JPS61287422A - Structure of self-supporting desulfurization tower - Google Patents

Structure of self-supporting desulfurization tower

Info

Publication number
JPS61287422A
JPS61287422A JP60129693A JP12969385A JPS61287422A JP S61287422 A JPS61287422 A JP S61287422A JP 60129693 A JP60129693 A JP 60129693A JP 12969385 A JP12969385 A JP 12969385A JP S61287422 A JPS61287422 A JP S61287422A
Authority
JP
Japan
Prior art keywords
gas
desulfurization tower
absorption liquid
collector
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60129693A
Other languages
Japanese (ja)
Inventor
Hiroshi Masutomi
博 益冨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP60129693A priority Critical patent/JPS61287422A/en
Publication of JPS61287422A publication Critical patent/JPS61287422A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent an absorption liquid from contamination into a cooling liquid and to obtain the stable desulfurization performance by providing a perforated plate to the vertical face of the gas passing part of the collector of the absorption liquid. CONSTITUTION:After an exhaust gas contg. SOx is introduced into a desulfurization tower 1 and cooled with a cooling liquid fed from a spray 12, SOx is absorbed with a limestone slurry fed from a spray 5 and the slurry is collected in the collectors 8. A gas dispersion plate 7 consisting of a perforated plate is provided in the vertical direction between the collectors 8 made to a gas passage and the absorption liquid is prevented from the contamination into the cooling liquid by the pressure difference of the upstream and downstream of gas in the gas dispersion plate 7. Since the collectors 8 and the dispersion plate 7 are positioned on the same plane, the resistance of the flow path is added and the breathing phenomena of gas are prevented.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、いわゆる自立式脱硫塔に係υ、より詳細には
、湿式石灰石−石膏性排煙脱硫装置の自立式脱硫塔の吸
収装置に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a so-called free-standing desulfurization tower, and more particularly to an absorption device for a free-standing desulfurization tower in a wet limestone-gypsum flue gas desulfurization system. It is something.

〔従来の技術及び解決しようとする問題点〕自立式脱硫
塔は、ボイラ等の排ガス中に含まれる硫黄酸化物を除去
するために一塔内にガス冷却部と吸収部を有し、吸収部
で硫黄酸化物の吸収剤である石灰石スラリーをスプレー
するものである。
[Prior art and problems to be solved] A self-supporting desulfurization tower has a gas cooling section and an absorption section within one tower in order to remove sulfur oxides contained in exhaust gas from a boiler etc. This involves spraying limestone slurry, which is an absorbent for sulfur oxides.

(+) 、第6Yt従来の自立式脱硫塔構造を示している。(+) , No. 6 Yt shows a conventional self-supporting desulfurization tower structure.

同図におらて、脱硫塔lは、内部に冷却液スプレノズル
12、コレクター8、ガス分散板7、吸収液スプレノズ
ル5及びデミスタ−6を有する自立円筒体で、底部に冷
却液を貯留する構造となっている。
In the figure, the desulfurization tower 1 is a self-supporting cylindrical body that has a cooling liquid spray nozzle 12, a collector 8, a gas distribution plate 7, an absorption liquid spray nozzle 5, and a demister 6 inside, and has a structure in which the cooling liquid is stored at the bottom. It has become.

第6図中、矢印gで示す如く、硫黄酸化物を有する排ガ
スを脱硫塔1の下部側から導入する。一方、脱硫塔lの
外部に設けた冷却液循環ポンプ10及び冷却液循環配管
11によって、脱硫塔1の底部に貯留されている冷却液
を冷却液スプレノズル12からガス中にスプレーし、ガ
スを冷却すると共にガス中の硫黄酸化物の一部を除去す
る。
As shown by arrow g in FIG. 6, exhaust gas containing sulfur oxides is introduced from the lower side of the desulfurization tower 1. On the other hand, a coolant circulation pump 10 and a coolant circulation pipe 11 provided outside the desulfurization tower 1 spray the coolant stored at the bottom of the desulfurization tower 1 into the gas from a coolant spray nozzle 12 to cool the gas. At the same time, some of the sulfur oxides in the gas are removed.

脱硫塔1の下部で冷却された排ガスは、コレクター8及
びガス分散板7を通過した後、塔上部において吸収液ス
プレノズル5から吸収液がスプレーされ、含有する硫黄
酸化物が吸収液に吸収される。吸収液は、塔外に設けた
吸収液循環ポンプ3及び吸収液循環配管4により、吸収
液循環タンク2から吸収液スプレノズル5に供給されて
いる。
The exhaust gas cooled at the bottom of the desulfurization tower 1 passes through the collector 8 and the gas distribution plate 7, and then an absorption liquid is sprayed from the absorption liquid spray nozzle 5 at the top of the tower, and the sulfur oxides contained are absorbed into the absorption liquid. . The absorption liquid is supplied from the absorption liquid circulation tank 2 to the absorption liquid spray nozzle 5 by an absorption liquid circulation pump 3 and absorption liquid circulation piping 4 provided outside the tower.

吸収液に硫黄酸化物を吸収さ扛り排ガスは、デミスタ−
6にて同伴ミストを除去された後、塔頂部からダクト(
図示せず)を通って清浄ガスとなって排出される。
The exhaust gas that absorbs sulfur oxides into the absorption liquid is transferred to a demister.
After the entrained mist is removed in step 6, the duct (
(not shown) and is discharged as clean gas.

吸収液スプレノズル5から排ガス中にスプレーされ、ガ
ス中の硫黄酸化物を吸収した吸収液は、落下してガス分
散板7を通過した後、コレクター8にて集められ、降水
管9を介して、塔外に設けら扛た吸収液循環タンク2に
戻り、一定時間タンク2内に貯留され、PHの回復を図
る。その後は前述のとうり、再度、吸収液循環ポンプ3
、吸収液循環配管4及び吸収液スプレノズル5によって
脱硫塔l内にスプレーされる。
The absorption liquid that is sprayed into the exhaust gas from the absorption liquid spray nozzle 5 and absorbs the sulfur oxides in the gas falls and passes through the gas distribution plate 7, and then is collected by the collector 8, and then passed through the downcomer pipe 9. The absorbent liquid returns to the absorption liquid circulation tank 2 provided outside the tower and is stored in the tank 2 for a certain period of time to recover the pH. After that, as mentioned above, once again, the absorption liquid circulation pump 3
, is sprayed into the desulfurization tower l by the absorption liquid circulation pipe 4 and the absorption liquid spray nozzle 5.

また、冷却液スプレノズル12からスプレーされた冷却
液は、一部が蒸発することによって塔内に流入する排ガ
ス温度を下げると共に、ガス中の硫黄酸化物の一部を吸
収し、塔底部に貯留する液中に落下し、回収される。一
定時間貯留されてPHを回復した後、再度、前述と同様
に、冷却液循環ポンプ10、冷却液循環配管11及び冷
却液スプレノズル12によって脱硫塔l内の流入排ガス
中にスプレーさ扛る。
In addition, part of the cooling liquid sprayed from the cooling liquid spray nozzle 12 evaporates to lower the temperature of the exhaust gas flowing into the tower, and also absorbs a part of the sulfur oxides in the gas and stores them at the bottom of the tower. It falls into the liquid and is collected. After being stored for a certain period of time to recover the pH, the coolant is again sprayed into the inflow exhaust gas in the desulfurization tower 1 by the coolant circulation pump 10, the coolant circulation pipe 11, and the coolant spray nozzle 12, as described above.

前述のようにして脱硫塔1内にスプレーされる吸収液は
、前記吸収液循環タンク2にて新鮮な石灰石スラ’) 
 (Ca CO3)が供給されると共に、吸収液循環配
管4を用いて吸収液の一部を塔内底部の貯留冷却液中に
ブローすることにより、冷却液全体の液組成が一定値を
維持するように構成されている。一方、上記の如く、塔
内底部の貯留冷却液中にブローされた吸収液は、冷却液
として導入排ガスの冷却及び硫黄酸化物の一部の吸収に
利用されるほか、石灰石に硫黄酸化物を吸収させ生成し
た亜硫酸カルシウムを空気酸化させるのに好適なPHと
なるように利用される。また、この貯留冷却液中に空気
を注入することにより、冷却液中の亜硫酸カルシウムは
酸化されて石膏となジ、冷却液循環配管11から一部を
石膏回収設備へ送り出し、副生石膏を回収するシステム
となっている。
The absorption liquid sprayed into the desulfurization tower 1 as described above is supplied to the absorption liquid circulation tank 2, where fresh limestone slurry is
(CaCO3) is supplied, and the liquid composition of the entire cooling liquid is maintained at a constant value by blowing a part of the absorption liquid into the stored cooling liquid at the bottom of the tower using the absorption liquid circulation piping 4. It is configured as follows. On the other hand, as mentioned above, the absorption liquid blown into the stored cooling liquid at the bottom of the tower is used as a cooling liquid to cool the introduced flue gas and absorb some of the sulfur oxides. It is used to achieve a pH suitable for air oxidation of absorbed and produced calcium sulfite. In addition, by injecting air into this stored coolant, the calcium sulfite in the coolant is oxidized and converted into gypsum, and a part of it is sent from the coolant circulation pipe 11 to a gypsum recovery facility to recover by-product gypsum. It is a system.

なお、冷却液及び吸収液はスラリー液であるため、個々
の液の貯留部には攪拌機を設けて、固形分が洗絨するの
を防止している。
Note that since the cooling liquid and the absorption liquid are slurry liquids, a stirrer is provided in each liquid storage section to prevent the solid content from being washed away.

脱硫塔lの中央部に設けたカス分散板7は、ガスが側面
から塔内に導入さ扛る結果生じる偏流に対し、ガス流路
に多孔板を設けて抵抗を与えることにより偏流を防止す
る役目を有している。コレクター8は、前述の如く組成
が異なる吸収・冷却両液を分散回収することにより、所
要の脱硫性能な発揮させるために設置さ詐ている。
The waste dispersion plate 7 installed in the center of the desulfurization tower 1 prevents uneven flow by providing resistance by providing a perforated plate in the gas flow path against the uneven flow that occurs as a result of gas being introduced into the tower from the side. It has a role. The collector 8 is installed in order to exhibit the required desulfurization performance by distributing and collecting both the absorption and cooling liquids, which have different compositions as described above.

第7図は第6図のA−Aからみた脱硫塔lの断面を示し
、ガス分散板7とコレクター8の配置状況を示している
。第8図は第7図のB−Bからみた図で、その一部を拡
大したものを第9図に示す。
FIG. 7 shows a cross section of the desulfurization tower 1 taken along the line AA in FIG. 6, and shows the arrangement of the gas distribution plate 7 and the collector 8. FIG. 8 is a view taken along line BB in FIG. 7, and FIG. 9 shows a partially enlarged view.

第9図に示す如く吸収液はコレクター8に集めらt、ガ
スレ′1コレクター8の間を上昇している。なお、コレ
クター8の間隙B′はコレクター8の幅Bより小さくな
るように設計さ扛ている。第10図は、吸収液が塔底部
の貯留冷却液中に落下混入するのを防止するために改良
されたコレクター8の形状例を示している。
As shown in FIG. 9, the absorbent liquid is collected in the collector 8 and rises between the gas tray 1 and the collector 8. Note that the gap B' of the collector 8 is designed to be smaller than the width B of the collector 8. FIG. 10 shows an example of the shape of the collector 8 which has been improved to prevent the absorption liquid from falling into the cooling liquid stored at the bottom of the tower.

上記構成の脱硫塔において、吸収液が吸収循環配管4か
ら塔底部の貯留冷却液中にブローする量よυも多量に冷
却液中に流入すると脱硫性能が低下するため、上述の如
く吸収液がコレクタ一部8から貯留冷却液中に混入する
のを防止する工夫がなされている。しかし、従来構造の
脱硫塔lでは、コレクター8がガス流路を形成するため
に上下に設置されており、更にその上部(ガス流につい
ては下流側)にガス分散板7を設置した構造であるため
、ガスの息つき現象により冷却液中に吸収液が混入、す
るのを防止できず、構造的に保証脱硫性能を維持するこ
とが困難であるという欠点があつfc。
In the desulfurization tower configured as described above, if the absorption liquid flows into the cooling liquid in an amount larger than the amount υ that is blown from the absorption circulation pipe 4 into the stored cooling liquid at the bottom of the tower, the desulfurization performance will decrease. Efforts have been made to prevent the collector portion 8 from entering the stored coolant. However, in the conventional desulfurization tower 1, collectors 8 are installed above and below to form a gas flow path, and a gas distribution plate 7 is installed above the collectors 8 (on the downstream side for gas flow). Therefore, it is impossible to prevent absorption liquid from being mixed into the cooling liquid due to the gas breathing phenomenon, and it has the disadvantage that it is difficult to maintain guaranteed desulfurization performance due to its structure.

本発明の目的は、上記従来構造の脱硫塔の欠点を解消し
、コレクタ一部において吸収液が冷却液中に漏れ込むこ
とがなく、構造的に安定した脱硫性能を有する信頼性の
高い自立式脱硫塔構造を提供するにある。
The purpose of the present invention is to eliminate the drawbacks of the desulfurization tower of the conventional structure described above, and to provide a highly reliable free-standing type that has structurally stable desulfurization performance without absorbing liquid leaking into the cooling liquid in a part of the collector. To provide a desulfurization tower structure.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、自立式脱硫塔において、従来構造ではコレク
ターの下流側に設置してガス流に抵抗を与え、ガスの偏
流を防止していたガス分散板を、コレクターのガス通過
部の鉛直面に設置するようにしたものである。
In a self-supporting desulfurization tower, the present invention replaces the gas distribution plate, which in conventional structures was installed downstream of the collector to provide resistance to the gas flow and prevent gas drift, to the vertical surface of the gas passage section of the collector. It was designed to be installed.

以下に本発明を図示の実施例に基づいて詳細に説明する
The present invention will be explained in detail below based on illustrated embodiments.

〔実施例〕〔Example〕

本発明の脱硫塔は第1図に示す概略構造を有しているが
、その反応システムは第6図に示した従来構造の脱硫塔
のそれと同様であるので、詳細な説明は省略する。
The desulfurization tower of the present invention has the schematic structure shown in FIG. 1, but its reaction system is similar to that of the conventional desulfurization tower shown in FIG. 6, so a detailed explanation will be omitted.

第3図は、第1図のC−cからみた脱硫塔1の断面を示
す第2図につき、更にそのD−Dからみた図である。
FIG. 3 is a diagram further viewed from DD in FIG. 2 showing the cross section of the desulfurization tower 1 seen from C-c in FIG. 1.

本発明は、第3図に示す如く、ガス流路と々っている上
下のコレクター8間に、鉛m方向に多孔板よりなるガス
分散板7を設置したものである。
In the present invention, as shown in FIG. 3, a gas dispersion plate 7 made of a perforated plate is installed in the lead m direction between upper and lower collectors 8 having gas flow paths.

コレクター8の端部には、第4図に示すように、ショー
トハス防止板13を設け、ガスのショートバスを防止す
る構造としている。
As shown in FIG. 4, a short bus prevention plate 13 is provided at the end of the collector 8 to prevent a gas short bus.

なお、第1図に示す如く、上下コレクター8及びガス分
散板7の傾斜角αを変化させることにより、ガス流れに
対するガス分散板7の有効面積及び偏流防止効果をコン
トロールすることが可能となる。また、第3図に示す如
く、従来構造では一定であったガス分散板7の面積も上
下コレクター8の上下間隔Hを調節することによって変
えら扛るし、更にコレクター8の幅B及び間隙Bを調節
し、鉛直面の数を増減することができる。
As shown in FIG. 1, by changing the inclination angle α of the upper and lower collectors 8 and the gas distribution plate 7, it is possible to control the effective area of the gas distribution plate 7 with respect to the gas flow and the effect of preventing unbalanced flow. Further, as shown in FIG. 3, the area of the gas distribution plate 7, which was constant in the conventional structure, can be changed by adjusting the vertical distance H between the upper and lower collectors 8, and the width B and the gap B of the collectors 8. can be adjusted to increase or decrease the number of vertical planes.

この構造の脱硫塔1によれば、第5図に示す如く、従来
構造では吸収液が漏扛て貯留冷却液中に混入したのに対
し、コレクター8部に多孔板を用いてガス分散板を形成
させたため、ガス分散板イ7ノにおけるガス上・下流の
ガス差圧により、吸収液が冷却液中に混入するのを防止
できると共に、コレクター8とガス分散板7が同一平面
に存在しているため、コレクター8部にてガス流に流路
抵抗が加わることとなρ、コレクター8部におけるガス
の息つき現象を防止することができる。
According to the desulfurization tower 1 having this structure, as shown in FIG. 5, in contrast to the conventional structure in which the absorbed liquid leaked and mixed into the stored cooling liquid, a perforated plate is used in the collector 8 section and a gas distribution plate is installed. As a result, the absorption liquid can be prevented from being mixed into the cooling liquid due to the gas pressure difference between the upstream and downstream sides of the gas distribution plate 7, and the collector 8 and the gas distribution plate 7 are on the same plane. Therefore, it is possible to prevent flow path resistance from being added to the gas flow at the collector 8, and the gas suffocation phenomenon at the collector 8.

なお、上記実施例では自立式円筒形の脱硫塔の例にて説
明したが、本発明は自立式脱硫塔の塔断面を限定するも
のでは々く、例えば角筒形の脱硫塔に適用しても同様の
効果が得られることは云うまでもない。
Although the above embodiments have been explained using an example of a self-supporting cylindrical desulfurization tower, the present invention does not limit the column cross section of the self-supporting desulfurization tower, and may be applied to, for example, a prismatic desulfurization tower. Needless to say, similar effects can be obtained.

〔発明の効果〕〔Effect of the invention〕

以上詳述したことから明らか々ように、本発明によれば
、以下のような効果が得られる。
As is clear from the above detailed description, according to the present invention, the following effects can be obtained.

(1)  コレクタ一部における吸収液の冷却液中への
漏れ込みが防止できるので、脱硫塔の性能面における信
頼性が向上する。
(1) Since it is possible to prevent the absorption liquid from leaking into the cooling liquid in a part of the collector, reliability in terms of performance of the desulfurization tower is improved.

(2)  ガス分散板の面積を自由に設定できるため、
ガス分散板における△pを最小にすることが可能で、脱
硫ファンの吐出圧を下げることができ、省エネ化を図る
ことができる。
(2) Since the area of the gas distribution plate can be set freely,
It is possible to minimize Δp in the gas distribution plate, lower the discharge pressure of the desulfurization fan, and save energy.

(3)  ガス分散板に使用する多孔板の開口比及び寸
法は、ガス分散板ガス通過必要面積が変化してもコレク
ター数を調整することにより、同一の開口比及び寸法の
ものを使用して、必要面積を確保することができる。
(3) Even if the area required for gas passage through the gas distribution plate changes, the aperture ratio and dimensions of the perforated plate used for the gas distribution plate can be kept the same by adjusting the number of collectors. , the necessary area can be secured.

(4)  コレクターの傾斜を変えることによってガス
流に対するガス分散板の角度を変えることが可能である
ため、ガスの偏流防止効果をよQ向上させることが可能
となり、脱硫塔の性能面における信頼性が向上する。
(4) Since it is possible to change the angle of the gas distribution plate with respect to the gas flow by changing the inclination of the collector, it is possible to further improve the effect of preventing gas drift, thereby increasing the reliability in terms of performance of the desulfurization tower. will improve.

(5)塔内構造がシンプルになり、ガス分散板サポート
も不用であるため、経済性が向上する。
(5) The internal structure of the column is simplified and no gas distribution plate support is required, which improves economic efficiency.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る自立式脱硫塔の概略構
造を示す側面図、第2図は第1図のC−Cからみた図、
第3図は第2図のD−Dからみた図、第4図は第1図に
示した自立式脱硫塔のコレクタ一部の端部の斜視図、第
5図は上記コレクタ、一部に設けたガス分散板をガスが
通過する状態を示す説明図、第6図は従来構造の自立式
脱硫塔の概略構造を示す断面図、第7図は第6図のA−
Aからみた図、第8図は第7図のB−Bからみた図、第
9図は第6図に示した自立式脱硫塔のコレクタ一部にお
ける吸収液及び通過ガスの状態を示す説明図、第1O図
は第9図に示したコレクター数状とは異なる形状のコレ
クターを示す図である。 l・・・脱硫塔、2・・・吸収液循環タンク、3・・・
吸収液循環ポンプ、4・・・吸収液循環配管、5・・・
吸収液スプレノズル、6・・・デミスタ−57・・・ガ
ス分散板、8・・・コレクター、9・・・降水管、10
・・・冷却液循環ポンプ、11・・・冷却液循環配管、
12・・・冷却液スプレノズル、13・・・ショートパ
ス防止板。
FIG. 1 is a side view showing a schematic structure of a self-supporting desulfurization tower according to an embodiment of the present invention, FIG. 2 is a view taken from CC in FIG. 1,
Figure 3 is a view taken from the line D-D in Figure 2, Figure 4 is a perspective view of the end of a part of the collector of the self-supporting desulfurization tower shown in Figure 1, and Figure 5 is a view of the end of a part of the collector of the self-supporting desulfurization tower shown in Figure 1. An explanatory diagram showing the state in which gas passes through the provided gas distribution plate, FIG. 6 is a cross-sectional view showing the schematic structure of a self-supporting desulfurization tower with a conventional structure, and FIG.
Figure 8 is a diagram seen from B-B in Figure 7, and Figure 9 is an explanatory diagram showing the state of the absorbed liquid and passing gas in a part of the collector of the self-supporting desulfurization tower shown in Figure 6. , FIG. 1O is a diagram showing a collector having a shape different from the collector shape shown in FIG. 9. l...Desulfurization tower, 2...Absorption liquid circulation tank, 3...
Absorption liquid circulation pump, 4... Absorption liquid circulation piping, 5...
Absorbent spray nozzle, 6... Demister-57... Gas distribution plate, 8... Collector, 9... Downpipe, 10
...Cooling liquid circulation pump, 11...Cooling liquid circulation piping,
12...Cooling liquid spray nozzle, 13...Short path prevention plate.

Claims (1)

【特許請求の範囲】[Claims] (1)ボイラ等の燃焼排ガス中の硫黄酸化物を除去する
ため、石灰石を吸収剤として使用し、除塵、吸収、酸化
の各機能を1個の塔内にもたせた自立式の脱硫塔におい
て、吸収液コレクターのガス通過部の鉛直面に多孔板を
設置したことを特徴とする自立式脱硫塔構造。
(1) In order to remove sulfur oxides from combustion exhaust gas from boilers, etc., a self-supporting desulfurization tower uses limestone as an absorbent and has dust removal, absorption, and oxidation functions in one tower. A free-standing desulfurization tower structure characterized by a perforated plate installed on the vertical surface of the gas passage section of the absorption liquid collector.
JP60129693A 1985-06-14 1985-06-14 Structure of self-supporting desulfurization tower Pending JPS61287422A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129693A JPS61287422A (en) 1985-06-14 1985-06-14 Structure of self-supporting desulfurization tower

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129693A JPS61287422A (en) 1985-06-14 1985-06-14 Structure of self-supporting desulfurization tower

Publications (1)

Publication Number Publication Date
JPS61287422A true JPS61287422A (en) 1986-12-17

Family

ID=15015854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129693A Pending JPS61287422A (en) 1985-06-14 1985-06-14 Structure of self-supporting desulfurization tower

Country Status (1)

Country Link
JP (1) JPS61287422A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413444A (en) * 2016-01-04 2016-03-23 山东大学 Single-tower dual-cycle wet flue gas desulfurization tower and tube groove type liquid collection device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105413444A (en) * 2016-01-04 2016-03-23 山东大学 Single-tower dual-cycle wet flue gas desulfurization tower and tube groove type liquid collection device

Similar Documents

Publication Publication Date Title
KR101932091B1 (en) Rotational flow and sink flow-coupling integrated system for ultra-clean desulphuration and dedusting and desulphuration and dedusting method therefor
JP4845568B2 (en) Wet flue gas desulfurization equipment
JP2009240908A (en) Wet two step flue gas desulfurization apparatus and operation method of wet two step flue gas desulfurization apparatus
CN105854561A (en) Device and process for coordinative treatment of smoke desulfuration and dedusting
US8172931B2 (en) Wet-type exhaust desulfurizing apparatus
CN106166434B (en) A kind of ozone oxidation double tower ammonia process of desulfurization denitrating technique and its system
US4853194A (en) Method for treating exhaust gas
TW201006546A (en) Plant and method for the absorption of pollutants in gases
JP2013006125A (en) Wet flue gas desulfurization apparatus, and wet flue gas desulfurization method
CN209138324U (en) A kind of high effective flue gas fair current dust-removal and desulfurizing disappears white device
KR102059185B1 (en) Wet flue gas desulfurization apparatus
CN108043192B (en) System for removing pollutants from furnace
KR102048537B1 (en) Wet flue gas desulfurization apparatus
CN201724237U (en) Device for removing stack rain generated by discharge of desulfurization fume stack
JPS61287422A (en) Structure of self-supporting desulfurization tower
SE460642B (en) PROCEDURES FOR ABSORPING GAS GAS COMPONENTS FROM FORECURATED SMOKE GASES
CN109453633A (en) A kind of liquid collecting liter gas cap structure in flue gas desulfurization governing system
JP2003103139A (en) Wet process flue gas desulfurizer
JPH07155536A (en) Wet type flue gas desulfurization apparatus
CN208130797U (en) Pollutant removing system after a kind of furnace
JPH10192646A (en) Horizontal flow and wet type flue gas desulfurization device with mist removing function
CN109569249A (en) Desulphurization denitration dedusting takes off white integrated apparatus
CN205760403U (en) A kind of for desulfurization technology dedusting demister
JP3483008B2 (en) Flue gas desulfurization equipment
JPS6186922A (en) Wet exhaust gas treatment apparatus