JPS61287447A - Production of heat resistant catalytic carrier composition - Google Patents

Production of heat resistant catalytic carrier composition

Info

Publication number
JPS61287447A
JPS61287447A JP60125185A JP12518585A JPS61287447A JP S61287447 A JPS61287447 A JP S61287447A JP 60125185 A JP60125185 A JP 60125185A JP 12518585 A JP12518585 A JP 12518585A JP S61287447 A JPS61287447 A JP S61287447A
Authority
JP
Japan
Prior art keywords
alumina
al2o3
weight
silica
sio2
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60125185A
Other languages
Japanese (ja)
Other versions
JPH051057B2 (en
Inventor
Kazuo Hata
和男 秦
Makoto Horiuchi
真 堀内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP60125185A priority Critical patent/JPS61287447A/en
Publication of JPS61287447A publication Critical patent/JPS61287447A/en
Publication of JPH051057B2 publication Critical patent/JPH051057B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled composition which continues to hold a high surface area even if exposed at high temp. for a long period and has the heat resistance by adding a specified elemental compd. to a mixed aq. soln. of Al2O3 hydrate and colloidal SiO2, thickening and gelatinizing the mixture, drying and calcining the obtained gelatinized material. CONSTITUTION:Nitrate of one kind selected from among Mg, Sr and Ti is added to a mixed aq. soln. of both Al2O3 hydrate which is amorphous and has the partial solubility for an acid and colloidal SiO2 and the mixture is thickened and gelatinized by performing the kneading and the stirring at 10-150 deg.C temp. region. Then gel wherein SiO2 is uniformly dispersed to Al2O3 is dried, crushed and thereafter calcined. Since the aimed composition consisting of a composite oxide of Al2O3 and SiO2 obtained by such a way is thermally stable even if exposed at >=1,000 deg.C for a long period, it is available as a carrier of a catalyst for the catalytic combustion and the purification of exhaust gas of an automobile.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は熱的に安定な触媒担体組成物の製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing a thermally stable catalyst carrier composition.

詳しく述べると、本発明は従来の活性アルミナおよび安
定化アルミナの耐熱性を改良し1000℃を越える高温
に長時間さらされても高表面積を有し続けうる、とくに
具体的には1200℃200時間の焼成処理後において
も少なくとも、20Td/gの化表面積を右する安定化
アルミナ組成物、即ちアルミナ−シリカ複合酸化物の製
造方法に関するものである。
Specifically, the present invention improves the heat resistance of conventional activated alumina and stabilized alumina, so that they can continue to have a high surface area even when exposed to high temperatures exceeding 1000°C for a long time, particularly at 1200°C for 20 hours. The present invention relates to a method for producing a stabilized alumina composition, that is, an alumina-silica composite oxide, which has a converted surface area of at least 20 Td/g even after the calcination treatment.

〔従来技術〕[Prior art]

活性アルミナは高表面積を有しかつ、耐熱性にもずぐれ
た物質であり、その特性を生かして自動車排ガス浄化用
触媒、産業υ1ガス処理用触媒あるいは接触燃焼用触媒
をはじめ各種の触媒の担体などに利用されている。
Activated alumina is a material with a high surface area and excellent heat resistance, and by taking advantage of its properties, it can be used as a support for various catalysts, including catalysts for automobile exhaust gas purification, catalysts for industrial υ1 gas treatment, and catalysts for catalytic combustion. It is used for such things.

しかしながら、活性アルミナは1000℃程度以上の高
温にさらされた場合、結晶構造の変化ににって最終的に
α−アルミナとなり比表面積が低下してしまう欠点を有
しており、その防止のため上述の如き利用分野において
は、通常活性アルミナに安定化剤として、シリカ、アル
カリ土類元素や希土類元素などを酸化物、水酸化物ある
いは各種の化合物の形で添加して用いられている。
However, activated alumina has the disadvantage that when exposed to high temperatures of around 1000°C or higher, its crystal structure changes and the specific surface area decreases, resulting in a change in the crystal structure and a decrease in the specific surface area. In the above-mentioned fields of application, silica, alkaline earth elements, rare earth elements, etc. are usually added as stabilizers to activated alumina in the form of oxides, hydroxides, or various compounds.

この場合、活性アルミナと上述の安定化剤は実質的には
混合物として共存しているに4ぎず、1ooo′c以下
の温度において、あるいは1100〜1400℃の高温
でも数時間程頂のごく短時間さらされた場合には、その
安定化効果は認められるものの1000℃を越える高温
に数十時間以上の長時間さらされた場合、結局α−アル
ミナや安定化剤の酸化物、さらにはスピネルあるいはペ
ロブスカイト構造をもつアルミナと安定化剤との低表面
f!複合酸化物を生成し、その比表面積は急激に低下し
てしまうことが知られている。
In this case, the activated alumina and the above-mentioned stabilizer essentially coexist as a mixture, but at temperatures below 100'C or even at high temperatures of 1,100 to 1,400 degrees Celsius, the activated alumina and the above-mentioned stabilizer coexist for a short period of time at the top of several hours. When exposed, the stabilizing effect is recognized, but when exposed to high temperatures exceeding 1000°C for a long period of time, for several tens of hours or more, α-alumina, stabilizer oxides, and even spinel or perovskite Low surface f of structured alumina and stabilizer! It is known that complex oxides are formed and the specific surface area thereof is rapidly reduced.

例えば、活性アルミナに二酸化ケイ素(SiO2として
5〜10重間%のシリカゾルを添加浸漬し、乾燥後10
00℃で焼成したものは約90m/Qの比表面積を有し
ており、安定化されているが、これは活性アルミナとア
モルファスシリカとの混合物である。
For example, activated alumina is dipped in silica sol containing 5 to 10% by weight of silicon dioxide (SiO2), and after drying,
The one fired at 00°C has a specific surface area of about 90 m/Q and is stabilized, but it is a mixture of activated alumina and amorphous silica.

又、これを1200℃で5時間焼成したちのは一部α−
アルミナの生成が認められるものの比表面積は28m/
gあり、まだかなり安定化されている。
Also, some α-
Although the formation of alumina is observed, the specific surface area is 28 m/
g, and is still fairly stable.

しかし、1200℃でさらに1001Rj間曝露すると
結局α−アルミナとクリス1−バライ1〜構造をもつS
iO2になり比表面積は3=5ffl/Qにまで低下す
る。
However, when exposed for a further 1001Rj at 1200℃, α-alumina and S having the structure
iO2, and the specific surface area decreases to 3=5ffl/Q.

一方、上述の如き触媒に求められる耐熱湿iは年々高く
なり1000℃以上の耐熱性が要求されつつある。
On the other hand, the heat and humidity resistance i required for the above-mentioned catalysts is increasing year by year, and heat resistance of 1000° C. or higher is becoming required.

特に近年触媒燃焼方式の応用が検問されている大容量の
ボイラーやガスタービンなどにJ3(1では触媒温度は
1000〜1200℃、条件【こよっては1300〜1
500℃の高温に達づ゛るため、これらの触媒の担体と
して従来の方法で製造された安定化アルミナを使用した
場合、触媒が大きな熱履歴を受(プその比表面積は時間
の経過とともに急激に低下し、その結果触媒活性が低下
してしまうという欠点を有している。
Particularly in large-capacity boilers and gas turbines, where the application of catalytic combustion methods has been examined in recent years, the catalyst temperature in J3 (1) is 1000-1200℃,
When conventionally produced stabilized alumina is used as a support for these catalysts, the catalysts undergo a large thermal history (their specific surface area decreases rapidly over time), since temperatures reach temperatures as high as 500°C. This has the disadvantage that the catalytic activity decreases as a result.

又、触媒層にクラックが生じ触媒活性部位が剥離してし
まう恐れもある。
Furthermore, there is a risk that cracks may occur in the catalyst layer and the catalyst active sites may peel off.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述した活性アルミナあるいは従来方法
で安定化されたアルミナが右する耐熱性にお(プる問題
点を克服し、1000℃を越える高温に長時間さらされ
でもα−アルミナへの結晶構造の変化が少なく、高表面
積を有し続【)うる耐熱性を有し、結果的に触媒性能の
低下の少ない触媒のための担体組成物の製造方法を提供
することにある。
The purpose of the present invention is to overcome the above-mentioned problems with the heat resistance of activated alumina or alumina stabilized by conventional methods, and to improve the heat resistance of α-alumina even when exposed to high temperatures exceeding 1000°C for long periods of time. It is an object of the present invention to provide a method for producing a carrier composition for a catalyst that exhibits little change in crystal structure, has a high surface area, has long-lasting heat resistance, and, as a result, has little deterioration in catalytic performance.

〔発明の構成〕[Structure of the invention]

すなわち、本発明は、アルミナ水和物とコロイド状シリ
カとの混合水溶液に、マグネシウム(Mq)、ストロン
チウム(Sr)、イツトリウム(Y)、ランタン(Ia
)、セリウム(Ce)、ネオジム(Nd)、チタン(T
 + > 、ジルコン(Zr)、クロム(Cr)および
スズ(Sn)よりなる群から選ばれた少なくとも1種の
元素の化合物を添加して、該混合水溶液を増粘ゲル化さ
せ、えられるゲルを乾燥し焼成することを特徴とする耐
熱性触媒担体組成物の製造法である。
That is, the present invention adds magnesium (Mq), strontium (Sr), yttrium (Y), and lanthanum (Ia) to a mixed aqueous solution of alumina hydrate and colloidal silica.
), cerium (Ce), neodymium (Nd), titanium (T
+> A compound of at least one element selected from the group consisting of zircon (Zr), chromium (Cr) and tin (Sn) is added to thicken and gel the mixed aqueous solution, and the resulting gel is This is a method for producing a heat-resistant catalyst carrier composition, which is characterized by drying and firing.

そして、本発明によってえられる触媒担体組成物は、1
200℃で200時間焼成後においてさえも20TIi
/g以上の比表面積を右Jるという従来にない耐熱性を
示すものである。
The catalyst carrier composition obtained by the present invention has 1
20TIi even after baking at 200℃ for 200 hours
It exhibits unprecedented heat resistance with a specific surface area of /g or more.

通常、複合酸化物の製造方法には沈殿法、含浸法、混合
法、共沈法などがあり、現在使用されている固体の工業
触媒は大部分これらの方法によって各組成を複合化して
用いられている。
Normally, methods for producing composite oxides include precipitation methods, impregnation methods, mixing methods, coprecipitation methods, etc., and most of the solid industrial catalysts currently used are composites of each composition using these methods. ing.

しかし、沈殿法では各組成の溶解度積の差のため、含浸
法では含浸あるいは浸漬によって得られたスラリーを乾
燥、焼成する時の各組成の移動のため、混合法では固相
反応によるため各組成を均一に混合することが固層1で
あり、各組成の粒径が不均一のために安定化剤を均一に
アルミナに分散させることは困難で遊離の状態のアルミ
ナと安定化剤が存在することを避(プられない。
However, in the precipitation method, due to the difference in the solubility product of each composition, in the impregnation method, due to the movement of each composition when the slurry obtained by impregnation or immersion is dried and fired, and in the mixing method, due to the solid phase reaction, each composition Solid phase 1 consists of uniformly mixing the stabilizers, and because the particle sizes of each composition are uneven, it is difficult to uniformly disperse the stabilizer in the alumina, and the alumina and stabilizer exist in a free state. I can't avoid it.

そして高温で長時間さらされた場合、結果的にはこれら
はα−アルミナと安定化剤の酸化物あるいはアルミネ−
1へとなり比表面積が低下する原因となる。
And when exposed to high temperatures for long periods of time, these eventually lead to the formation of alpha-alumina and stabilizer oxides or alumina.
1, which causes a decrease in the specific surface area.

又、共沈法ではキャリアーとしてのアルカリ土類元素、
希土類元素とアルミニウムとの水酸化物の溶解度積の差
が小さく、はぼ同時に沈殿が生じるだ(プで、溶解度積
の差による可溶状態の金属イオンの吸着包含による沈殿
が完全には起こらず共沈どはなりにくいため、沈殿剤、
温度、P l−1などの条件に大きく影響をうけその操
作には厳密性が要求される。
In addition, in the coprecipitation method, alkaline earth elements as carriers,
The difference in the solubility product of the hydroxides of rare earth elements and aluminum is small, and precipitation occurs almost simultaneously. Since coprecipitation is difficult to occur, precipitants,
It is greatly influenced by conditions such as temperature and Pl-1, and requires strict operation.

そして工業用として多量に調製する場合、高濃度溶液で
の調製では共沈にはなりにくく単に均一沈殿が生じるの
みであるため、低濃度溶液で複数回調製しな【プればな
らず、又、共沈物の粒径制御が困仰でろ過、洗浄等の操
作が煩雑であり、実用的でないと言える。
When preparing a large amount for industrial use, preparation with a high concentration solution is unlikely to cause co-precipitation and only produces a homogeneous precipitate, so it is necessary to prepare it multiple times with a low concentration solution, or However, it is difficult to control the particle size of the coprecipitate, and operations such as filtration and washing are complicated, making it impractical.

一方、本発明になる触媒担体組成物はアルミナ水和物と
コロイド状シリカの均一混合水溶液に本発明が特定する
元素の化合物を添加することにJ:って増粘ゲル化され
、その時にアルミニウムにシリカが均一に分散されるこ
とになり、これを乾燥熟成することによって長時間高温
焼成後でも高表面積を右するものとなる。
On the other hand, the catalyst carrier composition of the present invention is thickened and gelled by adding a compound of the element specified by the present invention to a homogeneous mixed aqueous solution of alumina hydrate and colloidal silica. The silica is uniformly dispersed in the material, and by drying and aging it, a high surface area can be achieved even after long-term high-temperature firing.

この理由はよくわかっていないが、アルミナ水和物とコ
ロイド状シリカとの安定存在域に本発明が特定する元素
の化合物を添加すると、PH変化が起こり、粒子間の反
撥を起こさせる電気二重層が充分に作用しない条件下で
粒子が会合することになってシリカを架橋、元とした結
合が生じ、高度に分散されたシリカを核としてアルミニ
ウムがそのまわりをとりかこむj;うに複合化されてア
ルミナのα化を防ぎ、その結果どして熱的に安定な触媒
担体組成物が得られると予想される。
The reason for this is not well understood, but when a compound of the element specified by the present invention is added to the stable existence region of alumina hydrate and colloidal silica, a PH change occurs, causing an electric double layer that causes repulsion between particles. Under conditions in which the particles do not work sufficiently, the particles come together, and bonds based on silica crosslinking occur, and aluminum surrounds the highly dispersed silica as a core. It is expected that gelatinization of alumina will be prevented, and as a result, a thermally stable catalyst carrier composition will be obtained.

本発明が特定する元素の化合物、すなわち、Ma、Sr
、Y、La、Ce、Nd、Ti、Zr、 Or、3n化
合物としては硝M塩、疾M塩、酢酸塩、蓚酸塩、塩化物
など水可溶性であればいずれを用いてもよい。
Compounds of elements specified by the present invention, namely Ma, Sr
, Y, La, Ce, Nd, Ti, Zr.

Mg、S r SY −、l a 1Ce −N d 
−T i 。
Mg, S r SY −, l a 1Ce −N d
-T i.

7r、CrおJ:びSnの群から選ばれた少なくとも1
種の元素の化合物によってアルミナ水和物とコロイド状
シリカの混合水溶液を増粘ゲル化させる場合10〜15
0℃の温度域に、より好ましくは20〜80℃の温度域
に保ち、該混合水溶液を充分撹拌しながら、上記の元素
の化合物を徐々に添加するのが適当である。
At least one selected from the group of 7r, Cr, J: and Sn
When a mixed aqueous solution of alumina hydrate and colloidal silica is thickened and gelled by a compound of a seed element, 10 to 15
It is appropriate to maintain the temperature in the 0° C. range, more preferably in the 20-80° C. range, and gradually add the compound of the above elements while sufficiently stirring the mixed aqueous solution.

増粘ゲル化時の温度が150℃を越える温度ではゲル化
する際に生じたゲルの乾燥が同時におこり、しかも乾燥
速度が速すぎるためにアルミナゲル中の固形物が表面層
に移動してシリカあるいはMO,Sr、Y、La、Ce
XNd。
If the temperature during thickening gelation exceeds 150°C, the gel produced during gelation will dry at the same time, and the drying rate will be too fast, causing the solids in the alumina gel to move to the surface layer and cause silica formation. Or MO, Sr, Y, La, Ce
XNd.

Ti、Zr、Cr、Snの偏在化カ起コリ好マしくない
The uneven distribution of Ti, Zr, Cr, and Sn is not favorable.

また、10°C未満の温度ではこれらの固形物が均一に
分散したゲルができにくく、そのため長時間か【プて撹
拌混合する必要があり実用的でない。
Further, at temperatures below 10°C, it is difficult to form a gel in which these solids are uniformly dispersed, and therefore it is necessary to stir and mix for a long time, which is not practical.

また、アルミナ水和物とコロイド状シリカとの均一混合
水溶液を増粘ゲル化させる際に、本発明が特定する元素
の化合物ど共に、アンモニア、炭酸アンモニア、1ヘリ
メヂルアミン等の脂肪族アミン類などの塩基f#1化合
物を併用することも可能である。
In addition, when thickening and gelling a homogeneous mixed aqueous solution of alumina hydrate and colloidal silica, ammonia, ammonia carbonate, aliphatic amines such as 1-helimedylamine, etc. It is also possible to use a base f#1 compound in combination.

さらに、ゲル化の際あるいはゲル化後も少(7くとも2
0分間、好ましくは30分間以」ニ10〜150℃の温
度域に保って充分混練、撹拌覆るのが適当である。
Furthermore, during or after gelation, there is also a small amount (7 at least 2
It is appropriate to sufficiently knead, stir, and cover the mixture for 0 minutes, preferably for 30 minutes or longer while keeping the mixture at a temperature in the range of 10 to 150°C.

これによってほぼ完全にシリカを核としてそのまわりに
アルミニウムがどりかこむような形態で均一に分散する
ことができる。
As a result, aluminum can be uniformly dispersed almost completely with silica as a core surrounded by aluminum.

ゲル化後の固形物の乾燥では、充分撹拌、混練した後は
熟成は必要でなくすぐに行なってもよい。
In drying the solid material after gelation, aging is not necessary and may be carried out immediately after sufficient stirring and kneading.

乾燥する場合、急激に高温乾燥を行なうど、シリカ等の
安定化剤の表面層へ移動するため好ましくなく、熱風循
環式乾燥器など温度分布の少ない乾燥器で徐々に昇温し
、最終的に150〜200℃で10時間以上乾燥するの
が好ましい。
When drying, rapid high-temperature drying is undesirable because the stabilizer such as silica moves to the surface layer, and the temperature is gradually raised in a dryer with a small temperature distribution, such as a hot air circulation dryer, until the final It is preferable to dry at 150 to 200°C for 10 hours or more.

焼成は該乾燥固形物を500ミクロン程度に粗粉砕後あ
るいは、必要があれば20〜30ミクロン程度に粉砕後
行なってもよい。
The calcination may be carried out after the dry solid is roughly pulverized to about 500 microns or, if necessary, after pulverized to about 20 to 30 microns.

そして、その乾燥粉体を500〜1100℃、好ましく
は600〜1000℃の温度範囲にて少なくとも3時間
以−り空気存在下で焼成覆ることによって完成触媒担体
組成物を得る。
The dried powder is then calcined in the presence of air at a temperature range of 500 to 1100°C, preferably 600 to 1000°C for at least 3 hours to obtain a finished catalyst carrier composition.

上記のようにして得られる耐熱性触媒担体組成物は、ア
ルミナとして70〜99.4重量%の範囲、シリカどし
て0.5〜20重量%の範囲、好ましくは0.8〜12
重量%の範囲及びMO。
The heat-resistant catalyst carrier composition obtained as described above contains alumina in a range of 70 to 99.4% by weight, silica in a range of 0.5 to 20% by weight, preferably 0.8 to 12% by weight.
Weight % range and MO.

Sr、Y、La、Ce、Nd、Ti、Zr、Crおよび
Snからなる群から選ばれた少なくとも1種の元素の酸
化物が0.1〜10重間%の範囲、好ましくは1〜6重
量%の範囲の組成を有するものが好ましい。
The oxide of at least one element selected from the group consisting of Sr, Y, La, Ce, Nd, Ti, Zr, Cr and Sn is in the range of 0.1 to 10% by weight, preferably 1 to 6% by weight. % is preferred.

アルミナ原料としては無機酸もしくは有機酸に対して部
分溶解性をもつ非晶質、ベーマイ1〜構造あるいは凝ベ
ーマイ1へ構造をもつアルミナ水和物が適当でギブサイ
トあるいはダイアスポアなどのアルミナ水和物は好まし
くない。
Suitable raw materials for alumina are amorphous alumina hydrates that are partially soluble in inorganic or organic acids, and have a Boehmite 1 structure or a coagulated Boehmite 1 structure.Alumina hydrates such as gibbsite or diaspore are suitable. Undesirable.

シリカが0.5重量%未満の場合は、シリカの安定化剤
としての効果はほとんど認められず、又、20重間%を
越える量の場合には安定化剤どしての効果は認められる
ものの、長時間焼成ではアルミナとの複合酸化物である
ムライ1〜が生成づるようになり、その効果は少なくな
る。
When the amount of silica is less than 0.5% by weight, the effect of silica as a stabilizer is hardly recognized, and when the amount exceeds 20% by weight, the effect as a stabilizer is recognized. However, if fired for a long time, Murai 1~, which is a composite oxide with alumina, will begin to form, and its effect will decrease.

コロイド状シリカとしはその水素イオンS度が酸性、中
性、1n基性等いずれのものち用いることができるが、
酸性のものが特に好ましく、粒子径【J50ミリミクロ
ン以下であればよく、特に10〜20ミリミクロンのも
のが好ましい。
Colloidal silica can be used regardless of its hydrogen ion S degree, such as acidic, neutral, 1n-based, etc.
Acidic ones are particularly preferred, and particle diameters of J50 millimicrons or less are particularly preferred, with those having a particle size of 10 to 20 millimicrons being particularly preferred.

シリカゾル安定化剤どして存在づるすトリウムは酸化す
1〜リウムとして0.1%以」二含まれるとシリカのア
ルミナ安定化剤としての効果が弱められるので酸化す1
−リウムとしては0.05%以下のものが好ましい。
If thorium is present as a silica sol stabilizer, it will weaken the effect of silica as an alumina stabilizer.
-Rium is preferably 0.05% or less.

次に本発明を実施例により具体的に説明する。Next, the present invention will be specifically explained using examples.

ただし、組成、製造法等これに限定覆るものではない。However, the composition, manufacturing method, etc. are not limited to these.

実施例 1 水2070mに酢酸を230d加えた耐酸溶液中にベー
マイ1〜(コノ]判製、商品名:SBアルミナ)270
gを添加してホモミキ復−で2時間撹拌してアルミナゾ
ルを得た。
Example 1 Boehmai 1~ (Kono Hansei, trade name: SB Alumina) 270 was added to an acid-resistant solution prepared by adding 230 d of acetic acid to 2070 ml of water.
g was added and stirred for 2 hours using a homomixture to obtain an alumina sol.

このゾルを60℃に加温したニーダ−に入れ、コロイド
状シリカ(口近化学工業(体製、商品名ニスノーテック
ス)13.9Gを加え撹拌しながら硝酸クロム56.3
0を溶解した水溶液200mf!を添加しさらに1時間
混練撹拌した。
This sol was placed in a kneader heated to 60°C, and 13.9G of colloidal silica (manufactured by Kuchikagaku Kogyo Co., Ltd., trade name: Nisnortex) was added, and while stirring, 56.3G of chromium nitrate was added.
200mf of an aqueous solution containing 0! was added and further kneaded and stirred for 1 hour.

この時の混練物のP Hは7.5であった。The PH of the kneaded product at this time was 7.5.

その後、ゲル化固形物を熱風循環式乾燥器に入れ150
°Cで12時間乾燥した。次いで、乾燥固体をアi〜マ
イザーで粉砕して10〜20ミクロンの粉体にしだ後8
00℃で5時間仮焼して、シリカとして1.3重量%、
クロミアとして5重量%、アルミナとして93.7重量
%を含有する複合酸化物を得た。
After that, the gelled solid was placed in a hot air circulation dryer for 150 minutes.
Dry at °C for 12 hours. Next, the dry solid is pulverized with an eye mizer to form a powder of 10 to 20 microns.
Calcined at 00℃ for 5 hours, 1.3% by weight of silica,
A composite oxide containing 5% by weight of chromia and 93.7% by weight of alumina was obtained.

実施例 2 150TIL10の比表面積を右するベーマイ1〜(コ
ンデイア社製、商品名:デイスプーラル)662Qを6
0%硝W’219.6 mQを含む水1830 mQに
添加しボモミキ1J“−で1時間撹拌して部分溶解さゼ
アルミナゾルを得た。
Example 2 Boehmei 1 to 662Q (manufactured by Condeia, trade name: Dispural) to determine the specific surface area of 150TIL10
The mixture was added to 1830 mQ of water containing 219.6 mQ of 0% nitric acid W' and stirred for 1 hour using a Bomomiki 1J"- to obtain partially dissolved zealumina sol.

次にこのゾルを80℃に加温したニーダ−に移し、撹拌
しながらコロイド状シリカ(1ヨ産化学工業(体製、商
品名:スノーテックス)1269を添加し均一混合溶液
を得た。次に該溶液を撹拌しながら硝酸ランタン81.
20を溶解した水溶液200dを徐々に添加して混線物
を得lC0この時の混練物のP Hは8.4であった。
Next, this sol was transferred to a kneader heated to 80°C, and colloidal silica (manufactured by Yosan Kagaku Kogyo Co., Ltd., trade name: Snowtex) 1269 was added while stirring to obtain a uniform mixed solution. While stirring the solution, add lanthanum nitrate 81.
200 d of an aqueous solution in which 20 was dissolved was gradually added to obtain a mixed material.The pH of the mixed material at this time was 8.4.

次いで実施例1と同様にして乾燥焼成してシリカとして
4.5重量%、ランタナとして5.5重量%、アルミナ
として90重量%を含有する複合酸化物を1ワた。
Next, it was dried and calcined in the same manner as in Example 1, and 1 watt of a composite oxide containing 4.5% by weight of silica, 5.5% by weight of lanthana, and 90% by weight of alumina was added.

比較例 1 比表面積150rIl/qを右するベーマイ1〜(]コ
ンデイア社製商品名:ディスプーラル)662qにコロ
イド状シリカ(口近化学工業曲製、商品名ニスノーテッ
クス)126qと硝酸ランタン81.2 gを溶解した
水470gの混合溶液を浸漬させ十分混合撹拌しながら
蒸発乾固し 1こ 。
Comparative Example 1 Colloidal silica 126q (manufactured by Kuchikagaku Kogyo Kyoku, trade name Nisnortex) and lanthanum nitrate 81.2 to Boehmy 1 to 662q (manufactured by Condeia, trade name: Dispural) with a specific surface area of 150 rIl/q. The mixture was immersed in a mixed solution of 470 g of water in which 1 g was dissolved, and evaporated to dryness while thoroughly mixing and stirring.

次いで、実施例1におりると同様にして粉砕、焼成して
シリカとして4.5重量%、ランタナとして5.5重量
%、アルミナとして90重量%を含有する複合酸化物を
得た。
Next, the mixture was crushed and calcined in the same manner as in Example 1 to obtain a composite oxide containing 4.5% by weight of silica, 5.5% by weight of lanthana, and 90% by weight of alumina.

実施例 3 実施例1および2、比較例1によって得た複合酸化物を
1200℃においてそれぞれ20時間、50時間、10
0時間、200時間、300時間空気雰囲気下で焼成し
た後、その表面積を窒素ガスを吸着ガスとしたBET式
比表面計で測定した。表面積の測定結果を表1に示す。
Example 3 The composite oxides obtained in Examples 1 and 2 and Comparative Example 1 were heated at 1200°C for 20 hours, 50 hours, and 10 hours, respectively.
After baking in an air atmosphere for 0 hours, 200 hours, and 300 hours, the surface area was measured using a BET specific surface meter using nitrogen gas as an adsorption gas. Table 1 shows the surface area measurement results.

= 16− 表1 、lり実施例1おにび2にJ:つて得た複合酸化
物は、1200℃200時間焼成後でも20尻/Q以上
の比表面積を有しており、熱的に安定な触媒担体組成物
であることがわかる。
= 16- Table 1, Example 1, 2, J: The composite oxide thus obtained had a specific surface area of 20/Q or more even after sintering at 1200°C for 200 hours, and was thermally stable. It can be seen that the catalyst carrier composition is stable.

一方、比較例1の浸漬法にJ:る複合酸化物は20時間
焼成までは安定化されているが、50時間焼成で表面積
経時変化が大ぎくなりその安定化効果はなくなっている
On the other hand, the composite oxide obtained by the immersion method in Comparative Example 1 was stabilized up to 20 hours of calcination, but after 50 hours of sintering, the surface area changed over time so much that the stabilizing effect disappeared.

表 1  1200℃焼成後の比表面積 (TIiha
)手  続  補  正  書  (自発)昭和60年
?月30日
Table 1 Specific surface area after firing at 1200℃ (TIiha
) Procedural amendment (voluntary) 1985? 30th of the month

Claims (4)

【特許請求の範囲】[Claims] (1)アルミナ水和物とコロイド状シリカとの混合水溶
液に、マグネシウム、ストロンチウム、イットリウム、
ランタン、セリウム、ネオジム、チタン、ジルコン、ク
ロムおよびスズよりなる群から選ばれた少なくとも1種
の元素の化合物を添加して、該混合水溶液を増粘ゲル化
させ、えられるゲルを乾燥し焼成することを特徴とする
耐熱性触媒担体組成物の製造法。
(1) Magnesium, strontium, yttrium,
A compound of at least one element selected from the group consisting of lanthanum, cerium, neodymium, titanium, zircon, chromium, and tin is added to thicken the mixed aqueous solution into a gel, and the resulting gel is dried and fired. A method for producing a heat-resistant catalyst carrier composition.
(2)該耐熱性触媒担体組成物がアルミナとして70〜
99.4重量%の範囲、シリカとして0.5〜20重量
%の範囲及びマグネシウム、ストロンチウム、イットリ
ウム、ランタン、セリウム、ネオジム、チタン、ジルコ
ン、クロムおよびスズよりなる群から選ばれた少なくと
も1種の元素の酸化物が0.1〜10重量%の範囲であ
る組成を有することを特徴とする特許請求の範囲(1)
記載の方法。
(2) The heat-resistant catalyst carrier composition is 70 to 70% as alumina.
99.4% by weight, 0.5 to 20% by weight as silica, and at least one member selected from the group consisting of magnesium, strontium, yttrium, lanthanum, cerium, neodymium, titanium, zircon, chromium, and tin. Claim (1) characterized in that it has a composition in which the oxides of the elements range from 0.1 to 10% by weight.
Method described.
(3)アルミナ水和物が非晶質、ベーマイト構造または
凝ベーマイト構造を有し、かつ酸に対して部分溶解性を
有するものであることを特徴とする特許請求の範囲(1
)または(2)記載の方法。
(3) Claims (1) characterized in that the alumina hydrate is amorphous, has a boehmite structure, or a solidified boehmite structure, and has partial solubility in acids.
) or the method described in (2).
(4)アルミナ水和物とコロイド状シリカとの混合水溶
液の増粘ゲル化が10〜150℃の温度範囲で行なわれ
ることを特徴とする特許請求の範囲(1)、(2)また
は(3)記載の方法。
(4) Claims (1), (2), or (3) characterized in that the thickening and gelation of the mixed aqueous solution of alumina hydrate and colloidal silica is carried out at a temperature range of 10 to 150°C. ) method described.
JP60125185A 1985-06-11 1985-06-11 Production of heat resistant catalytic carrier composition Granted JPS61287447A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125185A JPS61287447A (en) 1985-06-11 1985-06-11 Production of heat resistant catalytic carrier composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125185A JPS61287447A (en) 1985-06-11 1985-06-11 Production of heat resistant catalytic carrier composition

Publications (2)

Publication Number Publication Date
JPS61287447A true JPS61287447A (en) 1986-12-17
JPH051057B2 JPH051057B2 (en) 1993-01-07

Family

ID=14904008

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125185A Granted JPS61287447A (en) 1985-06-11 1985-06-11 Production of heat resistant catalytic carrier composition

Country Status (1)

Country Link
JP (1) JPS61287447A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320035A (en) * 1986-07-14 1988-01-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of heat resistant catalyst carrier composition
CN102686801A (en) * 2009-10-09 2012-09-19 斯托拉恩索公司 A process for the production of a substrate comprising silica pigments which is formed on the surface of the substrate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6320035A (en) * 1986-07-14 1988-01-27 Nippon Shokubai Kagaku Kogyo Co Ltd Production of heat resistant catalyst carrier composition
CN102686801A (en) * 2009-10-09 2012-09-19 斯托拉恩索公司 A process for the production of a substrate comprising silica pigments which is formed on the surface of the substrate

Also Published As

Publication number Publication date
JPH051057B2 (en) 1993-01-07

Similar Documents

Publication Publication Date Title
KR100199909B1 (en) A high heat-resistant catalyst support and its production method, and a high heat-resistant catalyst and its production method
JPS61205621A (en) Stabilized zirconia, manufacture and use for ceramic composition
RU98106633A (en) ACCUMULATING OXYGEN MATERIAL WITH HIGH TEMPERATURE RESISTANCE, AND ALSO WAY OF ITS PRODUCTION
JPH0816015B2 (en) Process for the production of compositions based on mixed oxides of zirconium and cerium
JP2005530612A (en) Compositions using zirconium oxide and oxides of cerium, lanthanum and other rare earth elements, methods for their preparation and use as catalysts
CN106824163A (en) Composite oxides and preparation method thereof
US5106812A (en) Catalyst carrier for use in high-temperature combustion
CN104437458B (en) Cerium-zirconium-based composite oxide catalytic material and preparation method thereof
JP2886867B2 (en) Manufacturing method of catalyst carrier
JPS61287447A (en) Production of heat resistant catalytic carrier composition
JPS62168544A (en) Zirconia carrier and its preparation
JPS6320035A (en) Production of heat resistant catalyst carrier composition
Chen et al. Preparation of alumina-zirconia materials by the sol-gel method from metal alkoxides
JPS61204037A (en) Production of thermally stable catalyst carrier composition
JPS60226414A (en) Production of lanthanum-alumina based compound oxide
JPS61287446A (en) Production of heat resistant catalytic carrier composition
JPH075291B2 (en) Method for producing zirconia uniformly dispersed mullite fine powder
JP2957552B2 (en) Composition for washcoat slurry
CN110876927B (en) Preparation method of magnesia-alumina spinel material
JP2005330174A (en) Method for manufacturing tetragonal zirconia sol
JPH06199582A (en) Production of porous body
JPH0283033A (en) Manufacture of heat resisting alumina carrier
JPH054050A (en) Heat-resistant transition alumina and its production
JPS63175642A (en) Manufacture of heat-resistant carrier
JP2000070711A (en) Production of highly heat resistant porous alumina-base catalyst carrier