JPS6128701B2 - - Google Patents

Info

Publication number
JPS6128701B2
JPS6128701B2 JP9708485A JP9708485A JPS6128701B2 JP S6128701 B2 JPS6128701 B2 JP S6128701B2 JP 9708485 A JP9708485 A JP 9708485A JP 9708485 A JP9708485 A JP 9708485A JP S6128701 B2 JPS6128701 B2 JP S6128701B2
Authority
JP
Japan
Prior art keywords
gypsum
needle crystals
crystals
strength
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9708485A
Other languages
Japanese (ja)
Other versions
JPS60243156A (en
Inventor
Itaru Hatano
Masaharu Abe
Yasuo Fushiki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9708485A priority Critical patent/JPS60243156A/en
Publication of JPS60243156A publication Critical patent/JPS60243156A/en
Publication of JPS6128701B2 publication Critical patent/JPS6128701B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、合成樹脂との複合化に適した石こう
針状結晶(α型半水石こう針状結晶、型無水石
こう針状結晶及び型無水石こう針状結晶の総
称)と合成樹脂との複合化組成物に関するもので
ある。 石こう針状結晶及びその工業的有用性について
は、特開昭49−30626により公知である。石こう
針状結晶は、たとえば抄紙用フイラー、断熱材料
或いは有機高分子等の補強用材料として期待され
ている。石こう針状結晶に期待する特性はそれぜ
れの用途によつて異なるのはもちろんであるが、
有機高分子特に熱可塑性樹脂と複合化した場合の
弾性率、強度等の機械的物性が重要である。これ
ら機械的性質を規定する1つのフアクターに複合
体中の石こう針状結晶のアスペクト比(タテ・ヨ
コ比)があり、一般に、短繊維補強理論で示され
る如く、アスペクト比が大きい程弾性率及び引張
強度等は向上する。従つて、熱可塑性樹脂を補強
するに好ましい石こう針状結晶とは複合体中でア
スペクト比が大きい石こう針状結晶である。言い
換えると、熱可塑性樹脂と石こう針状結晶とを混
練複合化する過程で破損し難い、強い石こう針状
結晶が期待されている。しかるに、石こう針状結
晶の補強性は不十分である。特に、ポリ塩化ビニ
ル系樹脂に、石こう針状結晶を混練分散せしめた
場合、複合体中の石こう針状結晶のアスペクト比
が小さくなるために弾性率及び寸法安定性(熱膨
張係数)は向上するものの機械的強度の補強性は
小さい。特に引張強度の場合、補強性は無く、ベ
ース強度(石こう針状結晶を添加しないポリ塩化
ビニル系樹脂のみの強度)より低下する。 他方、ポリ塩化ビニル系樹脂複合体の重要な物
性の1つに衝撃強度がある。衝撃強度の場合も、
前記の石こう針状結晶を混練分散させた場合、ベ
ース強度より大巾に低下する。 更に、引張強度の改善(ベース強度に近づける
こと)と衝撃強度の改善とは、前記石こう針状結
晶において両立させるとが不可能であつた。 以上の点に鑑み、本発明者等は鋭意研究を進め
た結果、ポリ塩化ビニル樹脂と複合化した時、ポ
リ塩化ビニル樹脂に匹敵する引張強度と衝撃強度
とを有する新規石こう針状結晶の創出に成功し
た。即ち、ポリ塩化ビニル樹脂と複合化した成形
体の剛性及び寸法安定性等を、従来の石こう針状
結晶を複合化した場合は同等以上に向上せしめる
一方、成形体の引張強度並びに衝撃強度をポリ塩
化ビニル樹脂に匹敵する強度に改善せしめる石こ
う針状結晶とは、以下に示す性状を有する新規な
石こう針状結晶である。それは、平均径約1.2μ
以下であり、且つ単位表面積当りの水の吸着量が
約0.3mg/m2以下、より好ましくは0.265mg/m2以下
であることを特徴とする石こう針状結晶である。 石こう針状結晶の平均径はマクロな量として求
めなければならないので沈降開始時間から求め
る。ここに、沈降開始時間とは、以下に述べる方
法によつて定義される値である。分級された型
無水石こう針状結晶2gを1.00mlの蒸溜水に投入
し、5分間撹拌することにより水中に良く分散さ
せる。次いで、深さ約16cmの100mlメスシリンダ
ーに上記石こう針状結晶の分散したスラリーを投
入、静置する。やがて、石こう針状結晶の沈降が
生じる。石こう針状結晶の沈降容積は、時間と共
に減少するが、沈降容積が約90ml以上の場合は時
間的減少率は小さく、沈降容積が約90mlを切ると
沈降容積の時間的減少率は大きい。以上の現象を
基礎に、沈降容積が90mlまで減少するに要する静
置時間を沈降開始時間と定義する。なお、上記沈
降容積とは、石こう針状結晶の分散したスラリー
部分の容積、即ち、ある任意の静置時間におい
て、100mlから上澄液を差し引いた容積を意味
し、一般に用いられるところの長時間静置後の固
形分沈降の容積ではない。 さて、上記した如く定義された沈降開始時間
は、石こう針状結晶の形状に依存するマクロな値
である。本発明者等の研究によれば、該沈降開始
時間は石こう針状結晶の径にのみ依存し、長さが
20μ以上の場合はその長さには依存しない。石こ
う針状結晶の径が細くなれば、沈降開始時間は長
くなる。石こう針状結晶の径と沈降開始時間との
対応は、電子顕微鏡写真により求めることができ
る。一視野数百本の石こう針状結晶が分散した電
子顕微鏡写真数枚について容量平均の径を求め
た。沈降開始時間約5.3分は、電子顕微鏡写真よ
り求めた平均径約1.2μに相当する。 以上の方法で測定された平均径が1.2μ以下で
ある石こう針状結晶が、本発明に係わる細径石こ
う針状結晶である。 単位表面積当りの水の吸着量は、次に示す方法
で測定する。まず、試料を800℃で60分間焼成す
る。該焼成を前処理と呼ぶ。前処理された型無
水石こう針状結晶の比表面積を、窒素を用いた通
常のBET法で測定する。その値をA(m2/g)と
する。次に、水の吸着量を求める。20℃において
系の蒸気圧を変化させた時の水の吸着量、即ち、
吸着等温線を求め、相対温度60%に相当する蒸気
圧下における水の吸着量を求める。その値をB
(g/g)とすれば、単位表面積当りの水の吸着量
は、B/A(g/m2)である。該前処理条件は重
要である。 一般に、α型半水石こう針状結晶あるいは型
無水石こう針状結晶を焼成する場合、高温で長時
間焼成すればする程BET比表面積及び水の吸着
量共に減少する傾向がある。しかし、本発明者等
の研究によれば、むやみに高温で長時間焼成する
と、石こう針状結晶の表面が、あたかも溶融した
ときのような状態となつて、石こう針状結晶の表
面状態が大巾に変化するために、石こう針状結晶
の表面積等を測定する前処理としては不適当であ
る。しかし、800℃で60分間焼成することによつ
て、石こう針状結晶の表面が溶融した形跡は認め
られない。 一方、工業的に型無水石こう針状結晶を製造
する場合、まずα型半水石こう針状結晶又は型
無水石こう針状結晶を製造し、次いで、それら石
こう針状結晶を焼成することによつて型無水石
こう針状結晶を得る。したるに、該焼成温度は、
通常400〜700℃を採用する。その理由は、第1に
焼成温度が400℃により低い場合は、α型半水石
こう針状結晶又は型無水石こう針状結晶が未転
化のまま残る可能性が強いために好ましくない。
第2に、該焼成温度が高くなればなる程エネルギ
ーコストが高くなる。α型半水石こう針状結晶又
は型無水石こう針状結晶が型無水石こう針状
結晶に転化する温度は600〜700℃で十分である。
従つて、工業的に採用される該焼成温度は通常約
700℃以下であつて、800℃を越えることは少な
い。以上の理由によつて、前処理条件として800
℃−60分間が採用された。重要なことは、石こう
針状結晶がα型半水石こう針状結晶であれ、型
無水石こう針状結晶であれ、あるいは型無水石
こう針状結晶(但し800℃未満の温度で焼成した
場合)であれ、該石こう針状結晶の、ポリ塩化ビ
ニル系樹脂に対する補強性が、該石こう針状結晶
を前処理した後の、単位表面積当りの水の吸着量
でもつて規定されるという事実である。即ち、単
位表面積当りの水の吸着量が0.3mg/m2、好ましく
は0.265mg/m2以下のときに本発明の効果が発揮さ
れる。 一般に、サフアイアホイスカーやガラス繊維等
の無機繊維の単位断面積当りの破断(引張)強度
は径依存性を有しており、直径つまり、断面積が
小さくなればなる程、単位断面積当りの破断強度
は大きくなる。本発明者等の研究によれば、石こ
う針状結晶の場合も、上記傾向が大筋として認め
られた。即ち、熱可塑性樹脂と石こう針状結晶と
混練複合化する過程において、石こう針状結晶の
径が小さければ小さい程、該石こう針状結晶の破
損が少なく、結果的に複合体中の石こう針状結晶
のアスペクト比が、より大きくなつて、石こう針
状結晶の樹脂補強性が増大する。特に石こう針状
結晶の径が約2〜1μ以下になると石こう針状結
晶の破損の程度が著しく低下する。一方、石こう
針状結晶の径がほぼ同一であつても該石こう針状
結晶を熱可塑性樹脂と混練複合化する過程におい
て、該石こう針状結晶の破損の程度は必らずしも
同一ではない。つまり、複合体中の該石こう針状
結晶のアスペクト比、ひいては複合体の機械的強
度が異なることを見出した。 ポリ塩化ビニル系樹脂についても、上記一般的
傾向が成立する。即ち、弾性率等は石こう針状結
晶を混練分散せしめることにより大巾に向上補強
される。ポリ塩化ビニル系樹脂との複合では、通
常引張強度はベース強度により補強されることは
ないが、しかし平均径が2〜1μ以下であれば強
度の低下が減少する。一方、公知の石こう針状結
晶の場合、平均径が約1.2μ以下であつても衝撃
強度の低下が大きい。しかるに、本発明に係る石
こう針状結晶を採用すると、弾性率等を、従来の
石こう針状結晶の場合に増して向上補強するのみ
ならず衝撃強度については、ベース強度と同等の
強度を附与することが実現される。即ち、衝撃強
度の改善において本発明は特徴的である。 従来、塩ビ系複合材料の衝撃強度を大きく左右
する因子の1つに、フイラーの分散性が考えられ
てきた。フイラーの分散を良くすればする程衝撃
強度の改善が著しい。しかし、従来の石こう針状
結晶を塩化ビニル系樹脂に良分散させるために
は、大きな粒状物や凝集物を取り除くのはもちろ
ん、加工方法として、例えばロール混練のような
セン断力の大きい加工法を採用しない限り石こう
針状結晶の良好な分散は実現が困難であつた。し
かし、ロール混練する場合、石こう針状結晶の破
損が著しく、加工成形体中の石こう針状結晶のア
スペクト比が小さくなつてしまうために、該成形
体の機械的強度の補強性は小さくなる。特に引張
強度の低下が著しくなる。ここに、引張強度と衝
撃強度のバランスの困難さがある。しかるに、本
発明に係る石こう針状結晶の分散は、従来の石こ
う針状結晶に比して良好であるが、ロール混練よ
りもゆるやかな加工条件、例えば単軸ベント押出
機によるパウダー押出によつて、良好な分散を達
成することが可能である。従つて、本発明によれ
ば、従来の場合に比べ成形体の機械的強度、特に
衝撃強度の改善が著しい。つまり、本発明に係る
石こう針状結晶を採用すれば、ポリ塩化ビニル系
樹脂の一般的加工法であるところのバウダー押出
によつて、引張強度並びに衝撃強度が共にベース
強度なみにバランスされた複合体を得ることが可
能である。剛性が大巾に向上するのは勿論であ
る。 更に、本発明に係る石こう針状結晶をポリ塩化
ビニル樹脂以外の有機高分子、たとえば熱可塑性
樹脂であるポリオレフイン系樹脂に複合化した場
合、剛性率や引張強度等の機械的強度が従来の石
こう針状結晶の場合に較べて著しく補強されるこ
とが判つた。たとえば、代表的なポリオレフイン
系樹脂であるポリプロピレン樹脂と本発明の石こ
う針状結晶とを複合化した場合、引張強度は従来
の石こう針状結晶を複合化した場合に比べ、著し
く補強される石こう針状結晶の破断強共ひいては
有機高分子との複合体の補強性は、該石こう針状
結晶の径に依存すること、更にほぼ同一の径であ
つても該複合体中のアスペクト比が異なり、補強
性が異なることは既に説明した。本発明に係わる
石こう針状結晶は、径がほぼ同一であつても、従
来の石こう針状結晶の場合に比して該複合体の引
張強度が著しく高い。即ち、ポリオレフイン系樹
脂の機械的強度の飛躍的向上において、本発明は
特徴的である。 単繊維補強理論によれば、繊維強化された複合
体の引張強度TSは第1式で示される。 TS=l/d・χ・τ・Vf+σn(1−Vf) ……第1式 l……複合体中の繊維長。但しl<lc (臨界繊維長) d……繊維の径 χ……繊維の配向に関する定数 τ……繊維とマトリツクスとの界面セン断強度 Vf……繊維の容積分率 σn……マトリツクスの強度 繊維が石こう針状結晶の場合、第1式における
l/d即ちアスペクト比は、複合化過程で破損し
た後の平均の値である。従つて、複合体中のアス
ペクト比は、石こう針状結晶自身の強靭さに依存
すると考えられる。即ち、 l/d∝σG ……第2式 ここに、σGは石こう針状結晶自身の強度、た
とえば、破断強度を想定することができる。一
方、ホイスカーやガラス繊維の破断強度は、径依
存性を有しており、径が細くなればなる程その破
断強度は著しく増して、理論強度に近づくことが
確認されている。該破断強度と径の関係は、たと
えば、指数関係で近似することができる。今、ホ
イスカー状結晶であるところの石こう針状結晶に
ついても、その破断強度が上記径依存性を有して
いると仮定すると、形式的に σG∝l-d ……第3式 と書くことができる。従つて、以上の第1〜第3
式から TS−σn(1−Vf)=χ・τ・Vf・l/d∝l-d ……第4式 即ち、 lo〔TS−σn(1−Vf)〕=−a・d+b ……第5式 が近似的に成立すると考えられる。定数a及びb
は、例えば後述するステツプ等の応力集中点の非
常に少ないと考えられる石こう針状結晶について
の実測値を代入することによつて決定される。引
張強度の単位をKg/cm2、径の単位をミクロンにと
れば、a〓0.60、b〓6.41である。 本発明者等の研究によれば、従来の石こう針状
結晶は、第5式からの偏差、即ち、ある径におい
て、第5式から求めたTSと実測TSとの差が大き
い。特に、径が約1.2μ以下の場合偏差は非常に
大きくなる。これに対して、このような石こう針
状結晶を採用すれば、径が約1.2μ以下であつて
も、第5式からの偏差は小さい。そこで、第5式
において、任意の径dに対するTSを、理想的な
石こう針状結晶を採用した場合の複合体の引張強
度TS゜(d)であると定義し、次に、任意の径の石
こう針状結晶複合体の実測値TS(d)を求め、TS゜
(d)からの低下の大きさを求め、それをΔTS(d)≡
TS゜(d)−TS(d)と定義する。 石こう針状結晶複合体の引張強度は、次の如く
して求める。分級後の型無水石こう針状結晶40
重量部を、ポリプロピレン樹脂粉末54重量部、ア
クリル酸変性ポリプロピレン樹脂6重量部及び若
干量の安定剤に対して添加混合し、40mm単軸ベン
ト押出(ダルメージスクリユー)機によつて、約
240℃にて押出ペレツト化し、次いで該乾燥ペレ
ツトを、金型温度60℃、射出圧約600Kg/cm2でJIS
K−6745試験片を250℃で射出成形し、次いで、
温度約23℃において引張強度5mm/分で引張試験
を実施する。 他方、該石こう針状結晶の径dを沈降開始時間
から求め、同じ径における理想的な引張強度TS
゜(d)を第5式から求め、次いでΔTS(d)=TS゜(d)
−TS(d)を求める。 以上の如く定義されたΔTS(d)は該石こう針状
結晶の強靭さのパラメータと考えられる。即ちΔ
TSの小さい石こう針状結晶は、ΔTS(d)の大きい
石こう針状結晶に比して、より強靭である。強靭
な石こう針状結晶とは、樹脂との混練複合化過程
において、破損の少ない、言い換えると結晶表面
のステツプや転移等の応力集中点の少ない石こう
針状結晶である。該応力集中点は、結晶表面の活
性点と考えられるから、極性の大きい水分子の吸
着能が著しく大きいと考えられる。つまり、Δ
TS(d)の大きい石こう針状結晶は水分子の吸着量
も又大きいと考えられる。事実、従来の石こう針
状結晶はΔTS(d)が大きく、かつ単位表面積当り
の水の吸着量も大きいのに比して、本発明に係る
石こう針状結晶はΔTS(d)が小さく、かつ単位表
面積当りの水の吸着量も小さい。ΔTS(d)と単位
表面積当りの水の吸着量との間には、明瞭な一次
の相関がみられる。この関係を第3図に示す。 単位表面積当りの水の吸着量が0.3mg/m2はΔ
TS=60に相当し、より好ましい石こう針状結晶
の場合の単位表面積当りの水の吸着量が0.265mg/
m2以下は、ΔTSが40Kg/cm2以下に相当する。従つ
て、本発明に係る石こう針状結晶は実用的にはΔ
TSで規定するのが好適である。 さて、本発明に係る石こう針状結晶は、3項目
で規定されている。 第1の条件、「平均径が約1.2μ以下」であるこ
とは、前記した如く、石こう針状結晶の径依存性
に基づくものと考えられる。径が約1.2μ以下に
なると、一般に石こう針状結晶の強度が著しく増
大するために、混練加工時の破損が少なくなり、
その結果成形加工体中の石こう針状結晶のアスペ
クト比が大きくなつて、引張強度が改善されるも
のと考えられる。 第2の条件、即ち「単位表面積当りの水の吸着
量が約0.3mg/m2以下」であることが必要な理由に
ついては、詳らかではない。しかし、単位表面積
当りの水の吸着量が異なるという事実は、窒素分
子に比して極性の大きい水分子を、優先的に吸着
する場が存在し、その存在量が該型無水石こう
針状結晶の種類によつて大きく異なるものと解釈
することが出来る。該吸着点(場)は、たとえば
結晶表面のステツプあるいは転移等を想定するこ
とが可能である。つまり、単位表面積当りの水の
吸着量が少ない石こう針状結晶は、結晶表面のス
テツプ等が少ない破損し難いと考えられる。特に
好ましい石こう針状結晶の、単位表面積当りの水
の吸着量は0.265mg/m2以下であつて、ステツプな
どが特に少なく、理想強度に近い石こう針状結晶
であると考えられる。 この事は、PPとの複合化に於いてその強度に
対する補強性(換言すればΔTSの減少)として
発現されることは前記の通りである。一方、
PVCとの複合化に於いては、強度及び衝撃強度
の著しい低下をもたらさないという形で発現され
ることは、前記の通りである。 更に、上記二つの条件を満す石こう針状結晶が
「約20μ以上の粒状物あるいは凝集物を実質的に
含まない」ものであれば、衝撃強度の改善という
点から極めて好都合である。一般に大きな粒状物
あるいは、凝集物が存在するとそこが応力集中点
となつて、クラツクが容易に進行するために衝撃
強度が低下するものと考えられる。粒状物あるい
は凝集物の除去は分級により例えば強制渦式回転
壁型分級機により達成できる。分級の程度は、使
用目的に応じて適宜決めればよいが、少くとも粒
状物あるいは凝集物が重量で約1%以下になるこ
とが望まれる。 本発明に係る石こう針状結晶の、ポリ塩化ビニ
ル系樹脂に対する分散性が、従来の石こう針状結
晶の場合に比して著しく良好であることは既に設
明したが、その原因の1つに、該吸着点が考えら
れる。即ち、従来の石こう針状結晶は、該吸着
点、言い換えると結晶表面の活性点が多く、石こ
う針状結晶自身の凝集性が強いのに対して、本発
明に係る石こう針状結晶表面の活性点は非常に少
ないために、石こう針状結晶自身の凝集性が弱
く、容易に良分散するものと考えられる。そし
て、良分散の結果として衝撃強度が著しく改善さ
れるものと考えられる。 以上の如く規定された石こう針状結晶は、次の
如くして製造することが出来る。原料2水石こう
に対して0.3〜30重量%分散してなる水性スラリ
ーをオートクレーブに収容し、撹拌しつつ加圧下
に加熱し、α型半水石こう針状結晶を製造する。 ここに、原料2水石こうの性状は次の如き特徴
を有していることが必要である。即ち(002)面
のX線回析ピークの半価幅(補正後の積分巾)が
約2.5×10-4ラジアン等に好ましくは1.5×10-4
ジアン以下であり、かつ、水中に投入分散後約10
分経過後の硫酸カルシウムの溶解度が約0.204
%、特に好ましくは、0.202%以下であることが
必要である。X線回析は、理学電機株式会社製X
線回析装置(Cat No.2028)を用いて次に示す条
件で測定した。 Target;Cu(45KV 40mA) Filter;Ni Divergency;1/2゜ Receiving Slit;0.3mm Scan Speed;1/2゜/min Chart Speed;80mm/min Time Const;5sec なお、半価幅補正用標準物質は、800℃でアニ
ールされた粒径30〜44μのα−SiO2を用いた。 硫酸カルシウムの溶解度は、19℃において電気
伝導度より求める。即ち19℃において、硫酸カル
シウムの既知の濃度の水溶液の電気伝導度を測定
し、検量線を作成する。次いで、測定すべき試料
について、19℃において電気伝導度を測定し、上
記検量線から該試料の溶解度を求めることが出来
る。原料2水石こうの粒度は、数μ〜100μ、よ
り好ましくは、数μ〜60μが滴当である。微細な
原料2水石こうは、たとえば焼石こうを水和する
ことによつて得られる。ここで採用される焼石こ
うは、2水石こうや型無水石こうを実質的に含
まず、更に、X線回析ピークの半価巾から、Hall
の式によつて求めた微結晶粒径が大きく、該微結
晶の格子歪の小さい焼石こうが好ましい。好まし
い焼石こうを、濃度0.3〜30重量%でもつて常温
で、撹拌下に水和して得られる微細な水和2水石
こうの溶解度(硫酸カルシウム換算)は、水和開
始約1時間後で約0.204%以下であり、更に、該
水和2水石こう結晶の(002)面のX線回析ピー
クの半価巾は約2.5×10-4ラジアン以下である。 原料2水石こうとは別に、種結晶を添加すると
好ましい結果を得ることの出来る場合がある。特
に、原料2水石こうの粒径が比較的大きい場合に
種結晶を添加することによつて、得られるα型半
水石こう針状結晶の径を1.2μ以下に細くするこ
とが出来る。該種結晶の一例として、焼石こうを
前記した方法でもつて水和して得られる微細な水
和2水石こうを挙げることが出来る。ここで採用
される焼石こうは、2水石こうを通常の方法で仮
焼することによつて得られる。焼石こうのX線回
析ピークの半価巾より求めた微結晶粒子径が小さ
く、該微結晶の格子歪の大きい焼石こうを水和し
て得られる微細な水和2水石こうが、種結晶とし
ての効果が大きい。即ち、好ましい種結晶は比較
的少量の添加量でもつて細径の石こう針状結晶が
得られる。種結晶としての効果の大きい水和2水
石こうの溶解度は大きい。また、(002)面のX線
回析ピークの半価巾が大きい水和2水石こうも、
種結晶としての効果が大きい。しかし、溶解度が
0.204%を越える種結晶又は、(002)面のX線回
析ピークの半価巾が、2.5×10-4ラジアンを越え
る種結晶を、むやみに多く添加すると、得られる
石こう針状結晶の径は、細くなるものの単位表面
積当りの水の吸着量は多くなる。逆に、種結晶の
添加量が少ないと、得られる石こう針状結晶の径
が太くなる。 添加する水和2水石こうの性質と添加量との好
ましい組み合せは、以下に示す範囲である。焼石
こうを水和して得られる微細な水和2水石こう
(種結晶)の溶解度(水和開始約1時間後、19
℃)が0.204%以下であり、かつ該種結晶の
(002)面のX線回析ピークの半価巾(補正後の積
分巾)が2.5×10-4ラジアン以下の場合は、前記
した原料2水石こう(水中に投入分散後約10分経
過後の硫酸カルシウムの19℃における溶解度が約
0.204%以下であり、かつ、(002)面のX線回析
ピークの半価巾が約2.5×10-4ラジアン以下であ
る)に対して、該種結晶を重量で3%以上添加す
ることによつて本発明に係る石こう針状結晶を製
造することが出来る。 焼石こうを水和して得られる微細な水和2水石
こう(種結晶)の溶解度(水和開始約1時間経過
後、19℃)が0.204%を越えるか、又は、該水和
2水石こう(種結晶)の、(002)面のX線回析ピ
ークの半価巾(補正後の積分巾)が2.5×10-4
ジアンを越する水和2水石こうを種結晶として添
加する場合は、前記した原料2水石こうに対し
て、該種結晶を添加するに当つて、該種結晶(焼
石こうを水和して得られる微細な水和2水石こ
う)の溶解度(水和開始約1時間経過後、19℃)
をXパーセント、Zを該種結晶の添加量(パーセ
ント)と置くとき(X、Z)座標において、第1
図の斜線部分で示される範囲の組み合せであつ
て、更に、該種結晶の(002)面のX線回析ピー
クの半価巾(補正後の積分巾)をYラジアンと置
くとき、(Y、Z)座標において、第2図の斜線
部分で示される範囲の組み合せを、共に満足する
混合物を出発原料とすることによつて、本発明に
係る石こう針状結晶を製造することが可能であ
る。 さて、石こうの溶解度は、該石こうの粒径や表
面の結晶性に依存すると考えられる。従つて、石
こうを水洗したり、あるいは、水中に分散せしめ
た状態で放置熟成することによつて、該石こうの
溶解度を低下せしめることが可能である。しか
し、溶解度は、極く少量の、非常に微細な粒子
や、あるいは結晶表面の格子陥部分等でもつて決
定される量であるから、溶解度が大巾に低下して
も、該石こうの結晶内部(表面でない)の状態ま
で大巾に変化したとは考えられない。 一方、X線回析ピークの半価巾は、着目してい
る結晶面に垂直な方向の結晶粒径及び該結晶面に
垂直な方向の格子歪の平均値とに依存する量であ
る。焼石こうを前記した方法で水和して得られる
2水石こうは、一般にC軸方向に伸長した棒状結
晶となる。しかるに、2水石こうの(002)面
は、C軸に垂直な面であるから(002)面のX線
回析ピークの半価巾は、該2水石こうの伸長軸方
向の大きさ及び、格子歪の平均値とに依存する。
水和2水石こうの微細な棒状結晶は、単結晶と考
えられるから、C軸方向の大きさは数〜数十μで
あつて、半価巾への寄与はほとんど無視出来る程
小さい。つまり、水和2石こうの(002)面のX
線回析ピークの半価巾は、該2水石こうの表面及
び内部を含む、C軸方向の平均的な格子歪の大き
さを示すパラメータであると考えられる。 本発明者等の研究によれば、溶解度の比較的高
い水和2水石こうを熟成することによつて、該溶
解度を大巾に低下せしめた水和2水石こうの、
(002)面のX線回析ピークの半価巾は、熟成前の
半価巾に比して若干の減少はあるものの、溶解度
の減少率に較べるとかるかに小さい。上記現象
は、溶解度が石こうの粒径及び表面状態に依存す
る量であり、X線回析ピークの半価巾が石こう結
晶全体の平均的結晶状態を表わす位置であること
の証左だと考えられる。石こう針状結晶の製造
は、2水石こうの水中への溶解とα型半水石こう
としての晶析という動的平衡下で行なわれる2水
石こうの溶解が進行すると、2水石こう結晶の内
部が新たな表面層となるために、系の溶解度は、
新生表面層の性質即ち、当初の2水石こう結晶内
部の性質、換言すれば、X線回析ピーク半価巾で
もつて規定されると考えられる。ここに、X線回
析ピークの半価巾の測定の重要さがあると考えら
れる。 しかし、溶解度の低下は有効である。α型半水
石こう晶析においては、2水石こうの溶解度と、
α型半水石こうの溶解度の差が、即ち、過飽和度
であると考えられるから、2水石こうの溶解度を
低下させればそれだけ過飽和度が低下して、ゆる
やかな晶析が実現されるものと考えられる。一般
に、不純物や格子欠陥あるいはステツプ等の少な
い結晶は、過飽和度を低く押えてゆるやかな晶析
速度の下に実現される。 α型半水石こう針状結晶は、実質的には115゜
〜130℃で製造される。スラリーの撹拌は、スラ
リー固形分の沈降を防げる範囲で低速撹拌が好ま
しい。撹拌速度が低いと、得られる石こう針状結
晶の径を細くすることが出来る。 製造されたα型半水石こう針状結晶は、脱水分
離後乾燥し、次いで400〜700℃で焼成することに
よつて安定な型無水石こう針状結晶が得られ
る。 石こう針状結晶を合成樹脂に添加する場合は、
5〜75重量%が適当である。5%未満の場合は、
石こう針状結晶を添加複合化する優位性が少な
く、また、75%を越える複合化は困難な場合が多
い。 次に、実施例を記載する。 実施例 1 排煙脱硫副生2水石こうを、180℃で16時間仮
焼するとにより、微結晶粒子径約0.125ミクロ
ン、微結晶の格子歪約1.4×10-3である焼石こう
を得た。該焼石こうを水和せしめた。水和開始約
1時間後の使用直前における硫酸カルシウムの溶
解度は、0.202%、(002)面のX線回析ピークの
半価巾は約1.45×10-4ラジアンであつた。スラリ
ー濃度約5重量%の該水和2水石こうスラリーを
外部加熱式オートフレーブに収容し、撹拌しつつ
加圧下に加熱した。スラリー温度を約130℃まで
昇温し、5分間保持して反応を完結させた。 内温を約90℃に冷却後素早く脱水分離し、α型
半水石こう針状結晶の脱水ケーキを得た。次いで
該脱水ケーキを約700℃の熱風焼成炉に投入し、
約30分間乾燥焼成することによつて、型無水石
こう針状結晶を得た。次いで、ミクロプレツクス
132MP(安川−アルピネ、分級機)によつて約20
μ以上の粒状物及び凝集物を除き、平均径約0.79
μの型無水石こう針状結晶を得た。分級後の該
型無水石こう針状結晶を、800℃で60分間焼成
(前処理)した後の単位表面積当りの水の吸着量
を測定した。結晶を表1に示す。分級後の該型
無水石こう針状結晶を、鉛配合のポリ塩化ビニル
樹脂(PVC)(鐘淵化学工業(株)製カネビニー
ルS1001)に対して10重量%添加し、40mm単軸ベ
ント押出機によつて、ベルト状ストランドを押出
した。次いで、175℃にて予熱5分、50Kg/cm2圧で
5分間プレスすることによつて、厚さ約3mmの試
験片を作成し、温度約23℃の恒温室にて重さ300
g、撃シン3/8インチの錘によるデユポン衝撃強
度(半数破壊高さ、cm)を測定した。結果を表1
に示す。 また上記ベルト技ストランドから引張試験片を
切出しJIS K−6745に準拠して引張試験を行つ
た。結果を表1に示す。一方分級後の型無水石
こう針状結晶を上記鉛配合のPVCに対して20重
量%添加し40mmベント押出機によつてペレツト化
し、次いで同一の押出機でもつてベルト状ストラ
ンドを押出した。該ベルト状ストランドから引張
試験片を切り出しJIS K−6745に準拠して引張試
験を行なつた。その結果を表1に示す。 上記の分級後の型無水石こう針状結晶を、ポ
リプロピレン樹脂(PP)54重量部、アクリル酸
変性PP6重量部、及び若干量の安定剤に対して、
40重量部添加し40mm単軸ベント押出機によつてペ
レツト化し、次いで、該乾燥ペレツトを射出成形
機を用いて常法によりJIS K−6745試験片を作成
し、温度約23℃において引張試験を実施した。結
果を表1に示す。 比較例 1 実施例1とは異なる排煙脱硫副生2水石こうを
220℃で4時間仮焼することにより、微結晶粒子
径約0.15μ微結晶の格子歪が約1.8×10-3である
焼石こうを得た。次いで、該焼石こうを水和せし
めた。水和開始約1時間後、使用直前の硫酸カル
シウムの溶解度は約0.207%、(002)面のX線回
析ピークの半価巾は約3.9×10-4ラジアンであつ
た。以下、実施例1と同様の方法によつて、太さ
約0.65μの、分級後の型無水石こう針状結晶を
得た。次いで、実施例1と全く同様の方法によつ
て単位表面積当りの水を吸着量を測定し、更に、
PVC及びPPとの複合体の諸物性を測定した。そ
の結果を表1に示す。 比較例 2 気流仮焼した焼石こうの微結晶粒子径は約0.06
μ、微結晶の格子歪は約3.2×10-3であつた。こ
の焼石こうを水和して得られる二水石こうの溶解
度は、使用直前で約0.235%、(002)面のX線回
析ピークの半価巾は約5.8×10-4ラジアンであつ
た。以下、実施例1と同様の方法によつて太さ約
0.59μの分級後の型無水石こう針状石こうを得
た。実施例1と全く同様の方法によつて単位表面
積当りの水の吸着量及びPVC並びにPPとの複合
体の諸物性を測定した。その結果を表1に示す。 比較例 3 粒子径10〜60μの排煙脱硫副生2水石こうを、
水中に投入撹拌後、約10分経過後の溶解度は約
0.200%、(002)面のX線回析ピークの半価巾は
約1.1×10-4ラジアンであつた。該原料2水石こ
うに対して、比較例1で用いた水和2水石こう
を、約1.5重量%添加したスラリーを用いて、実
施例1と同様の方法によつて太さ約1.5μの分級
された型無水石こう針状結晶を得た。次いで、
実施例1と全く同様の方法によつて単位表面積当
りの吸着量及びPVC並びにPPとの複合体の諸物
性を測定した。その結果を表1に示す。 実施例 2 比較例3で用いた原料2水石こうに対して、比
較例2で用いた水和2水石こうを、重量で約5%
添加した。以下、実施例1と同様の方法によつ
て、太さ約0.83μの分級された型無水石こう針
状結晶を得た。次いで、実施例1と全く同様の方
法によつて、単位表面積当りの水の吸着量及び
PVC並びにPPとの複合体の諸物性を測定した。
その結果を表1に示す。 実施例 3 実施例1で用いた水和2水石こうスラリーを脱
水分離後、水洗し、再び水に分散せしめた。溶解
度は約0.199%、(002)面のX線回析ピークの半
価巾は約1.4×10-4ラジアンであつた。以下実施
例1と同様の方法によつて、太さ約0.77μの、分
級された型無水石こう針状結晶を得た。次い
で、実施例1と全く同様の方法によつて単位表面
積当りの水の吸着量及びPVC並びにPPとの複合
体の諸物性を測定した。結果を第1表に示す。 実施例 4 比較例3で用いた原料2水石こうに対して、実
施例1で用いた微細な水和2水石こうを重量で15
%添加した。以下、実施例1と同様の方法によつ
て、大さ約0.93μの分級された型無水石こう針
状結晶を得た。次いで、実施例1と同様の方法に
よつて、単位表面積当りの水の吸着量及びPVC
並びにPPとの複合体の諸物性を測定した。その
結果を表1に示す。 【表】
Detailed Description of the Invention The present invention provides gypsum needle crystals (general term for α-type hemihydrate gypsum needle crystals, type anhydrite gypsum needle crystals, and type anhydrous gypsum needle crystals) suitable for compounding with synthetic resins. and a synthetic resin. Gypsum needle crystals and their industrial utility are known from Japanese Patent Application Laid-Open No. 49-30626. Gypsum needle crystals are expected to be used, for example, as a filler for paper making, as a heat insulating material, or as a reinforcing material for organic polymers. Of course, the properties expected of gypsum needle crystals vary depending on the application, but
Mechanical properties such as elastic modulus and strength are important when composited with organic polymers, especially thermoplastic resins. One factor that determines these mechanical properties is the aspect ratio (vertical/width ratio) of the gypsum needles in the composite. Generally, as shown in short fiber reinforcement theory, the larger the aspect ratio, the higher the elastic modulus. Tensile strength etc. are improved. Therefore, preferred gypsum needles for reinforcing the thermoplastic resin are those having a large aspect ratio in the composite. In other words, strong gypsum needle crystals that are difficult to break during the process of kneading and compounding thermoplastic resin and gypsum needle crystals are expected. However, the reinforcing properties of gypsum needle crystals are insufficient. In particular, when gypsum needle crystals are kneaded and dispersed in polyvinyl chloride resin, the elastic modulus and dimensional stability (coefficient of thermal expansion) improve because the aspect ratio of the gypsum needle crystals in the composite becomes smaller. Reinforcement of the mechanical strength of the material is small. In particular, in the case of tensile strength, there is no reinforcing property and it is lower than the base strength (strength of only polyvinyl chloride resin without gypsum needle crystals added). On the other hand, one of the important physical properties of polyvinyl chloride resin composites is impact strength. In the case of impact strength,
When the gypsum needle crystals are kneaded and dispersed, the strength is significantly lower than the base strength. Furthermore, it has been impossible to simultaneously improve the tensile strength (approaching the base strength) and the impact strength in the gypsum needle crystals. In view of the above points, the present inventors have conducted intensive research and have created a new gypsum needle crystal that has tensile strength and impact strength comparable to that of polyvinyl chloride resin when combined with polyvinyl chloride resin. succeeded in. In other words, the rigidity and dimensional stability of the molded body composited with polyvinyl chloride resin are improved to the same level or higher than that of conventional gypsum acicular crystals, while the tensile strength and impact strength of the molded body are improved compared to the polyvinyl chloride resin. The gypsum needle crystal that can improve the strength to be comparable to that of vinyl chloride resin is a new gypsum needle crystal that has the properties shown below. It has an average diameter of about 1.2μ
and the adsorption amount of water per unit surface area is about 0.3 mg/m 2 or less, more preferably 0.265 mg/m 2 or less. Since the average diameter of gypsum needle crystals must be determined as a macroscopic quantity, it is determined from the settling start time. Here, the sedimentation start time is a value defined by the method described below. 2 g of classified anhydrous gypsum needle crystals are added to 1.00 ml of distilled water and stirred for 5 minutes to disperse well in the water. Next, the slurry in which the gypsum needle crystals are dispersed is poured into a 100 ml measuring cylinder with a depth of about 16 cm and left to stand still. Eventually, precipitation of gypsum needles occurs. The sedimentation volume of gypsum needle crystals decreases with time, but when the sedimentation volume is about 90 ml or more, the rate of temporal decrease is small, and when the sedimentation volume is less than about 90 ml, the temporal decrease rate of the sedimentation volume is large. Based on the above phenomenon, the standing time required for the settling volume to decrease to 90 ml is defined as the settling start time. The above-mentioned sedimentation volume refers to the volume of the slurry portion in which gypsum needle crystals are dispersed, that is, the volume obtained by subtracting the supernatant from 100 ml at a certain arbitrary standing time. It is not the volume of solid content settling after standing. Now, the sedimentation start time defined as described above is a macroscopic value that depends on the shape of the gypsum needle crystals. According to the research of the present inventors, the settling start time depends only on the diameter of the gypsum needles, and the length
If it is 20μ or more, it does not depend on the length. The smaller the diameter of the gypsum needles, the longer the settling start time. The correspondence between the diameter of gypsum needle crystals and the settling start time can be determined from electron micrographs. The average diameter of the volume was determined for several electron micrographs in which hundreds of gypsum needle crystals were dispersed in one field. The sedimentation start time of about 5.3 minutes corresponds to an average diameter of about 1.2μ determined from electron micrographs. Gypsum needle crystals having an average diameter of 1.2 μm or less as measured by the above method are the small diameter gypsum needle crystals according to the present invention. The amount of water adsorbed per unit surface area is measured by the method shown below. First, the sample is fired at 800°C for 60 minutes. This firing is called pretreatment. The specific surface area of the pretreated anhydrous gypsum needles is measured by the usual BET method using nitrogen. Let the value be A (m 2 /g). Next, determine the amount of water adsorbed. The amount of water adsorbed when the vapor pressure of the system is changed at 20℃, i.e.
Determine the adsorption isotherm and determine the amount of water adsorbed under the vapor pressure corresponding to 60% relative temperature. The value is B
(g/g), the amount of water adsorbed per unit surface area is B/A (g/m 2 ). The pretreatment conditions are important. Generally, when α-type hemihydrate gypsum needle crystals or type anhydrous gypsum needle crystals are fired, the BET specific surface area and the amount of water adsorbed tend to decrease the longer they are fired at a higher temperature. However, according to the research of the present inventors, if the gypsum needle crystals are fired at an unnecessarily high temperature for a long time, the surface of the gypsum needle crystals becomes as if they were melted, and the surface condition of the gypsum needle crystals changes significantly. Because the width changes, it is unsuitable as a pretreatment for measuring the surface area of gypsum needle crystals. However, after firing at 800°C for 60 minutes, no evidence of melting of the surface of the gypsum needle crystals was observed. On the other hand, when producing type anhydrous gypsum needles industrially, firstly α-type hemihydrate gypsum needles or type anhydrous gypsum needles are produced, and then these gypsum needles are fired. Obtain type anhydrite acicular crystals. Therefore, the firing temperature is
Normally a temperature of 400 to 700°C is used. The reason for this is that, first, if the firing temperature is lower than 400°C, there is a strong possibility that α-type hemihydrate gypsum needle crystals or type anhydrite gypsum needle crystals remain unconverted, which is not preferable.
Second, the higher the firing temperature, the higher the energy cost. The temperature at which α-type hemihydrate gypsum needle crystals or type anhydrite gypsum needle crystals are converted into type anhydrous gypsum needle crystals is sufficient to be 600 to 700°C.
Therefore, the calcination temperature employed industrially is usually about
The temperature is below 700℃ and rarely exceeds 800℃. For the above reasons, 800
°C for 60 minutes was adopted. What is important is that whether the gypsum needles are α-type hemihydrate gypsum needles, type anhydrite gypsum needles, or type anhydrite gypsum needles (provided they are fired at a temperature below 800°C) That is, the fact that the reinforcing property of the gypsum needle crystals against the polyvinyl chloride resin is determined by the adsorption amount of water per unit surface area after the gypsum needle crystals are pretreated. That is, the effect of the present invention is exhibited when the amount of water adsorbed per unit surface area is 0.3 mg/m 2 or less, preferably 0.265 mg/m 2 or less. In general, the breaking (tensile) strength per unit cross-sectional area of inorganic fibers such as sapphire whiskers and glass fibers has diameter dependence. The breaking strength increases. According to the research conducted by the present inventors, the above-mentioned tendency was generally recognized also in the case of gypsum needle crystals. That is, in the process of kneading and compounding thermoplastic resin and gypsum needle crystals, the smaller the diameter of the gypsum needle crystals, the less breakage of the gypsum needle crystals, and as a result, the gypsum needle crystals in the composite are As the aspect ratio of the crystals becomes larger, the resin reinforcing properties of the gypsum needles increase. In particular, when the diameter of the gypsum needle crystals is about 2 to 1 μm or less, the degree of breakage of the gypsum needle crystals is significantly reduced. On the other hand, even if the diameters of the gypsum needles are approximately the same, the degree of breakage of the gypsum needles during the process of kneading and compounding the gypsum needles with a thermoplastic resin is not necessarily the same. . In other words, it has been found that the aspect ratio of the gypsum needle crystals in the composite and, as a result, the mechanical strength of the composite differ. The above general tendency also holds true for polyvinyl chloride resins. That is, the elastic modulus etc. are greatly improved and reinforced by kneading and dispersing the gypsum needle crystals. In a composite with a polyvinyl chloride resin, the tensile strength is usually not reinforced by the base strength, but if the average diameter is 2 to 1 μm or less, the decrease in strength is reduced. On the other hand, in the case of known gypsum needle crystals, the impact strength is significantly reduced even if the average diameter is about 1.2 μm or less. However, when the gypsum acicular crystals according to the present invention are adopted, not only the elastic modulus etc. are improved and reinforced more than the conventional gypsum acicular crystals, but also the impact strength is equivalent to the base strength. will be realized. That is, the present invention is unique in improving impact strength. Conventionally, filler dispersibility has been considered to be one of the factors that greatly influences the impact strength of PVC-based composite materials. The better the dispersion of the filler, the more remarkable the improvement in impact strength. However, in order to properly disperse conventional gypsum needle crystals in vinyl chloride resin, it is necessary to remove large particles and aggregates, and also to use processing methods that require large shearing force, such as roll kneading. Good dispersion of gypsum needle crystals was difficult to achieve unless the method was adopted. However, in the case of roll kneading, the gypsum needle crystals are significantly damaged and the aspect ratio of the gypsum needle crystals in the processed molded product becomes small, so that the reinforcing property of the mechanical strength of the molded product becomes low. In particular, the decrease in tensile strength becomes significant. Here, there is a difficulty in balancing tensile strength and impact strength. However, although the dispersion of the gypsum needles according to the present invention is better than that of conventional gypsum needles, the dispersion of the gypsum needles according to the present invention is better than that of conventional gypsum needles; , it is possible to achieve good dispersion. Therefore, according to the present invention, the mechanical strength, particularly the impact strength, of the molded article is significantly improved compared to the conventional case. In other words, if the gypsum acicular crystals according to the present invention are used, a composite material with tensile strength and impact strength balanced to the same level as the base strength can be obtained by using the powder extrusion, which is a common processing method for polyvinyl chloride resin. It is possible to obtain a body. Of course, the rigidity is greatly improved. Furthermore, when the gypsum needle crystals according to the present invention are composited with an organic polymer other than polyvinyl chloride resin, such as a polyolefin resin that is a thermoplastic resin, mechanical strength such as rigidity and tensile strength is lower than that of conventional gypsum. It was found that the reinforcement was significantly greater than in the case of needle-shaped crystals. For example, when a polypropylene resin, which is a typical polyolefin resin, is composited with the gypsum needle crystals of the present invention, the tensile strength of the gypsum needles is significantly reinforced compared to the case where conventional gypsum needle crystals are composited. The fracture strength of the gypsum needle-shaped crystals and, by extension, the reinforcing properties of the composite with the organic polymer depend on the diameter of the gypsum needle-shaped crystals, and even if the diameters are almost the same, the aspect ratios in the composite differ. It has already been explained that the reinforcing properties are different. The gypsum acicular crystals according to the present invention have significantly higher tensile strength of the composite than conventional gypsum acicular crystals even though the diameters are almost the same. That is, the present invention is distinctive in dramatically improving the mechanical strength of polyolefin resins. According to the single fiber reinforcement theory, the tensile strength TS of a fiber-reinforced composite is expressed by the first equation. TS=l/d・χ・τ・V fn (1−V f )...First equation l...Fiber length in the composite. However, l<l c (critical fiber length) d...Fiber diameter χ...Constant related to fiber orientation τ...Interfacial shear strength between fiber and matrix V f ...Fiber volume fraction σ n ...Matrix Strength When the fiber is a gypsum needle crystal, l/d, that is, the aspect ratio in the first equation, is the average value after breakage in the compositing process. Therefore, the aspect ratio in the composite is considered to depend on the toughness of the gypsum needles themselves. That is, l/d∝σ G ... Second equation Here, σ G can be assumed to be the strength of the gypsum needle crystal itself, for example, the breaking strength. On the other hand, it has been confirmed that the breaking strength of whiskers and glass fibers is diameter dependent, and as the diameter becomes smaller, the breaking strength increases significantly and approaches the theoretical strength. The relationship between the breaking strength and the diameter can be approximated by, for example, an exponential relationship. Now, assuming that the fracture strength of gypsum needle crystals, which are whisker-like crystals, has the diameter dependence described above, it can be formally written as σ G ∝l -d ……Equation 3 I can do it. Therefore, the above 1st to 3rd
From the formula, TS-σ n (1-V f )=χ・τ・V f・l/d∝l -d ...4th formula, that is, l o [TS-σ n (1-V f )]=- a・d+b...Equation 5 is considered to approximately hold true. constants a and b
is determined by substituting actual measured values for gypsum acicular crystals that are thought to have very few stress concentration points, such as steps, which will be described later. If the unit of tensile strength is Kg/cm 2 and the unit of diameter is micron, then a = 0.60 and b = 6.41. According to research by the present inventors, conventional gypsum needle crystals have a large deviation from the fifth equation, that is, at a certain diameter, there is a large difference between the TS determined from the fifth equation and the actually measured TS. In particular, when the diameter is about 1.2μ or less, the deviation becomes very large. On the other hand, if such gypsum needle crystals are employed, even if the diameter is about 1.2 μm or less, the deviation from Equation 5 is small. Therefore, in the fifth equation, TS for any diameter d is defined as the tensile strength TS゜(d) of the composite when ideal gypsum needle crystals are adopted, and then Obtain the measured value TS(d) of the gypsum needle crystal complex, and calculate TS゜
Find the magnitude of the decrease from (d) and calculate it as ΔTS(d)≡
It is defined as TS゜(d)−TS(d). The tensile strength of the gypsum needle crystal composite is determined as follows. Type anhydrite acicular crystals after classification 40
Parts by weight were added to and mixed with 54 parts by weight of polypropylene resin powder, 6 parts by weight of acrylic acid-modified polypropylene resin, and some amount of stabilizer, and about
The pellets are extruded at 240°C, and the dried pellets are processed into JIS molds at a mold temperature of 60°C and an injection pressure of approximately 600Kg/ cm2 .
K-6745 specimens were injection molded at 250°C, then
Tensile tests are carried out at a temperature of approximately 23° C. and a tensile strength of 5 mm/min. On the other hand, the diameter d of the gypsum needle crystals is determined from the settling start time, and the ideal tensile strength TS at the same diameter is determined.
Find ゜(d) from equation 5, then ΔTS(d)=TS゜(d)
- Find TS(d). ΔTS(d) defined as above is considered to be a parameter of the toughness of the gypsum needle crystals. That is, Δ
Gypsum needles with a small TS are stronger than those with a large ΔTS(d). Strong gypsum needle crystals are gypsum needle crystals that are less likely to break during the kneading and compounding process with resin, in other words, there are fewer stress concentration points such as steps and dislocations on the crystal surface. Since the stress concentration points are considered to be active points on the crystal surface, it is thought that the adsorption capacity for highly polar water molecules is extremely large. In other words, Δ
It is thought that gypsum needle crystals with a large TS(d) also have a large adsorption amount of water molecules. In fact, while conventional gypsum needle crystals have a large ΔTS(d) and a large amount of water adsorption per unit surface area, the gypsum needle crystals according to the present invention have a small ΔTS(d) and a large adsorption amount of water per unit surface area. The amount of water adsorbed per unit surface area is also small. A clear first-order correlation is seen between ΔTS(d) and the amount of water adsorbed per unit surface area. This relationship is shown in FIG. The adsorption amount of water per unit surface area is 0.3 mg/m 2 is Δ
Corresponding to TS = 60, the adsorption amount of water per unit surface area in the case of more preferable gypsum needle crystals is 0.265 mg/
m 2 or less corresponds to ΔTS of 40 Kg/cm 2 or less. Therefore, the gypsum needle crystal according to the present invention is practically
It is preferable to specify it in TS. Now, the gypsum needle crystal according to the present invention is defined by three items. The first condition, that the average diameter is about 1.2 μm or less, is considered to be based on the diameter dependence of gypsum needle crystals, as described above. When the diameter is about 1.2μ or less, the strength of the gypsum needle crystals generally increases significantly, so there is less damage during kneading processing.
As a result, it is thought that the aspect ratio of the gypsum needle crystals in the molded product increases, and the tensile strength is improved. The reason why the second condition, ie, "the amount of water adsorbed per unit surface area is approximately 0.3 mg/m 2 or less", is not clear. However, the fact that the adsorption amount of water per unit surface area is different means that there is a field that preferentially adsorbs water molecules, which are more polar than nitrogen molecules, and the amount of water molecules that are present in the anhydrous gypsum needle crystals is It can be interpreted as being very different depending on the type. The adsorption point (field) can be assumed to be, for example, a step or a transition on the crystal surface. In other words, it is thought that gypsum needle crystals that adsorb a small amount of water per unit surface area are less likely to break due to fewer steps on the crystal surface. Particularly preferred gypsum needle crystals have an adsorption amount of water per unit surface area of 0.265 mg/m 2 or less, have particularly few steps, and are considered to have close to ideal strength. As mentioned above, this is expressed as reinforcement of the strength (in other words, a reduction in ΔTS) when combined with PP. on the other hand,
As mentioned above, when composited with PVC, the strength and impact strength are not significantly reduced. Furthermore, if the gypsum needle crystals that satisfy the above two conditions "substantially do not contain particles or aggregates of about 20 microns or more", it is extremely advantageous from the point of view of improving impact strength. In general, it is thought that when large particles or aggregates are present, they become stress concentration points and cracks easily develop, resulting in a decrease in impact strength. Removal of particulates or agglomerates can be accomplished by classification, for example, in a forced vortex rotating wall classifier. The degree of classification may be determined as appropriate depending on the purpose of use, but it is desirable that the content of particles or aggregates be at least about 1% by weight. It has already been established that the dispersibility of the gypsum needle crystals according to the present invention in polyvinyl chloride resin is significantly better than that of conventional gypsum needle crystals, and one of the reasons for this is that , the adsorption point is considered. That is, while conventional gypsum needle crystals have many adsorption points, in other words, active points on the crystal surface, and the gypsum needle crystals themselves have a strong agglomeration property, the activity of the gypsum needle crystal surface according to the present invention is Since there are very few dots, it is thought that the gypsum needle crystals themselves have weak cohesiveness and are easily dispersed. It is believed that the impact strength is significantly improved as a result of good dispersion. The gypsum needle crystals defined as above can be produced as follows. An aqueous slurry containing 0.3 to 30% by weight of raw dihydrate gypsum is placed in an autoclave and heated under pressure while stirring to produce α-type hemihydrate gypsum needle crystals. Here, the properties of the raw material dihydrate gypsum must have the following characteristics. That is, the half width (integral width after correction) of the X-ray diffraction peak of the (002) plane is approximately 2.5 × 10 -4 radian, preferably 1.5 × 10 -4 radian or less, and the dispersion in water is After about 10
The solubility of calcium sulfate after minutes is approximately 0.204
%, particularly preferably 0.202% or less. X-ray diffraction was performed using X manufactured by Rigaku Denki Co., Ltd.
Measurement was performed using a line diffraction device (Cat No. 2028) under the following conditions. Target; Cu (45KV 40mA) Filter; Ni Divergency; 1/2゜Receiving Slit; 0.3mm Scan Speed; 1/2゜/min Chart Speed; 80mm/min Time Const; 5sec The standard material for half width correction is , α-SiO 2 with a particle size of 30–44μ annealed at 800 °C was used. The solubility of calcium sulfate is determined from the electrical conductivity at 19°C. That is, the electrical conductivity of an aqueous solution of calcium sulfate with a known concentration is measured at 19° C., and a calibration curve is created. Next, the electrical conductivity of the sample to be measured can be measured at 19°C, and the solubility of the sample can be determined from the above calibration curve. The particle size of the raw material dihydrate gypsum is several microns to 100 microns, more preferably several microns to 60 microns. The fine raw material dihydrate gypsum is obtained, for example, by hydrating calcined gypsum. The calcined gypsum used here does not substantially contain dihydrate gypsum or type anhydrous gypsum, and furthermore, from the half value width of the X-ray diffraction peak, Hall
It is preferable to use calcined gypsum, which has a large microcrystal grain size determined by the formula and has a small lattice strain of the microcrystals. The solubility (calcium sulfate equivalent) of fine hydrated dihydrate gypsum obtained by hydrating preferred calcined gypsum at a concentration of 0.3 to 30% by weight at room temperature with stirring is approximately 1 hour after the start of hydration. 0.204% or less, and furthermore, the half width of the X-ray diffraction peak of the (002) plane of the hydrated dihydrate gypsum crystal is about 2.5×10 −4 radian or less. In addition to the raw material dihydrate gypsum, it may be possible to obtain favorable results by adding seed crystals. In particular, by adding seed crystals when the particle size of the raw material dihydrate gypsum is relatively large, the diameter of the resulting α-type hemihydrate gypsum needle crystals can be reduced to 1.2 μm or less. An example of such seed crystals is fine hydrated dihydrate gypsum obtained by hydrating calcined gypsum by the method described above. The calcined gypsum used here is obtained by calcining dihydrate gypsum in a conventional manner. Fine hydrated dihydrate gypsum obtained by hydrating calcined gypsum, which has a small microcrystal particle diameter determined from the half width of the X-ray diffraction peak of the calcined gypsum and has a large lattice strain of the microcrystals, is a seed crystal. It has a great effect as That is, a preferable seed crystal can produce small-diameter gypsum needle-like crystals even when added in a relatively small amount. Hydrated dihydrate gypsum, which is highly effective as a seed crystal, has a high solubility. In addition, hydrated dihydrate gypsum has a large half-value width of the X-ray diffraction peak of the (002) plane.
It is highly effective as a seed crystal. However, the solubility
If too many seed crystals are added that exceed 0.204% or that the half width of the X-ray diffraction peak of the (002) plane exceeds 2.5 x 10 -4 radians, the diameter of the resulting gypsum needle crystals will decrease. becomes thinner, but the amount of water adsorbed per unit surface area increases. Conversely, when the amount of seed crystals added is small, the diameter of the obtained gypsum needle crystals becomes thick. A preferred combination of the properties and amount of the hydrated dihydrate gypsum to be added is within the range shown below. Solubility of fine hydrated dihydrate gypsum (seed crystals) obtained by hydrating calcined gypsum (about 1 hour after the start of hydration, 19
°C) is 0.204% or less, and the half-value width (integral width after correction) of the X-ray diffraction peak of the (002) plane of the seed crystal is 2.5 × 10 -4 radian or less, the above-mentioned raw material Dihydrate gypsum (the solubility of calcium sulfate at 19℃ after about 10 minutes after being added and dispersed in water is approx.
0.204% or less, and the half width of the X-ray diffraction peak of the (002) plane is approximately 2.5 × 10 -4 radians or less), and the seed crystal is added in an amount of 3% or more by weight. The gypsum acicular crystals according to the present invention can be manufactured by this method. The solubility of fine hydrated dihydrate gypsum (seed crystals) obtained by hydrating calcined gypsum (at 19°C after approximately 1 hour from the start of hydration) exceeds 0.204%, or the hydrated dihydrate gypsum When adding hydrated dihydrate gypsum as a seed crystal, the half-width (integral width after correction) of the X-ray diffraction peak of the (002) plane of the (seed crystal) exceeds 2.5 × 10 -4 radians. When adding the seed crystals to the above-mentioned raw material dihydrate gypsum, the solubility of the seed crystals (fine hydrated dihydrate gypsum obtained by hydrating calcined gypsum) (approximately 1 After time, 19℃)
When is X percent and Z is the amount (percent) of the seed crystal added, in the (X, Z) coordinate,
It is a combination of the ranges shown by the shaded area in the figure, and when the half-width (integral width after correction) of the X-ray diffraction peak of the (002) plane of the seed crystal is set as Y radians, (Y , Z) coordinates, it is possible to produce the gypsum needle crystals according to the present invention by using as a starting material a mixture that satisfies the combinations shown in the shaded area in FIG. 2. . Now, the solubility of gypsum is considered to depend on the particle size and surface crystallinity of the gypsum. Therefore, it is possible to reduce the solubility of gypsum by washing the gypsum with water or leaving it to mature in a state in which it is dispersed in water. However, solubility is determined by a very small amount of very fine particles or lattice depressions on the crystal surface, so even if the solubility decreases significantly, It is inconceivable that there has been a drastic change to the (non-surface) state. On the other hand, the half width of the X-ray diffraction peak is a quantity that depends on the crystal grain size in the direction perpendicular to the crystal plane of interest and the average value of the lattice strain in the direction perpendicular to the crystal plane. Dihydrate gypsum obtained by hydrating calcined gypsum by the method described above generally becomes rod-shaped crystals extending in the C-axis direction. However, since the (002) plane of dihydrate gypsum is a plane perpendicular to the C axis, the half-value width of the X-ray diffraction peak of the (002) plane is determined by the size of the dihydrate gypsum in the elongation axis direction, and It depends on the average value of lattice strain.
Since the fine rod-shaped crystals of hydrated gypsum are considered to be single crystals, the size in the C-axis direction is several to several tens of microns, and their contribution to the half-value width is so small that it can be almost ignored. In other words, the X of the (002) plane of hydrated 2-gypsum
The half-width of the line diffraction peak is considered to be a parameter indicating the size of the average lattice strain in the C-axis direction, including the surface and inside of the dihydrate gypsum. According to the research of the present inventors, by aging hydrated dihydrate gypsum, which has a relatively high solubility, the solubility of hydrated dihydrate gypsum is greatly reduced.
Although the half-width of the X-ray diffraction peak of the (002) plane is slightly reduced compared to the half-width before ripening, it is much smaller than the rate of decrease in solubility. The above phenomenon is considered to be evidence that solubility depends on the grain size and surface condition of gypsum, and that the half-width of the X-ray diffraction peak is the position that represents the average crystalline state of the entire gypsum crystal. . The production of gypsum needle crystals takes place under a dynamic equilibrium of dissolution of dihydrate gypsum in water and crystallization as α-type hemihydrate gypsum. As the dissolution of dihydrate gypsum progresses, the interior of the dihydrate gypsum crystals To form a new surface layer, the solubility of the system is
It is thought that the properties of the newly formed surface layer, that is, the properties of the initial interior of the dihydrate gypsum crystal, in other words, are determined by the half width of the X-ray diffraction peak. This is considered to be the importance of measuring the half-width of the X-ray diffraction peak. However, reducing solubility is beneficial. In α-type hemihydrate gypsum crystallization, the solubility of dihydrate gypsum,
Since the difference in solubility of α-type hemihydrate gypsum is considered to be the degree of supersaturation, the lower the solubility of dihydrate gypsum, the lower the degree of supersaturation and the realization of gradual crystallization. Conceivable. Generally, crystals with few impurities, lattice defects, steps, etc. are achieved by keeping the degree of supersaturation low and at a slow crystallization rate. Alpha-type hemihydrate gypsum needles are substantially produced at 115° to 130°C. It is preferable to stir the slurry at a low speed within a range that prevents sedimentation of the solid content of the slurry. When the stirring speed is low, the diameter of the obtained gypsum needles can be made smaller. The produced α-type hemihydrate gypsum needle crystals are dehydrated and separated, dried, and then calcined at 400 to 700°C to obtain stable anhydrous gypsum needle crystals. When adding gypsum needle crystals to synthetic resin,
5 to 75% by weight is suitable. If it is less than 5%,
There is little advantage in adding gypsum needle crystals to create a composite, and it is often difficult to create a composite that exceeds 75%. Next, examples will be described. Example 1 Dihydrate gypsum, a by-product of flue gas desulfurization, was calcined at 180° C. for 16 hours to obtain calcined gypsum having a microcrystalline particle diameter of approximately 0.125 microns and a microcrystalline lattice strain of approximately 1.4×10 −3 . The calcined gypsum was hydrated. The solubility of calcium sulfate immediately before use, about 1 hour after the start of hydration, was 0.202%, and the half width of the X-ray diffraction peak of the (002) plane was about 1.45×10 −4 radian. The hydrated dihydrate gypsum slurry having a slurry concentration of about 5% by weight was placed in an externally heated autoclave and heated under pressure while stirring. The slurry temperature was raised to about 130°C and maintained for 5 minutes to complete the reaction. After cooling the internal temperature to about 90°C, the mixture was quickly dehydrated and separated to obtain a dehydrated cake of α-type hemihydrate gypsum needle crystals. Next, the dehydrated cake was placed in a hot air baking oven at about 700°C.
By drying and firing for about 30 minutes, type anhydrous gypsum needle crystals were obtained. Then microplex
Approximately 20 by 132MP (Yaskawa-Alpine classifier)
Average diameter approximately 0.79, excluding particles and aggregates larger than μ
μ type anhydrous gypsum needle crystals were obtained. The classified anhydrous gypsum needle crystals were calcined (pretreated) at 800°C for 60 minutes, and the amount of water adsorbed per unit surface area was measured. The crystals are shown in Table 1. The classified anhydrous gypsum needle crystals were added in an amount of 10% by weight to lead-containing polyvinyl chloride (PVC) (Kanevinyl S1001 manufactured by Kanebuchi Chemical Co., Ltd.) using a 40 mm single-screw vent extruder. A belt-like strand was extruded. Next, a test piece with a thickness of about 3 mm was prepared by preheating at 175°C for 5 minutes and pressing at a pressure of 50 kg/cm 2 for 5 minutes, and a test piece with a weight of 300 kg was prepared in a constant temperature room at a temperature of about 23°C.
g, and the Dupont impact strength (half height at failure, cm) using a 3/8-inch weight was measured. Table 1 shows the results.
Shown below. In addition, a tensile test piece was cut out from the belt strand and subjected to a tensile test in accordance with JIS K-6745. The results are shown in Table 1. On the other hand, 20% by weight of the classified anhydrous gypsum needle crystals were added to the lead-containing PVC and pelletized using a 40 mm vented extruder, and then a belt-shaped strand was extruded using the same extruder. A tensile test piece was cut out from the belt-like strand and subjected to a tensile test in accordance with JIS K-6745. The results are shown in Table 1. The above classified anhydrous gypsum needle crystals were added to 54 parts by weight of polypropylene resin (PP), 6 parts by weight of acrylic acid-modified PP, and a small amount of stabilizer.
40 parts by weight was added and pelletized using a 40 mm single-screw vent extruder.Then, the dried pellets were made into JIS K-6745 test pieces using an ordinary method using an injection molding machine, and subjected to a tensile test at a temperature of about 23°C. carried out. The results are shown in Table 1. Comparative Example 1 Different flue gas desulfurization byproduct dihydrate gypsum from Example 1 was used.
By calcining at 220° C. for 4 hours, calcined gypsum with microcrystalline particles having a diameter of about 0.15 μm and a lattice strain of about 1.8×10 −3 was obtained. The calcined gypsum was then hydrated. About 1 hour after the start of hydration, the solubility of calcium sulfate immediately before use was about 0.207%, and the half width of the X-ray diffraction peak of the (002) plane was about 3.9 x 10 -4 radians. Thereafter, in the same manner as in Example 1, classified anhydrous gypsum needle crystals having a thickness of about 0.65 μm were obtained. Next, the amount of water adsorbed per unit surface area was measured in exactly the same manner as in Example 1, and further,
Various physical properties of the composite with PVC and PP were measured. The results are shown in Table 1. Comparative Example 2 The microcrystalline particle size of airflow calcined calcined gypsum is approximately 0.06
μ, the lattice strain of the microcrystal was approximately 3.2×10 −3 . The solubility of the dihydrate gypsum obtained by hydrating this calcined gypsum was approximately 0.235% immediately before use, and the half width of the X-ray diffraction peak of the (002) plane was approximately 5.8×10 −4 radians. Hereinafter, by the same method as in Example 1, the thickness of approximately
Anhydrous acicular gypsum of type 0.59 μ after classification was obtained. The amount of water adsorbed per unit surface area and various physical properties of the composite with PVC and PP were measured in exactly the same manner as in Example 1. The results are shown in Table 1. Comparative Example 3 Flue gas desulfurization by-product dihydrate gypsum with a particle size of 10 to 60μ,
The solubility after about 10 minutes after being poured into water and stirring is approx.
The half width of the X-ray diffraction peak of the 0.200% (002) plane was approximately 1.1×10 −4 radian. Using a slurry in which about 1.5% by weight of the hydrated dihydrate gypsum used in Comparative Example 1 was added to the raw dihydrate gypsum, it was classified to a thickness of about 1.5 μm in the same manner as in Example 1. Anhydrous gypsum needle crystals were obtained. Then,
The amount of adsorption per unit surface area and various physical properties of the composite with PVC and PP were measured in exactly the same manner as in Example 1. The results are shown in Table 1. Example 2 About 5% by weight of the hydrated dihydrate gypsum used in Comparative Example 2 was added to the raw material dihydrate gypsum used in Comparative Example 3.
Added. Thereafter, in the same manner as in Example 1, classified anhydrous gypsum needle crystals having a thickness of about 0.83 μm were obtained. Next, by the same method as in Example 1, the amount of water adsorbed per unit surface area and
Various physical properties of the composite with PVC and PP were measured.
The results are shown in Table 1. Example 3 The hydrated dihydrate gypsum slurry used in Example 1 was dehydrated and separated, washed with water, and dispersed in water again. The solubility was approximately 0.199%, and the half width of the X-ray diffraction peak of the (002) plane was approximately 1.4×10 −4 radian. Thereafter, in the same manner as in Example 1, classified anhydrous gypsum needle crystals having a thickness of approximately 0.77 μm were obtained. Next, the amount of water adsorbed per unit surface area and various physical properties of the composite with PVC and PP were measured in exactly the same manner as in Example 1. The results are shown in Table 1. Example 4 The fine hydrated dihydrate gypsum used in Example 1 was added by weight to 15% of the raw material dihydrate gypsum used in Comparative Example 3.
% added. Thereafter, in the same manner as in Example 1, classified anhydrous gypsum needle crystals having a size of about 0.93 μm were obtained. Next, the amount of water adsorbed per unit surface area and PVC were determined in the same manner as in Example 1.
In addition, various physical properties of the composite with PP were measured. The results are shown in Table 1. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、それぞれ水和2水石こう
の、(溶解度)−(添加量)及び(半価巾)−(添加
量)の組み合せ範囲を示すグラフ、第3図は、石
こう針状結晶の、単位表面積当りの水の吸着量
と、該石こう針状結晶をPPと複合化した場合の
ΔTSとの関係を示すグラフ、第4図及び第5図
は、それぞれ、実施例及び比較例における水和2
水石こうの(溶解度)−(添加量)及び(半価巾)
−(添加量)の組み合せを示すグラフである。 A……実施例1、B……比較例1、C……比較
例2、D……比較例3、E……実施例2、F……
実施例3、G……実施例4。
Figures 1 and 2 are graphs showing the combination ranges of (solubility) - (addition amount) and (half-value width) - (addition amount) of hydrated dihydrate gypsum, respectively, and Figure 3 is a graph showing the combination range of hydrated dihydrate gypsum. Graphs 4 and 5 showing the relationship between the adsorption amount of water per unit surface area of gypsum needle crystals and ΔTS when the gypsum needle crystals are composited with PP, respectively, are examples and comparisons. Hydration in example 2
Water gypsum (solubility) - (addition amount) and (half value width)
It is a graph showing combinations of - (addition amount). A...Example 1, B...Comparative example 1, C...Comparative example 2, D...Comparative example 3, E...Example 2, F...
Example 3, G...Example 4.

Claims (1)

【特許請求の範囲】 1 平均径約1.2μ以下であり、且つ単位表面積
当りの水の吸着量が約0.8mg/m2以下である石こう
針状結晶を熱可塑性合成樹脂に混入してなる複合
化組成物。 2 石こう中に約20μ以上の粒状物あるいは凝集
物を実質的に含まないものである特許請求の範囲
第1項記載の複合化組成物。 3 熱可塑性合成樹脂中に混入される石こう針状
結晶の量が熱可塑性合成樹脂に対して5〜75重量
%である特許請求の範囲第1項または第2項記載
の複合化組成物。 4 熱可塑性合成樹脂がポリ塩化ビニル系樹脂で
ある特許請求の範囲第1項または第2項記載の複
合化組成物。 5 熱可塑性合成樹脂がポリオレフイン系樹脂で
ある特許請求の範囲第1項または第2項記載の複
合化組成物。
[Scope of Claims] 1. A composite obtained by mixing gypsum needle crystals with an average diameter of about 1.2 μ or less and an adsorption amount of water per unit surface area of about 0.8 mg/m 2 or less into a thermoplastic synthetic resin. composition. 2. The composite composition according to claim 1, which does not substantially contain particles or aggregates of about 20 microns or more in plaster. 3. The composite composition according to claim 1 or 2, wherein the amount of gypsum needle crystals mixed into the thermoplastic synthetic resin is 5 to 75% by weight based on the thermoplastic synthetic resin. 4. The composite composition according to claim 1 or 2, wherein the thermoplastic synthetic resin is a polyvinyl chloride resin. 5. The composite composition according to claim 1 or 2, wherein the thermoplastic synthetic resin is a polyolefin resin.
JP9708485A 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin Granted JPS60243156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9708485A JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9708485A JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6183878A Division JPS54153846A (en) 1978-05-23 1978-05-23 Modified acicular crystals of gypsum suitable for compounding with synthetic resin, its preparation, and composite composition containing said gypsum and synthetic resin

Publications (2)

Publication Number Publication Date
JPS60243156A JPS60243156A (en) 1985-12-03
JPS6128701B2 true JPS6128701B2 (en) 1986-07-02

Family

ID=14182771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9708485A Granted JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Country Status (1)

Country Link
JP (1) JPS60243156A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164746A (en) * 1986-01-16 1987-07-21 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition
JPS62177049A (en) * 1986-01-31 1987-08-03 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition for vinyl tile
JPS62184045A (en) * 1986-02-07 1987-08-12 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin molding

Also Published As

Publication number Publication date
JPS60243156A (en) 1985-12-03

Similar Documents

Publication Publication Date Title
KR890002547B1 (en) Process for production of fibrous magnesium oxide
GB2090583A (en) Fibrous calcium sulphate
JP2887023B2 (en) Fine plate-like boehmite particles and method for producing the same
DE4339172A1 (en) Producing cordierite-contg. body - with low thermal expansion coefficient
Tomaszewska et al. Advanced organic-inorganic hybrid fillers as functional additives for poly (vinyl chloride)
CN105837932A (en) Preparation method for crystal polypropylene resin composition
US4560413A (en) Gamma-dicalcium silicate-containing cement composition
JPS6128701B2 (en)
KR101150075B1 (en) Manufacturing Method of Nano and Micro Size Potassium Titanate Whisker Using Dry Diffusion Breaking and Continual Growth Crystallization Method
JPS6118574B2 (en)
JPH01308824A (en) Production of filler and flameproof agent based on aluminum hydroxide and reinforcing agent for plastic
CN112679927A (en) Modified PGA material with higher shelf life and preparation method thereof
CN109265825B (en) Polypropylene or polypropylene compound foamed product and preparation method thereof
US4997871A (en) Fibrous magnesium oxysulfate granular form and thermoplastic resin composition containing the magnesium oxysulfate
DE102009011790B4 (en) Process for the production of cordierite ceramics
Thomas et al. Nano alumina as reinforcement in natural rubber composites
EP1375449B1 (en) Method for manufacturing honeycomb structure
JPS6144106B2 (en)
US3421914A (en) Process for making porous light-weight zirconia bodies
JP3455554B2 (en) Mullite whisker manufacturing method
EP2332884B1 (en) Reaction products made of aluminium silicate, production and use
KR102544739B1 (en) Plastic Composition Comprising Using Calcium Carbonate From the Shell
CN113462074B (en) Low-density low-emission low-odor filling functional material and preparation thereof
Rao et al. Estimation of mechanical properties of carbon fiber/epoxy hybrid composites with various fiber length and orientation
JP3219858B2 (en) Potassium titanate whisker and composite material containing the same