JPS6128728B2 - - Google Patents

Info

Publication number
JPS6128728B2
JPS6128728B2 JP2131380A JP2131380A JPS6128728B2 JP S6128728 B2 JPS6128728 B2 JP S6128728B2 JP 2131380 A JP2131380 A JP 2131380A JP 2131380 A JP2131380 A JP 2131380A JP S6128728 B2 JPS6128728 B2 JP S6128728B2
Authority
JP
Japan
Prior art keywords
additive
molten metal
linear
additives
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2131380A
Other languages
Japanese (ja)
Other versions
JPS56116842A (en
Inventor
Masanori Hirai
Takatoki Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tatsuta Electric Wire and Cable Co Ltd
Original Assignee
Tatsuta Electric Wire and Cable Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tatsuta Electric Wire and Cable Co Ltd filed Critical Tatsuta Electric Wire and Cable Co Ltd
Priority to JP2131380A priority Critical patent/JPS56116842A/en
Publication of JPS56116842A publication Critical patent/JPS56116842A/en
Publication of JPS6128728B2 publication Critical patent/JPS6128728B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は新規な線状添加剤の製造方向に関す
る。さらに詳しくは、添加剤の偏析がさけられ、
しかも歩留りが向上されうる。金属溶湯(以下、
溶湯という)に添加する線状添加剤の製造方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new direction for the production of linear additives. More specifically, segregation of additives is avoided,
Moreover, the yield can be improved. Molten metal (hereinafter referred to as
This invention relates to a method for producing a linear additive that is added to a molten metal.

金属の溶解に際しては脱ガス、脱硫、不純物除
去、諸特性の向上などの目的をもつて、種々の物
質が添加されるが、添加剤には、たとえばFe、
Cuなどの溶湯に対するCa、Mg、Znなどの添加
剤のように、溶湯の溶融金属より溶融点、比重な
どがいちじるしく低かつたり、また大気中で酸化
するなど、溶湯に溶解しても偏析したり、歩留り
がわるいものがある。したがつて線状添加剤の製
造方法にはいくつかの方法が提案されている。こ
れらの方法を例示すれば、たとえば直接に添加剤
を溶湯に投入する方法、溶湯の溶融金属と同一の
金属と添加剤との間で合金を溶製し、これをその
ままあるいは加工成形して溶湯に投入する方法、
添加剤を異種材料で被覆成形してクラツド材とし
て投入する方法などがあげられる。
When melting metals, various substances are added for the purpose of degassing, desulfurizing, removing impurities, and improving various properties.Additives include, for example, Fe,
Additives to molten metal such as Cu, such as Ca, Mg, and Zn, have significantly lower melting points and specific gravity than the molten metal, and may oxidize in the atmosphere, causing segregation even when dissolved in the molten metal. There are also products with poor yields. Therefore, several methods have been proposed for producing linear additives. Examples of these methods include, for example, adding additives directly to the molten metal, making an alloy between the same metal as the molten metal and the additive, and adding the alloy to the molten metal as it is or by processing and forming it. How to put it into the
Examples include a method in which the additive is coated with a different material and used as a cladding material.

添加剤を溶湯に直接投入する方法はもつとも簡
単な方法があるが、添加剤がCa、Mg、Znなどの
ばあいには、添加剤がFe、Cuなどの溶湯の溶融
金属に比べて溶融点や比重がいちじるしく異な
り、また雰囲気中で酸化、気化するので、溶湯中
で偏析をおこしたり、また歩留りが低下する。添
加剤を溶湯の溶融金属と同一の金属で合金化して
投入する方法は、添加剤が溶湯中で偏析をおこさ
ず、また歩留りは良好であるが、合金の製造工程
において、前記のごとく溶融点や比重の差または
酸化、気化などにより添加剤が偏析をおこし、ま
た歩留りに劣るという欠点がある。また合金も加
工成形して使うばあいには、添加剤の種類によつ
ては加工性に劣り、たとえば線状に加工するとき
加工中に断線するばあいもある。一方添加剤を異
種材料で被覆成形してクラツド材として溶湯に投
入する方法は、具体的には添加剤を溶湯の溶融金
属と同一の金属または溶湯の溶融金属に何ら影響
をおよぼすことのない材料で被覆して、添加剤が
雰囲気と直接接触して反応するのを防止した方法
であり、添加剤を直接投入する方法に比べて添加
剤の歩留りがいちじるしく向上される。とくに連
続鋳造設備では添加剤の連続投入が望ましいため
に、添加剤を線状に成形した線状クラツド材が実
用に供されている。
There is a simple method of directly adding additives to the molten metal, but in the case of additives such as Ca, Mg, and Zn, the melting point of the additive is lower than that of molten metals such as Fe and Cu. Since they have significantly different specific gravity and are oxidized and vaporized in the atmosphere, they can cause segregation in the molten metal and reduce yield. The method of alloying additives with the same metal as the molten metal does not cause the additives to segregate in the molten metal and has a good yield, but in the manufacturing process of the alloy, as mentioned above, the melting point However, there are drawbacks such as segregation of additives due to differences in specific gravity, oxidation, vaporization, etc., and poor yield. Furthermore, when alloys are used after processing and forming, the processability may be poor depending on the type of additive, and for example, when processed into a wire, the wire may break during processing. On the other hand, the method of coating the additive with a different material and adding it to the molten metal as a cladding material involves using the additive with the same metal as the molten metal of the molten metal or a material that does not have any effect on the molten metal of the molten metal. This method prevents the additives from coming into direct contact with the atmosphere and reacting, and the yield of the additives is significantly improved compared to the method of directly adding the additives. Particularly in continuous casting equipment, it is desirable to continuously feed additives, so linear clad materials formed by forming additives into linear shapes are put into practical use.

従来の線状添加剤は、溶湯の溶融金属と同一の
金属または溶湯の溶融金属に何ら影響をおよぼす
ことのない材料でつくられた容器に添加剤を充填
し、たとえば溶融金属と同一の金属でつくられた
金属テープ(以下、金属テープという)で粉粒状
の添加剤を被覆したのち、線状に加工成形する方
法により製造されている。しかしこの線状添加剤
においては、外周部が被覆されているので添加剤
の外部雰囲気による酸化などの反応は防止されう
るが、内部にある添加剤は単独で存在するため
に、溶湯中において添加剤の偏析がいちじるし
く、また歩留りが劣るという欠点がある。また添
加剤を前記金属テープで形成した筒状物に充填し
たのち、添加剤を加熱溶解してソリツド化したも
のもあるが、このものは、添加剤が充填された金
属テープで形成した筒状物中に空気が巻き込ま
れ、しかも添加剤同士および添加剤と筒状物とが
強固に密着していないので、添加剤の加熱溶融に
より添加剤が酸化され、しかも溶融した添加剤と
筒状物との固液拡散が殆んどなく、したがつて添
加剤と筒状物との間で合金化されえず、充填され
た添加剤が金属テープで形成した筒状物内部で単
に溶融してソリツド化したものであり、溶湯中で
添加剤が偏析し、しかも歩留りに劣るという欠点
がある。
Conventional linear additives are made by filling a container made of the same metal as the molten metal in the molten metal or a material that does not have any effect on the molten metal. It is manufactured by coating a powdery additive with a metal tape (hereinafter referred to as metal tape) and then processing and forming it into a linear shape. However, since the outer periphery of this linear additive is coated, reactions such as oxidation due to the external atmosphere can be prevented, but since the additive inside exists alone, it cannot be added to the molten metal. The drawbacks are that the segregation of the agent is significant and the yield is poor. There are also products in which the additive is filled into a cylindrical object formed from the metal tape, and then the additive is heated and melted to form a solid. Since air is drawn into the material and the additives are not tightly adhered to each other or the additives and the cylindrical object, the additives are oxidized by heating and melting, and the molten additive and the cylindrical object are oxidized. There is almost no solid-liquid diffusion between the additive and the tube, so there is no alloying between the additive and the tube, and the filled additive simply melts inside the tube made of metal tape. It is solid, and additives segregate in the molten metal, and the yield is poor.

しかして本発明者らは叙上の欠点を排除し、添
加剤の偏析がさけられ、しかも歩留りが向上され
うる線状添加剤を提供するべく鋭意研究を重ねた
結果、本発明を完成するにいたつた。
However, the present inventors have conducted extensive research to eliminate the above-mentioned drawbacks, avoid segregation of additives, and provide a linear additive that can improve yield, and as a result, have completed the present invention. It was it.

すなわち本発明は、被覆材として溶湯の溶融金
属と同一の金属を用いて、溶湯の溶融金属より低
い溶融点を有する添加剤を被覆し、ついで空気の
巻き込みを極力防いで金属テープで形成した筒状
物と添加剤および添加剤同士の強固な接触をはか
り、さらには外周部の金属テープより添加剤の中
心部にいたるまでの距離を減少せしめて固液拡散
時間を大巾に短縮するために、えられる被覆物を
圧縮成形せしめて線状のクラツド材をえたのち、
該線状クラツド材を被覆材の溶融点より低い温度
で加熱処理して被覆材と添加剤の間で合金化せし
めることを特徴とする線状添加剤の製造方法に関
するものであつて、溶湯に添加する添加剤が溶湯
の溶融金属と同一の金属と合金化された線状添加
剤を用いることにより、従来の線状添加剤におけ
るごとく添加剤が溶湯中に拡散することなく局部
的に存在して偏析をおこしたり、また雰囲気によ
り酸化または気化して歩留りが低下するなどの欠
点が排除され、添加剤が溶湯中に偏析することな
く、しかも添加剤の歩留りがいちじるしく向上さ
れうるというきわめて顕著な効果が奏される。
That is, the present invention uses the same metal as the molten metal of the molten metal as a coating material, coats it with an additive having a lower melting point than the molten metal of the molten metal, and then forms a cylinder with a metal tape to prevent air entrainment as much as possible. In order to achieve strong contact between the additive and the additive itself, and to reduce the distance from the outer metal tape to the center of the additive, the solid-liquid diffusion time can be greatly shortened. After compression molding the obtained coating to obtain a linear clad material,
This method relates to a method for producing a linear additive, characterized in that the linear clad material is heat-treated at a temperature lower than the melting point of the coating material to form an alloy between the coating material and the additive, the method comprising: By using a linear additive that is alloyed with the same metal as the molten metal in the molten metal, the additive does not diffuse into the molten metal and exists locally, unlike conventional linear additives. This is extremely remarkable in that it eliminates disadvantages such as oxidation or vaporization in the atmosphere, which causes segregation in the molten metal, and a decrease in yield. The effect is produced.

すなわち本発明の方法においては、 (1) 加熱処理して添加剤を合金化する工程におい
て、線状のクラツド材が空気の巻き込みを極力
防いで金属テープで形成した筒状物と添加剤お
よび添加剤同士の強固な接触がはかられ、しか
も外周部の金属テープより添加剤の中心部にい
たるまでの距離を減少せしめて固液拡散時間を
大巾に短縮せしめるように形成されているの
で、添加剤の溶融により該添加剤の酸化がさけ
られ、しかも溶融した添加剤と筒状物の金属と
の固液拡散が促進され、通常の合金の製造方法
に比べて合金化が容易に行なわれ、また酸化、
チツ化、気化などによるロスが殆んどない、 (2) 添加剤が前記金属材で被覆されているので、
添加剤が脆弱であつても曲げ、伸線などの加工
成形が容易である、 (3) 溶湯の溶融金属の溶融点より低い温度で合金
化が可能であるので、加熱に要する費用が軽減
される。たとえばCuとCaの合金の組合せのよ
うに、共晶反応を起すばあいには添加剤(すな
わちCa)の溶融点よりも低い温度で合金化が
可能であり、加熱に要する費用がさらに軽減さ
れる などの顕著な効果が奏される。
That is, in the method of the present invention, (1) In the step of heat-treating and alloying the additives, the linear clad material is bonded to the cylindrical body formed from the metal tape, the additives, and the additives while preventing air entrainment as much as possible. It is formed in such a way that strong contact between the additives is achieved, and the distance from the outer metal tape to the center of the additive is reduced, greatly shortening the solid-liquid diffusion time. By melting the additive, oxidation of the additive is avoided, and solid-liquid diffusion between the molten additive and the metal of the cylindrical object is promoted, making alloying easier than in normal alloy manufacturing methods. , also oxidation,
(2) Since the additive is coated with the metal material,
Even if the additive is brittle, processing such as bending and wire drawing is easy; (3) Alloying is possible at a temperature lower than the melting point of the molten metal, reducing heating costs. Ru. For example, when a eutectic reaction occurs, such as the combination of alloys of Cu and Ca, alloying can be performed at a temperature lower than the melting point of the additive (i.e. Ca), further reducing the cost of heating. Remarkable effects such as:

本発明の方法は銅合金用、鉄鋼合金用などの溶
湯添加用線状添加剤の製造に適用されるが、この
ばあい添加剤としては、溶湯の溶融金属より低に
溶融点を有するものがあげられ、たとえば銅合金
用としてはCa、Zn、Pなどが採用され、また鉄
鋼合金用としてはMg、Alなどが採用される。
The method of the present invention is applied to the production of linear additives for adding to molten metals such as copper alloys and steel alloys. For example, Ca, Zn, P, etc. are used for copper alloys, and Mg, Al, etc. are used for steel alloys.

本発明における、溶湯の溶融金属と同一の金属
を用いて添加剤を被覆し、これを圧縮成形して線
状クラツド材を製造する方法としては、とくに制
限なく弾常の方法が採用されるが、たとえば金属
テープを筒状に成形しながら、この金属テープの
筒状物内部にその上部開口より粉粒状添加剤を連
続的に供給しつつ、これをその進行方向の前方に
おいて圧延、伸線などの方法で線状に圧縮成形す
るか、または粉粒状添加剤を溶湯の溶融金属と同
一の金属からなるパイプに充填し、これを丸棒状
に圧縮したのちダイスにより伸線して線状に圧縮
成形するなどの方法があげられる。
In the present invention, as a method for manufacturing a linear clad material by coating the additive with the same metal as the molten metal and compression molding the same, an elastic method may be adopted without particular limitation. For example, while forming a metal tape into a cylindrical shape, powder additives are continuously supplied into the cylindrical part of the metal tape from the upper opening, and this is rolled, wire drawn, etc. in the forward direction of the metal tape. Either by compression molding into a linear shape using the method described above, or by filling a pipe made of the same metal as the molten metal with powdery additives, compressing it into a round bar shape, and then drawing it with a die and compressing it into a linear shape. Examples of methods include molding.

またえられる線状クラツド材の加熱処理条件と
しては、前記金属からなる被覆材の溶融点より低
い温度で加熱して被覆材の金属と添加剤とを合金
化せしめる条件があげられ、たとえば被覆材とし
てCuを用いかつ添加剤としてCaを用いるばあい
について例示すれば、真空中で加熱温度700〜
1000℃および加熱時間0.3〜10分が採用され、こ
れによりCuとCaの間で合金化が容易に行なわれ
る。
The heat treatment conditions for the linear cladding material that can be obtained include conditions in which the metal of the coating material and the additive are alloyed by heating at a temperature lower than the melting point of the coating material made of the metal. For example, when Cu is used as the additive and Ca is used as the additive, the heating temperature is 700~700℃ in vacuum.
A heating time of 1000°C and 0.3-10 minutes was adopted, which facilitates alloying between Cu and Ca.

つぎに添加剤としてCaを用いかつ被覆材の金
属としてCuを用いた線状添加剤(すなわち銅合
金用線状添加剤)を代表させて本発明の方法およ
び効果を具体的に説明する。
Next, the method and effects of the present invention will be specifically explained using a representative linear additive (ie, a linear additive for copper alloy) using Ca as the additive and Cu as the metal of the coating material.

Caはごく少量の添加により再結晶温度を低下
せしめる効果をもつことが知られているが、化学
的にきわめて活性な物質であり、高温下で酸素や
チツ素と容易に反応する。またCaの溶融点は840
℃とCuの溶融点1083℃と比較して低く、比重も
1.55とCuの比重8.9と比較して低い。このために
Caを単独にまたはCuで被覆してCuの溶湯に添加
してもCuと合金化して添加しなければ、Caの偏
析や歩留りがわるくなる。とくにごく微量で前記
効果を発揮する添加物質においては、偏析や歩留
りに特別な注意を払わなければならない。
Ca is known to have the effect of lowering the recrystallization temperature when added in a very small amount, but it is a chemically extremely active substance and easily reacts with oxygen and nitrogen at high temperatures. Also, the melting point of Ca is 840
℃ and the melting point of Cu, which is 1083℃, and the specific gravity is also low.
The specific gravity is 1.55, which is lower compared to Cu's specific gravity of 8.9. For this
Even if Ca is added to a molten Cu metal by itself or coated with Cu, unless it is added in an alloy with Cu, segregation of Ca and the yield will be adversely affected. Particular attention must be paid to segregation and yield for additive substances that exhibit the above effects in extremely small amounts.

線状添加剤はつぎの方法により製造した。すな
わち偏平状Ca(大きさ:平均2mm)を内径10.7
mm、外径14.0mmのCuパイプに充填し、これを直
径6.0mmの丸棒に圧延したのち、ダイスにより直
径2.6mmまで伸線して線状クラツド材を製造し
た。ついでこの線状クラツド材を真空中で800
℃、2分間加熱処理して、CuとCaの間で固液拡
散を行なわしめ、Cuパイプの内側とCaとともに
溶解して合金化した。このばあいCaの溶融点は
840℃であるが、Cu−Ca系においては800℃の加
熱温度でもCuと合金化されえた。このようにし
てえられた銅合金用線状添加剤の横断面を走査型
電子顕微鏡(倍率:150倍)により観察した。第
1図は本発明の方法によりえられた銅合金用線状
添加剤の横断面における内部組織の顕微鏡写真、
第2図は加熱処理前の銅合金用線状添加剤の横断
面における内部組織の顕微鏡写真である。
The linear additive was manufactured by the following method. In other words, flat Ca (size: average 2 mm) has an inner diameter of 10.7 mm.
This was filled into a Cu pipe with an outer diameter of 14.0 mm, which was rolled into a round bar with a diameter of 6.0 mm, and then drawn with a die to a diameter of 2.6 mm to produce a linear clad material. Next, this linear clad material was heated to 800°C in a vacuum.
C. for 2 minutes to cause solid-liquid diffusion between Cu and Ca, which melted and alloyed with the inside of the Cu pipe and Ca. In this case, the melting point of Ca is
However, the Cu-Ca system could be alloyed with Cu even at a heating temperature of 800°C. A cross section of the linear additive for copper alloys thus obtained was observed using a scanning electron microscope (magnification: 150x). FIG. 1 is a micrograph of the internal structure in a cross section of a linear additive for copper alloys obtained by the method of the present invention;
FIG. 2 is a micrograph of the internal structure in a cross section of a linear additive for copper alloys before heat treatment.

第1図はCaをCuで被覆した線状添加剤を加熱
して合金化された中心部の二次電子線像である。
図の白い部分はCaCu5(γ)相で、他の部分は
Ca相とCa4Cu相とが共存していることを示す。
一方第2図はCaをCuで被覆した線状添加剤を加
熱する前の中心部の二次電子線像であり、この図
では内部がCa相のままで存在しており、合金化
されていないことを示す。
Figure 1 is a secondary electron beam image of the central part of a linear additive made of Ca coated with Cu, which is alloyed by heating.
The white part of the figure is the CaCu 5 (γ) phase, and the other parts are
This shows that the Ca phase and the Ca 4 Cu phase coexist.
On the other hand, Figure 2 shows a secondary electron beam image of the center of a linear additive made of Ca coated with Cu before heating. Indicates that there is no

本発明の方法によりえられる線状添加剤は、
Cu溶湯に線状添加剤を添加したばあいCu中に容
易に溶解するので、Caの偏析、歩留りに殆んど
影響をおよぼすことがない。
The linear additive obtained by the method of the present invention is
When a linear additive is added to molten Cu, it is easily dissolved in Cu, so it has almost no effect on Ca segregation or yield.

ついでえられた線状添加剤を長さ70mmに切断
し、その2.2gを黒鉛坩堝中でCu800gを溶解し
たのち1200℃に維持した溶湯に、該溶湯表面に垂
直に立てた石英パイプを通して落下させ、添加し
た。ついで溶湯を撹拌することなく1200℃で30分
間放置したのち、傾斜した黒鉛鋳型中に鋳込み、
断面10mm×20mmおよび長さ350mmの鋳造材をえ
た。この鋳造材の黒鉛鋳型底面からそれぞれ100
mm、200mmおよび300mmに対応する部分で分析試料
を採取し、Ca濃度(ppm)の分析(原子吸光光
度法による、以下同様)を行なつた。その結果を
第3図に示す。
The resulting linear additive was then cut into pieces of 70 mm in length, and 2.2 g of it was melted in a graphite crucible with 800 g of Cu, and then dropped into the molten metal maintained at 1200°C through a quartz pipe set perpendicular to the surface of the molten metal. , added. The molten metal was then left at 1200℃ for 30 minutes without stirring, and then poured into an inclined graphite mold.
A cast material with a cross section of 10 mm x 20 mm and a length of 350 mm was obtained. 100 each from the bottom of the graphite mold of this casting material.
Analytical samples were collected at sections corresponding to mm, 200 mm, and 300 mm, and the Ca concentration (ppm) was analyzed (by atomic absorption spectrophotometry, the same applies hereinafter). The results are shown in FIG.

また比較のために、加熱処理前の銅合金用線状
添加剤、すなわち前記線状クラツド材を用いたほ
かは前記と同様にして鋳造材をえ、かつCa濃度
の分析を行なつた。その結果を第3図に示す。
For comparison, a cast material was prepared in the same manner as described above, except that the linear additive for copper alloys before heat treatment, that is, the linear clad material described above, was used, and the Ca concentration was analyzed. The results are shown in FIG.

第3図から、本発明の方法によりえられた銅合
金用線状添加剤は、加熱処理前の銅合金用線状添
加剤に比べて、Caの偏析が少なく、しかも歩留
りにすぐれた効果が発揮され、とくにCaの歩留
りがいちじるしく向上されうることが明らかであ
る。
Figure 3 shows that the linear additive for copper alloys obtained by the method of the present invention has less Ca segregation and is more effective in improving yield than the linear additive for copper alloys before heat treatment. It is clear that the yield of Ca in particular can be significantly improved.

以上、本発明による効果をCu溶湯にCaを添加
するばあいを代表させて説明したが、Ci以外の
他の溶湯に該溶湯の溶融金属より低い溶融点を有
する添加剤を添加するばあいにおいても、本発明
の方法が適用できることはいうまでもない。また
被覆材と添加剤の合金化を促進するには、添加剤
を被覆材で被覆したのち、圧縮成形により被覆材
と添加剤を強固に密着せしめて、接触面積を増大
させることが不可欠であるが、微細な添加剤を用
いたり、添加剤と、被覆材と同一の微細状金属粉
とを混合して用いることにより、さらにその効果
は増大される。
The effects of the present invention have been explained above using the case where Ca is added to molten Cu as a representative case, but when an additive having a lower melting point than the molten metal of the molten metal is added to molten metal other than Ci, It goes without saying that the method of the present invention can also be applied. In addition, in order to promote alloying between the coating material and the additive, it is essential to cover the additive with the coating material and then use compression molding to firmly adhere the coating material and the additive to increase the contact area. However, the effect can be further enhanced by using fine additives or by mixing the additives with the same fine metal powder as the coating material.

以上述べたごとく、添加剤の溶湯の溶融金属と
同一の金属からなる被覆材の合金化を行なつた本
発明の線状添加剤を用いるときは、溶湯中におけ
る添加剤の偏析がさけられ、また添加剤の歩留り
がよい鋳造材がえられ、工業上きわめて有利であ
る。
As described above, when using the linear additive of the present invention in which the coating material is alloyed with the same metal as the molten metal of the additive, segregation of the additive in the molten metal can be avoided. Furthermore, a cast material with a good yield of additives can be obtained, which is extremely advantageous industrially.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法によりえられた銅合金用
線状添加剤の横断面における電子顕微鏡写真、第
2図は加熱処理前の銅合金用線状添加剤の横断面
における電子顕微鏡写真、第3図は本発明の方法
によりえられた銅合金用線状添加剤および加熱処
理前の銅合金用線状添加剤をそれぞれ用いてえら
れた鋳造材におけるCa濃度と鋳型底面からの距
離との関係を示すグラフである。 (図面の符号)、1:Cu相、2:CaCu5(γ)
相、3:Ca相。
FIG. 1 is an electron micrograph of a cross section of a linear additive for copper alloys obtained by the method of the present invention, FIG. 2 is an electron micrograph of a cross section of a linear additive for copper alloys before heat treatment, Figure 3 shows the Ca concentration and distance from the bottom of the mold in cast materials obtained using the linear additive for copper alloy obtained by the method of the present invention and the linear additive for copper alloy before heat treatment, respectively. It is a graph showing the relationship between. (Code in drawing), 1: Cu phase, 2: CaCu 5 (γ)
Phase 3: Ca phase.

Claims (1)

【特許請求の範囲】[Claims] 1 被覆材として金属溶湯の溶融金属と同一の金
属を用いて、金属溶湯の溶融金属より低い溶融点
を有する添加剤を被覆し、ついで圧縮成形して線
状のクラツド材をえたのち、該線状クラツド材を
被覆材の溶融点より低い温度で加熱処理して被覆
材と添加剤の間で合金化せしめることを特徴とす
る線状添加剤の製造方法。
1 Using the same metal as the molten metal of the molten metal as the coating material, coat it with an additive having a lower melting point than the molten metal of the molten metal, then compression mold to obtain a linear clad material, and then 1. A method for producing a linear additive, which comprises heating a shaped clad material at a temperature lower than the melting point of the coating material to form an alloy between the coating material and the additive.
JP2131380A 1980-02-21 1980-02-21 Manufacture of linear additive Granted JPS56116842A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2131380A JPS56116842A (en) 1980-02-21 1980-02-21 Manufacture of linear additive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2131380A JPS56116842A (en) 1980-02-21 1980-02-21 Manufacture of linear additive

Publications (2)

Publication Number Publication Date
JPS56116842A JPS56116842A (en) 1981-09-12
JPS6128728B2 true JPS6128728B2 (en) 1986-07-02

Family

ID=12051655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2131380A Granted JPS56116842A (en) 1980-02-21 1980-02-21 Manufacture of linear additive

Country Status (1)

Country Link
JP (1) JPS56116842A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0513686U (en) * 1991-08-05 1993-02-23 日酸工業株式会社 Gas shield device
JP6497186B2 (en) 2015-04-13 2019-04-10 日立金属株式会社 Alloying element additive and method for producing copper alloy material

Also Published As

Publication number Publication date
JPS56116842A (en) 1981-09-12

Similar Documents

Publication Publication Date Title
CA1186533A (en) Manufacturing process of aluminum and boron based composite alloys, and uses for said alloys
US5238646A (en) Method for making a light metal-rare earth metal alloy
JPS6260847A (en) Manufacture of multiple wire superconductive wire material
EP0005152B1 (en) Filled tubular article for controlled insertion into molten metal
US6548187B2 (en) Sn based alloy containing Sn—Ti compound, and precursor of Nb3SN superconducting wire
US4202688A (en) High conductivity high temperature copper alloy
US4088475A (en) Addition of reactive elements in powder wire form to copper base alloys
JPS6128728B2 (en)
EP0079765B1 (en) Method of making a lead-calcium-aluminium alloy
EP0964069B1 (en) Strontium master alloy composition having a reduced solidus temperature and method of manufacturing the same
JP2989060B2 (en) Low oxygen Ti-Al alloy and method for producing the same
JP2509799B2 (en) Silver-metal oxide material used for electrical contacts
JP2003529678A (en) Lumps containing iron and at least one further element of group 5 or 6 of the periodic table
JPH07179926A (en) Metallic capsule additive
JPH0995743A (en) Production of smelted metallic material, smelted metallic material and electron beam melting equipment
JP2006312174A (en) Continuous casting method for molten metal
JPH01312043A (en) Manufacture of boron-containing aluminum alloy
JPH04120225A (en) Manufacture of ti-al series alloy
US20060260778A1 (en) Method for adding boron to metal alloys
JPS62153108A (en) Fusion synthesis method
JP2640405B2 (en) Corrosion resistant magnesium alloy
JP3321492B2 (en) Method of adding rare earth elements to molten steel and additives
RU2162112C1 (en) Method for producing scandium containing master alloy
JP3498248B2 (en) Method for manufacturing powder sintered body
JP2002275551A (en) Method for manufacturing vanadium alloy