分岐10が設けられている。遠心分離機
Cは流入する流れを2つの連続液体流と1つの間欠的残
滓流とに分離する型式のものである。第2図には製造方
法の1実施例が示され、エタノールのような揮発性有機
化合物が1つの簡単な液体成分除去作業あるいは分溜の
いずれかの型式で、蒸溜によつて循環回路から分離され
る。These units are connected via lines 1, 2, 3, and 4.
connected to the circulation circuit. Furthermore, the centrifugal separator C is
It is connected via line 5 directly to mixer M. The inlet line 6 to the circulation circuit is connected to the mixer M. Further, the fermenter F has a gas outlet 7, and a centrifuge C
is provided with a residue outlet 8, the unit RU with an outlet 9 for the ethanol-rich stream, while the line 3 is provided with a branch 10 for discharge from the circulation circuit. Centrifuge C is of the type that separates the incoming stream into two continuous liquid streams and one intermittent residual stream. Figure 2 shows one embodiment of the production process in which a volatile organic compound such as ethanol is separated from the circuit by distillation, either in one simple liquid removal operation or in the form of fractional distillation. be done.
第2図において、対応する装置ユニットおよびラインに
は第1図と同一の参照記号を使用する。第1図における
ユニットRUが、蒸溜ユニットDで置換されている。蒸
溜ユニットへのライン2、および蒸溜ユニットから熱交
換部位へのライン3は熱交換器11EIで置換されてお
り、ライン3は混合器Mに接続する前に冷却器匪■を通
過する。第2図に示す型式の設備においてエタノールを
製造する場合に、濃縮浄化された基質がライン6および
混合器Mを経て、発酵器Fに供給される。In FIG. 2, the same reference symbols as in FIG. 1 are used for corresponding equipment units and lines. Unit RU in FIG. 1 has been replaced by distillation unit D. Line 2 to the distillation unit and line 3 from the distillation unit to the heat exchange site are replaced by a heat exchanger 11EI, and before connecting to the mixer M, line 3 passes through a cooler compartment. When producing ethanol in an installation of the type shown in FIG. 2, the concentrated and purified substrate is fed via line 6 and mixer M to fermenter F.
これにより、供給された流れは1部には遠心分離機から
到来する酵母懸濁液と、また1部には所謂スロツプと様
される蒸溜ユニットからの酵母を含まない流れと混合さ
れる。遠心分離機Cの内部で、不純物てある残滓は間欠
的に分離される。さもなければ、この残滓は、設備内に
蓄積されるであろう。エタノールは所要の熱が提供され
た場合に、間欠的な加熱あるいは生蒸気の供給によつて
、蒸溜ユニットD内で酵母を含まない流れから分離され
る。後者の場合、希釈は供給される基質の集中化の増加
によつて補償される。生蒸気の利点は、熱伝達面の沈澱
物が除去されることである。エタノールは出口9を通つ
て排出され、スロップは熱交換器HEIを経由して蒸溜
ユニットに流入する流れにほとんどそのすべての利用可
能な熱量を放出する。スロツプ流のわずかな部分は、出
口10を経由して、循環回路から排出され、経済的な方
法で処理される程度に濃縮される。スロツプ流の残余部
分は熱交換器運■によつて冷却され混合器Mを経て発酵
器Fへ供給される。発酵中、主として二酸化炭素のガス
が生成され、該ガスは出口7を通つて排出される。この
方法は、発酵器内のエタノール濃度を低レベル、即ちそ
れが発酵作用を阻害しない程度の濃度に維持し、したが
つて基質が選択された作業諸因子によつてほとんど10
0%発酵されるように実施される。蒸溜ユニットから排
出されたスロツプ中のエタノールの濃度は極めて低い。
循環回路からエタノールを蒸溜分離することに対する代
案として、抽出技法が用いらる。Thereby, the feed stream is mixed partly with the yeast suspension coming from the centrifuge and partly with the yeast-free stream from the distillation unit, which is similar to a so-called slop. Inside the centrifuge C, impurity residues are intermittently separated. Otherwise, this residue will accumulate within the equipment. Ethanol is separated from the yeast-free stream in distillation unit D by intermittent heating or supply of live steam when the required heat is provided. In the latter case, the dilution is compensated by an increased concentration of the substrate supplied. The advantage of live steam is that deposits on heat transfer surfaces are removed. The ethanol is discharged through the outlet 9 and the slop releases almost all its available heat into the stream entering the distillation unit via the heat exchanger HEI. A small portion of the slop stream leaves the circuit via outlet 10 and is concentrated to such an extent that it can be treated in an economical manner. The remaining portion of the slop stream is cooled by a heat exchanger (1) and fed to a fermenter (F) via a mixer (M). During fermentation, gas, mainly carbon dioxide, is produced, which is discharged through outlet 7. This method maintains the ethanol concentration in the fermenter at a low level, i.e. at such a concentration that it does not inhibit the fermentation process, so that the substrate is approximately 10
It is carried out so that 0% fermentation is carried out. The concentration of ethanol in the slop discharged from the distillation unit is extremely low.
As an alternative to distillative separation of ethanol from the circuit, extraction techniques are used.
第3図において、このような設備の概要が示されている
。該設備は第2図から既知であるユニットに加−えて、
たとえば逆流抽出筒の形状をもつた抽出ユニットE1お
よびたとえば分離筒の蒸溜ユニットFRを含む。遠心分
離機からのライン2は抽出ユニットEに接続され、これ
に対し溶媒流が入口15を通つて供給される。この溶媒
流は抽出ユニットEを通つて流れ、エタノールのような
揮発性化合物を吸収しかつライン16を通つて蒸溜ユニ
ットFRに流れ、そこからエタノールが出口17から排
出される。蒸溜ユニットFRからのスロツプの底流はラ
イン18を経て入口15に流れこの入口へ溶媒が入口1
9から供給される。エタノール中に排出され抽出ユニッ
トEから排出される流れの部分は設備から排出され、一
方残余は混合器Mを経由して発酵器Fに供給される。In FIG. 3 an overview of such an installation is shown. The installation includes, in addition to the units known from FIG.
It includes an extraction unit E1, for example in the form of a counterflow extraction cylinder, and a distillation unit FR, for example in the form of a separation cylinder. Line 2 from the centrifuge is connected to extraction unit E, to which a solvent stream is supplied through inlet 15. This solvent stream flows through extraction unit E, absorbing volatile compounds such as ethanol, and flows through line 16 to distillation unit FR, from where the ethanol is discharged through outlet 17. The slop underflow from distillation unit FR flows via line 18 to inlet 15 to which the solvent flows to inlet 1.
Supplied from 9. The part of the stream discharged into ethanol and discharged from extraction unit E is discharged from the installation, while the remainder is fed via mixer M to fermenter F.
蒸溜ユニットは間接加熱21により適切に加熱される。
実施例1
本発明による方法の実施例として、第2図に示す形式の
設備における糖密の連続蒸溜を述べる。The distillation unit is suitably heated by indirect heating 21.
Example 1 As an example of the method according to the invention, the continuous distillation of molasses in an installation of the type shown in FIG. 2 will be described.
設備を発動するために、100kgのパン用酵母が攪拌
器を具備する発酵タンク内に入れられた浄化された20
備Brixの100eの糖密中に供給された。冷却器が
循環回路内に設けられている。発酵温度は3′!f′C
に制御され、発酵糖分は3時間以内に90%がエタノー
ルに変換した。発酵過程の後方部分の間、エタノールは
約4%(重量)のエタノール濃度を同一に保持するため
に、基質から連続的に除去される必要があつた。ゆえに
、発酵液は遠心分離機Cを通つて循環するように搬送さ
れ、酵母濃縮流は発酵器に再循環され、一方酵母を含ま
ない流れは簡単な蒸溜ユニットDに供給されここにおい
てエタノールは大気圧で分離された。初期の供給による
発酵過程が完了すると、7〜13k91hrの浄化され
た400糖密が発酵器に連続的に供給された。発酵器内
には100eの液体容積が保持されている。発酵は1週
間続けられその間中に25〜35%(重量)のエタノー
ル濃度をもつたエタノール流が排出され、一方発酵器の
エタノールの濃度は約4%(重量)に保持された。乾燥
スロツプの25〜30%(重量)をもつわずかのスロツ
プ流が循環回路から排出された。運転データは両方の供
給量に対し以下に表に示すとおりである。To start the equipment, 100 kg of baker's yeast was placed in a fermentation tank equipped with an agitator.
It was supplied in a 100e molasses of Brix. A cooler is provided within the circulation circuit. Fermentation temperature is 3'! f′C
90% of the fermented sugar was converted to ethanol within 3 hours. During the latter part of the fermentation process, ethanol had to be continuously removed from the substrate in order to maintain the same ethanol concentration of approximately 4% (by weight). Therefore, the fermentation liquid is conveyed in circulation through a centrifuge C, the yeast enriched stream is recycled to the fermenter, while the yeast-free stream is fed to a simple distillation unit D, where the ethanol is Separated by atmospheric pressure. Upon completion of the initial feeding fermentation process, 7-13k91 hr of purified 400 molasses was continuously fed to the fermenter. A liquid volume of 100e is maintained within the fermenter. Fermentation continued for one week, during which time an ethanol stream with an ethanol concentration of 25-35% (by weight) was discharged, while the concentration of ethanol in the fermenter was maintained at approximately 4% (by weight). A small slop stream comprising 25-30% (by weight) of the dry slop was discharged from the circulation circuit. The operating data is shown in the table below for both feed rates.
F3/F6は第2図におけるライン3と6内の容積流の
間の関係を意味する。F3/F6 refers to the relationship between the volumetric flows in lines 3 and 6 in FIG.
エタノールの生産性は供給量の増加とともに増すが、後
者の場合には後者の一層多くの割合が利用されずに残る
ため、供給された糖分の利用価格とともに増大すること
が、この表から瞭らかである。供給量の最適値は、原材
料価格と投資運転費用との間の関係によつて決められる
ことが瞭らかである。原材料は上記の発酵中には殺菌さ
れないことに注目すべきである。It is clear from this table that the productivity of ethanol increases as the supply increases, but in the latter case it also increases with the utilization price of the supplied sugar because a larger proportion of the latter remains unutilized. That's it. It is clear that the optimum value of supply is determined by the relationship between raw material prices and investment operating costs. It should be noted that the raw materials are not sterilized during the above fermentation.
この事実にも拘らず、システム内にはいささかのバクテ
リアの生成もなく、これは恐らく流れが蒸溜ユニット内
で殺菌されることによると思われる。実施例2
第2図に示す工程回路によつて安定な操業条件が維持さ
れている発酵器中でしよ糖糖密の連続発酵が行なわれた
。Despite this fact, there was no formation of any bacteria within the system, probably due to the stream being sterilized within the distillation unit. Example 2 Continuous fermentation of sucrose molasses was carried out in a fermenter in which stable operating conditions were maintained by the process circuit shown in FIG.
発酵器は常圧下に保たれており、発酵液のPHと温度と
は4.5及び32′Cに維持された。酵母の生長は空気
の注入によつて制御された。使用酵母はスキツオサツカ
ロマイセス ボンベ(SchizOsaccharOm
ycespOmpe)であつた。工程回路中にライン6
から下記のものが供給された。分離器Cから蒸留塔Dへ
と供給される本質的に酵母を含まない流れ(ライン2)
は580k91hrで発酵器Fへ循環される残余流(ラ
イン3の量からライン10の量を差引いたもの)は36
3k91hrであ゛り、そのエタノール含量は約0%で
あつた。The fermenter was kept under normal pressure, and the pH and temperature of the fermentation liquor were maintained at 4.5 and 32'C. Yeast growth was controlled by air injection. The yeast used is Schizosaccharomyces bombe (SchizOsaccharOm).
ycespOmpe). Line 6 in the process circuit
The following were supplied by: Essentially yeast-free stream fed from separator C to distillation column D (line 2)
is 580k91hr and the residual flow recycled to fermenter F (the amount in line 3 minus the amount in line 10) is 36
The ethanol content was approximately 0%.
蒸留塔Dからは38%のエタノールを含有する蒸気65
kg1hrがライン9として得られ、゛又発酵器からは
二酸化炭素26kgIhrが放出された。発酵器F中で
は、下記の安定条件が維持された。From distillation column D, vapor 65 containing 38% ethanol
kg 1 hr was obtained as line 9, and 26 kg I hr of carbon dioxide was also released from the fermenter. In fermenter F, the following stable conditions were maintained.
ライン10からは乾燥固形分濃度1踵量%の残余流が1
52k91hrの割合で連続的に排出された。From line 10, a residual flow with a dry solid content concentration of 1%
It was continuously discharged at a rate of 52k91hr.
実施例3連続的エタノール発酵のための原料として小麦
(乾燥固形分87%)が使用された。この例では第2図
に示す工程回路に更に図示されていない糖化ステップが
加わるが、このステップを経た供給流れ(ライン6)が
ミキサーMの前に導入される。発酵器は常圧下に保たれ
ており、発酵液のPHと温度とは4.5及び32′Cに
維持された。発酵器から分離器Cへと流れる発酵液流れ
(ライン1)中の大きな粒子を除くため、篩目の大きさ
200pmの遠心篩が分離機の上流側に挿入されており
、ここで除去された物質は酵母を含まない流れ(ライン
2)中に、それが蒸留塔Dに導入される前に再合流され
た。同様の篩が蒸留塔から排出される残余流(ライン3
)中にも挿入されており、ここで除去された大きな粒子
は、系外に排出される残余流(ライン10)と共に系外
に排出された。使用酵母はサツカロマイセスセレベシア
エ(SaccharOmycescerevisiae
)であつた。Example 3 Wheat (87% dry solids) was used as feedstock for continuous ethanol fermentation. In this example, the process circuit shown in FIG. 2 is further supplemented with a saccharification step, which is not shown, but the feed stream (line 6) is introduced before mixer M. The fermenter was kept under normal pressure, and the pH and temperature of the fermentation liquor were maintained at 4.5 and 32'C. A centrifugal sieve with a mesh size of 200 pm was inserted upstream of the separator to remove large particles in the fermentation liquor stream (line 1) flowing from the fermenter to separator C. The material was recombined into the yeast-free stream (line 2) before it was introduced into distillation column D. A similar sieve is used for the residual stream discharged from the distillation column (line 3
), and the large particles removed here were discharged out of the system together with the residual stream (line 10) which was discharged out of the system. The yeast used is Saccharomyces cerevisiae.
).
糖化ステップを経由した供給流れ(ライン6)として下
記の量の小麦原料が供給された。分離器Cに於いて分離
され、且ライン1中での篩分操作をうけた後の、蒸留塔
Dへと供給される酵母を含まない流れ(ライン2)は5
30kg1hrで、発酵器Fへ循環される残余流(ライ
ン3の量からライン10の量を差引いたもの)は360
k91hr(そのエタノール含量は約0%)であつた。The following amounts of wheat feedstock were fed as a feed stream (line 6) via the saccharification step. After separation in separator C and sieving operation in line 1, the yeast-free stream (line 2) fed to distillation column D is 5
At 30 kg/hr, the residual flow circulated to fermenter F (the amount in line 3 minus the amount in line 10) is 360
k91hr (its ethanol content was approximately 0%).
蒸留塔Dからは4踵量%のエタノールを含む蒸気69k
g1hrがライン9として得られ、又発酵器からは二酸
化炭素33kgIhrが放出された。発酵器F中では、
下記の安定条件が維持された。69k of steam containing 4% ethanol from distillation column D
g1hr was obtained as line 9 and 33 kgIhr of carbon dioxide was released from the fermenter. In fermenter F,
The following stability conditions were maintained.
ライン3中に設けられた篩分装置で除去された大きな粒
子を含むライン10から排出される残余流は101k9
1hrであり、その乾燥固形分濃度は2鍾量%であつた
。The residual stream discharged from line 10 containing large particles removed by the sieving device installed in line 3 is 101k9
The dry solid content concentration was 2% by weight.
第1図は本発明による方法の主要流れ線図、第2図はエ
タノールの蒸留分離を含む1段階において実施される方
法に対する流れ線図、第3図はエタノールの抽出分離を
含む1段階において実施される方法に対する流れ線図で
ある。
1〜6・・・ライン、7・・・ガス出口、8・・・残滓
出口、9・・・出口、10・・・排出分岐、11・・・
加熱器、12,13・・・ライン、14・・・スロツプ
出口、15・・・入口、16・・・ライン、17・・・
出口、18・・・ライン、21・・・間接加熱器、C・
・・遠心分離機、D・・・蒸溜ユニット、F・・・発酵
器、HE・・・熱交換器、M・・・混合器。FIG. 1 is a main flow diagram of the process according to the invention, FIG. 2 is a flow diagram for a process carried out in one stage including distillative separation of ethanol, and FIG. 3 is a flow diagram for a process carried out in one stage including extractive separation of ethanol. 1 is a flow diagram for a method performed; 1-6... Line, 7... Gas outlet, 8... Residue outlet, 9... Exit, 10... Discharge branch, 11...
Heater, 12, 13... line, 14... slop outlet, 15... inlet, 16... line, 17...
Outlet, 18... line, 21... indirect heater, C.
... Centrifugal separator, D... Distillation unit, F... Fermenter, HE... Heat exchanger, M... Mixer.
Claims (1)
る基質を連続工程回路中に含まれる発酵器中で、一定の
エタノール生産性を達成するための活性酵母細胞の一定
量を酵母の連続的再巡還により発酵器中で維持しつつ連
続的に発酵させてエタノールを製造する方法において、
該回路中に該基質の供給流れを連続的に導入することに
より発酵器中での安定条件が維持されており、該供給流
れは、発酵器中に発酵性物質の安定な濃度を維持するた
めに該エタノールの生産性に調和させて発酵性物質の供
給についての量きめがされており、該発酵器から発酵液
の排出流が、その中に含まれるエタノール濃度を発酵作
用を阻害しない濃度に維持するような流速で連続的に排
出されており、該排出流は少なくとも1つの連続的な酵
母濃縮流と連続的な本質的に酵母を含まない流れとに連
続的に分離されており、該酵母濃縮流は発酵器に循環さ
れており、該酵母を含まない流れは、エタノール分離ス
テップに於いて、エタノール濃縮流と残余流とに連続的
に分離されており、該エタノール濃縮流は連続的に排出
されており、該残余流の一部は連続的に排出されており
、又残りの残余流は連続的に発酵器に循環されており、
更に又該エタノール分離ステップから発酵器へ循環され
る物質の60−100℃の温度範囲での低温殺菌操作を
工程中に含んでいることを特徴とするエタノールの製造
法。 2 該酵母を含まない流れのエタノール分離ステップが
蒸留によつて行なわれることを特徴とする特許請求の範
囲第1項記載の方法。 3 該酵母を含まない流れが該エタノール濃縮流と該残
余流とに蒸留ステップに於いて分離されており、同時に
該残余流は60乃至100℃の温度範囲に於いて低温殺
菌されていることを特徴とする特許請求の範囲第2項記
載の方法。 4 発酵液の該排出流が該酵母濃縮液と該酵母を含まな
い流れとに遠心分離ステップにおいて分離されているこ
とを特徴とする特許請求の範囲第1項記載の方法。 5 該供給流れ中の発酵性物質の濃度が22°Brix
の糖密に於ける発酵性物質濃度よりも高濃度であること
を特徴とする特許請求の範囲第1項記載の方法。Claims: 1. A certain amount of active yeast cells to achieve a constant ethanol productivity in a fermenter comprising a carbohydrate-containing substrate consisting of fermentable and non-fermentable substances in a continuous process circuit. In a method for producing ethanol by continuously fermenting yeast while maintaining it in a fermenter by continuous recirculation of yeast,
Stable conditions are maintained in the fermenter by continuously introducing a feed stream of the substrate into the circuit, the feed stream maintaining a stable concentration of fermentable material in the fermentor. The supply of fermentable substances is determined in accordance with the productivity of the ethanol, and the discharge stream of the fermentation liquid from the fermenter is adjusted to reduce the concentration of ethanol contained therein to a concentration that does not inhibit the fermentation process. the discharge stream being continuously separated into at least one continuous yeast enriched stream and a continuous essentially yeast-free stream; A yeast concentrate stream is recycled to the fermenter, and the yeast-free stream is continuously separated into an ethanol concentrate stream and a retentate stream in an ethanol separation step, and the ethanol concentrate stream is continuously recycled to the fermenter. a portion of the residual stream is continuously discharged, and the remaining residual stream is continuously recycled to the fermenter;
A method for producing ethanol, further comprising a pasteurization operation in the temperature range of 60-100° C. of the material recycled from the ethanol separation step to the fermenter. 2. Process according to claim 1, characterized in that the ethanol separation step of the yeast-free stream is carried out by distillation. 3. that the yeast-free stream is separated into the ethanol concentrate stream and the residual stream in a distillation step, and that the residual stream is simultaneously pasteurized in a temperature range of 60 to 100°C; A method according to claim 2, characterized in that: 4. Process according to claim 1, characterized in that the discharge stream of fermentation broth is separated into the yeast concentrate and the yeast-free stream in a centrifugation step. 5 The concentration of fermentable material in the feed stream is 22°Brix
2. The method according to claim 1, wherein the concentration of the fermentable substance is higher than the concentration of the fermentable substance in the saccharide.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE7801133A SE430171B (en) | 1978-01-31 | 1978-01-31 | CONTINUOUS PROCEDURE FOR THE PRODUCTION OF ETHANOL IN A FERMENTOR ADDED TO A SUBSTRATE WITH HIGH CARBOHYDRATE CONCENTRATION, WHICH DISPOSES FERMENTATION LIQUID AFTER COMPOUNDING A FRENCH PREPARED FLUID ... |
SE7801133-5 | 1978-01-31 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS54110387A JPS54110387A (en) | 1979-08-29 |
JPS6043117B2 true JPS6043117B2 (en) | 1985-09-26 |
Family
ID=20333821
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54008803A Expired JPS6043117B2 (en) | 1978-01-31 | 1979-01-30 | Method for producing volatile organic compounds, especially ethanol, by continuous fermentation |
Country Status (17)
Country | Link |
---|---|
JP (1) | JPS6043117B2 (en) |
AR (1) | AR222649A1 (en) |
AU (1) | AU511754B2 (en) |
BR (1) | BR7900321A (en) |
CA (2) | CA1110985A (en) |
DE (1) | DE2903273A1 (en) |
DK (1) | DK149782C (en) |
FI (1) | FI66905C (en) |
FR (1) | FR2416263A1 (en) |
GB (1) | GB2013716B (en) |
IN (1) | IN150767B (en) |
NL (1) | NL7900803A (en) |
NZ (1) | NZ189485A (en) |
PH (1) | PH17707A (en) |
SE (1) | SE430171B (en) |
SU (1) | SU1303034A3 (en) |
ZA (1) | ZA787390B (en) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE416315B (en) * | 1978-11-16 | 1980-12-15 | Alfa Laval Ab | METHOD FOR MANUFACTURE OF ETHANOL, WHEREAS THE CURRENT FLOW IS DIVIDED INTO A FLOW RICH OF SOLID SUBSTANCE AND A SUBSTRATE FLOW FREE OF SOLID SUBSTANCE, WHEN THE LAST FLOW AFTER PROCESSING IS PARTICULARLY BRINGED ... |
SE432441B (en) * | 1979-02-27 | 1984-04-02 | Alfa Laval Ab | PROCEDURE FOR PREPARING ETHANOL BY CONTINUOUS SPRAYING OF A CARBOHYDRATE-SUBSTRATE, WHICH A DRINK WITH RELATIVE HIGH RATE OF SOLID SUBSTANCE RECOVERY |
PH15644A (en) * | 1979-07-16 | 1983-03-11 | Ag Patents Ltd | Fermentation process and apparatus |
DE2938339B2 (en) * | 1979-09-21 | 1981-06-19 | Uhde Gmbh, 4600 Dortmund | Process for the continuous fermentation of aqueous mashes for the production of alcohol and yeast biomass |
US4287303A (en) * | 1979-11-13 | 1981-09-01 | Alfa-Laval Ab | Production of ethanol |
NZ196049A (en) * | 1980-01-30 | 1984-05-31 | Commw Scient Ind Res Org | Production of ethano l by yeast fermentation of carbohydrate-containing material; petrolethanol mixture |
CA1173381A (en) * | 1980-03-05 | 1984-08-28 | Peter L. Rogers | Ethanol production in a continuous process with cell recycle |
US4385118A (en) * | 1980-04-03 | 1983-05-24 | National Distillers & Chemical Corp. | Fermentation process |
US4310629A (en) * | 1980-04-03 | 1982-01-12 | National Distillers & Chemical Corp. | Continuous fermentation process for producing ethanol |
CU35492A (en) * | 1980-06-27 | 1982-08-24 | Ag Patents Ltd | Procedure and apparatus to fermentation |
US4517298A (en) * | 1981-05-08 | 1985-05-14 | Georgia Tech Research Corporation | Process for producing fuel grade ethanol by continuous fermentation, solvent extraction and alcohol separation |
JPS5911160A (en) * | 1982-07-08 | 1984-01-20 | Kikkoman Corp | Preparation of seasoning liquid |
US4508929A (en) * | 1983-01-03 | 1985-04-02 | The United States Of America As Represented By The Secretary Of The Army | Recovery of alcohol from a fermentation source by separation rather than distillation |
AT388386B (en) * | 1983-01-13 | 1989-06-12 | Voest Alpine Ag | METHOD FOR OBTAINING AETHANOL FROM TRANSFERABLE SUGAR SOLUTIONS |
AT391876B (en) * | 1983-01-13 | 1990-12-10 | Voest Alpine Ag | METHOD FOR OBTAINING AETHANOL FROM TRANSFERABLE SUGAR SOLUTIONS |
FI118301B (en) * | 2005-05-25 | 2007-09-28 | St1 Biofuels Oy | A process for preparing an ethanol-water mixture |
FI20075288A0 (en) * | 2007-04-25 | 2007-04-25 | St1 Biofuels Oy | Method and apparatus for preparing a mixture of ethanol and water |
RO129937B1 (en) * | 2013-11-25 | 2017-12-29 | Transproiect Organic Srl | Process for obtaining fertilizers from vinasse |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR673283A (en) * | 1927-10-04 | 1930-01-13 | Mode of production of compressed yeast, particularly aerolyeast, with or without alcohol production | |
DE596107C (en) * | 1931-11-19 | 1934-04-27 | Dansk Gaerings Ind As | Process for the production of alcohol by fermenting liquids containing carbohydrates |
US2053770A (en) * | 1933-08-15 | 1936-09-08 | Dreyfus Henry | Removal from a fermenting medium of organic compounds produced by the fermentation |
AT160210B (en) * | 1938-05-14 | 1941-03-10 | Heinrich Dr Ing Scholler | Fermentation processes for the cultivation of microorganisms or for the production of fermentation products. |
US2430170A (en) * | 1942-12-22 | 1947-11-04 | Distillers Co Yeast Ltd | Production of alcohol and glycerol by fermentation |
FR896756A (en) * | 1943-07-26 | 1945-03-02 | Bergin Ag Fu R Holzhydrolyse D | Process for treating sugar solutions |
US2440925A (en) * | 1944-04-27 | 1948-05-04 | Chemprotin Producs | Fermenting method |
CH264588A (en) * | 1948-03-24 | 1949-10-31 | Keussler Helene Von | Process for fermenting sugar-rich liquids on alcohol. |
SE387657B (en) * | 1973-07-09 | 1976-09-13 | Alfa Laval Ab | CONTINUES WITH CONTINUOUS JESNING, WHICH AFTER THE JESNING SEPARATION TAKES PLACE BY CENTRIFUGATION IN THREE COMPONENTS, Namely CULTIVATION LIQUID, LIVING CELL MASS AND POLLUTIONS |
AT334857B (en) * | 1975-05-16 | 1977-02-10 | Vogelbusch Gmbh | PROCESS FOR THE ALCOHOLIC FERMENTATION OF SUGAR-CONTAINING SUBSTRATES |
-
1978
- 1978-01-31 SE SE7801133A patent/SE430171B/en unknown
- 1978-12-28 ZA ZA00787390A patent/ZA787390B/en unknown
- 1978-12-29 IN IN1394/CAL/78A patent/IN150767B/en unknown
-
1979
- 1979-01-05 PH PH22033A patent/PH17707A/en unknown
- 1979-01-08 GB GB7900623A patent/GB2013716B/en not_active Expired
- 1979-01-18 BR BR7900321A patent/BR7900321A/en unknown
- 1979-01-26 FI FI790258A patent/FI66905C/en not_active IP Right Cessation
- 1979-01-26 NZ NZ189485A patent/NZ189485A/en unknown
- 1979-01-29 DE DE19792903273 patent/DE2903273A1/en active Granted
- 1979-01-29 CA CA320,434A patent/CA1110985A/en not_active Expired
- 1979-01-30 DK DK37779A patent/DK149782C/en active
- 1979-01-30 SU SU792719149A patent/SU1303034A3/en active
- 1979-01-30 AU AU43764/79A patent/AU511754B2/en not_active Expired
- 1979-01-30 JP JP54008803A patent/JPS6043117B2/en not_active Expired
- 1979-01-31 NL NL7900803A patent/NL7900803A/en not_active Application Discontinuation
- 1979-01-31 FR FR7902498A patent/FR2416263A1/en active Granted
- 1979-01-31 AR AR275358A patent/AR222649A1/en active
-
1982
- 1982-01-14 CA CA000394207A patent/CA1140873B/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
DK149782B (en) | 1986-09-29 |
DE2903273C2 (en) | 1993-03-25 |
CA1110985A (en) | 1981-10-20 |
AU511754B2 (en) | 1980-09-04 |
SU1303034A3 (en) | 1987-04-07 |
FR2416263A1 (en) | 1979-08-31 |
FI66905C (en) | 1987-04-22 |
ZA787390B (en) | 1979-12-27 |
AU4376479A (en) | 1979-08-09 |
BR7900321A (en) | 1979-08-14 |
AR222649A1 (en) | 1981-06-15 |
FI66905B (en) | 1984-08-31 |
JPS54110387A (en) | 1979-08-29 |
GB2013716B (en) | 1982-03-03 |
NL7900803A (en) | 1979-08-02 |
IN150767B (en) | 1982-12-11 |
SE7801133L (en) | 1979-08-01 |
DE2903273A1 (en) | 1979-08-16 |
FI790258A (en) | 1979-08-01 |
SE430171B (en) | 1983-10-24 |
DK149782C (en) | 1987-03-02 |
GB2013716A (en) | 1979-08-15 |
PH17707A (en) | 1984-11-19 |
FR2416263B1 (en) | 1982-07-02 |
NZ189485A (en) | 1982-03-30 |
CA1140873B (en) | 1983-02-08 |
DK37779A (en) | 1979-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108103112B (en) | Process for producing fuel ethanol by using corn starch as raw material | |
CN102665843B (en) | For the system and method that alcohol reclaims and stillage accessory substance is concentrated | |
JPS6043117B2 (en) | Method for producing volatile organic compounds, especially ethanol, by continuous fermentation | |
US4460687A (en) | Fermentation method | |
Maiorella et al. | Alcohol production and recovery | |
US4425433A (en) | Alcohol manufacturing process | |
US4564595A (en) | Alcohol manufacturing process | |
US9732362B2 (en) | Processes and systems for alcohol production and recovery | |
CN101157890B (en) | Fuel ethanol production equipment and method | |
CN101648847B (en) | Composite process of fuel alcohol and edible alcohol | |
JPS597315B2 (en) | Ethanol production method | |
CN1298859C (en) | Production of alcohol fuel | |
CN109294893B (en) | Resource utilization system and method for white spirit brewing byproduct yellow water | |
CN105579586A (en) | Production of ethanol and recycle water in a cellulosic fermentation process | |
CN101648848B (en) | Combined production method for fuel alcohol and edible alcohol | |
HU201971B (en) | Process for producing ethanol by fermenting molasses | |
CN209243063U (en) | A resource utilization system of yellow water, a by-product of liquor brewing | |
CN102605003B (en) | Method for producing alcohol from potato raw materials | |
CA1282358C (en) | Method of continuously recovering fermentation products | |
CN202173793U (en) | Alcohol prefractionator reboiling system using centrifugal clear liquid as cyclic medium | |
CN101941886B (en) | Method for producing fermentation product | |
Modl | Jilin fuel ethanol plant | |
CN116003232B (en) | Method for purifying acetoin in fermentation liquor | |
CN110468162B (en) | Production process and device for preparing fuel ethanol by one-time phase transition method | |
CA1175370A (en) | Fermentation method |