JPS60243156A - Compounded composition of modified acicular crystal of gypsum and synthetic resin - Google Patents

Compounded composition of modified acicular crystal of gypsum and synthetic resin

Info

Publication number
JPS60243156A
JPS60243156A JP9708485A JP9708485A JPS60243156A JP S60243156 A JPS60243156 A JP S60243156A JP 9708485 A JP9708485 A JP 9708485A JP 9708485 A JP9708485 A JP 9708485A JP S60243156 A JPS60243156 A JP S60243156A
Authority
JP
Japan
Prior art keywords
gypsum
needle crystals
crystal
water
crystals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9708485A
Other languages
Japanese (ja)
Other versions
JPS6128701B2 (en
Inventor
Itaru Hatano
至 波多野
Masaharu Abe
雅治 阿部
Yasuo Fushiki
八洲男 伏木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP9708485A priority Critical patent/JPS60243156A/en
Publication of JPS60243156A publication Critical patent/JPS60243156A/en
Publication of JPS6128701B2 publication Critical patent/JPS6128701B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain the titled compounded composition having excellent and balanced tensile strength, impact strength, rigidity, dimensional stability, etc., by mixing a synthetic resin with acicular crystal of gypsum wherein the average diameter and the absorption of water per unit surface area of the crystal are lower than specific respective values. CONSTITUTION:Gypsum dihydrate having specific characteristics is used as a raw material, and is added with preferably fine powder of hydrated gypsum dihydrate. The mixture is dispersed in water at a concentration of 0.3-30wt%, and the resultant aqueous slurry is heated under pressure in an autoclave with agitation to obtain acicular crystal of alpha-type gypsum hemihydrate. The crystal is dehydrated, separated, dried and calcined at 400-700 deg.C, and the obtained acicular crystal of II-type gypsum anhydride having an average particle diameter of <=1.2mum and a water-absorption per unit surface area of about <=0.3mg/m<2>, preferably <=0.265mg/m<2> and free from granules or agglomerates having a diameter of about >=20mum, is added to a synthetic resin, especially to polyvinyl chloride resin or polyolefin resin in an amount of 5-75wt%.

Description

【発明の詳細な説明】 本発明は、合成樹脂との複合化に適した石こう針状結晶
(α型半水石こう針状結晶、l型無水石こう針状結晶及
び■型態水石こう針状結晶の総称)と合成樹脂との複合
化組成物に関するものである。
Detailed Description of the Invention The present invention provides gypsum needle crystals (α-type hemihydrate gypsum needle crystals, l-type anhydrite gypsum needle crystals, and ■-type aqueous gypsum needle crystals) suitable for compounding with synthetic resins. (general term for) and a synthetic resin.

石こう針状結晶及びその工業的有用性については、特開
昭49−80626により公知である。
Gypsum needles and their industrial utility are known from Japanese Patent Application Laid-Open No. 49-80626.

石こう針状結晶は、たとえば抄紙用フィラー、断熱材料
或いは有機高分子等の補強用材料として期待されている
。石こう針状結晶に期待する特性はそれぞれの用途によ
って異なるのはもちろんであるが、有機高分子特に熱可
塑性樹脂と複合化した場合の弾性率、強度等の機械的物
性が重要である。
Gypsum needle crystals are expected to be used, for example, as a filler for paper making, a heat insulating material, or a reinforcing material for organic polymers. Of course, the properties expected of gypsum needle crystals vary depending on the application, but the mechanical properties such as elastic modulus and strength when composited with organic polymers, especially thermoplastic resins, are important.

これら機械的性質を規定する1つのファクターに複合体
中の石こう針状結晶のアスペクト比(タテ・ヨコ比)が
あり、一般に、短繊維補強理論で示される如く、アスペ
クト比が大きい程弾性率及び引張強度等は向上する。従
って、熱可塑性樹脂を補強するに好ましい石こう針状結
晶とは複合体中でアスペクト比が大きい石こう針状結晶
である。言い換えると、熱可塑性樹脂と石こう針状結晶
とを混練複合化する過程で破損し難い、強い石こう針状
結晶が期待されている。しかるに、石こう針状結晶の補
強性は不十分である。特に、ポリ塩化ビニル系樹脂に、
石こう針状結晶を混線分散せしめた場合、複合体中の石
こう針状結晶のアスペクト比が小さくなるために弾性率
及び寸法安定性(熱膨張係数)は向上するものの機械的
強度の補強性は小さい。特に引張強度の場合、補強性は
無く、ベース強度(石こう針状結晶を添加しないポリ塩
化ビニル系樹脂のみの強度)より低下する。
One of the factors that determines these mechanical properties is the aspect ratio (vertical/width ratio) of the gypsum needles in the composite. Generally, as shown in the short fiber reinforcement theory, the larger the aspect ratio, the higher the elastic modulus. Tensile strength etc. are improved. Therefore, preferred gypsum needles for reinforcing the thermoplastic resin are those having a large aspect ratio in the composite. In other words, strong gypsum needle crystals that are difficult to break during the process of kneading and compounding thermoplastic resin and gypsum needle crystals are expected. However, the reinforcing properties of gypsum needle crystals are insufficient. Especially for polyvinyl chloride resin,
When gypsum needle crystals are cross-dispersed, the aspect ratio of the gypsum needle crystals in the composite becomes smaller, so although the elastic modulus and dimensional stability (coefficient of thermal expansion) improve, mechanical strength reinforcement is small. . In particular, in the case of tensile strength, there is no reinforcing property and it is lower than the base strength (strength of only polyvinyl chloride resin without gypsum needle crystals added).

他方、ポリ塩化ビニル系樹脂複合体の重要な物性の1つ
に衝撃強度がある。衝撃強度の場合も、前記の石こう針
状結晶を混線分散させた場合、ベース強度より大巾に低
下する。
On the other hand, one of the important physical properties of polyvinyl chloride resin composites is impact strength. In the case of impact strength as well, when the above-mentioned gypsum needle crystals are cross-dispersed, the strength is significantly lower than the base strength.

更に、引張強度の改善(ベース強度に近づけること)と
衝撃強度の改善とは、前記面こう針状結晶においては両
立させることが不可能であった。
Furthermore, it has been impossible to simultaneously improve the tensile strength (approaching the base strength) and the impact strength in the face acicular crystals.

以上′の点に鑑み、本発明者等は鋭意研究を進めた結果
、ポリ塩化ビニル樹脂と複合化した時、ポリ塩化ビニル
樹脂に匹敵する引張強度と衝撃強度とを有する新規石こ
う針状結晶の創出に成功した。
In view of the above points, the present inventors have carried out intensive research and have found that a new gypsum needle crystal has a tensile strength and impact strength comparable to that of polyvinyl chloride resin when composited with polyvinyl chloride resin. successfully created.

即ち、ボIJm化ビニル樹脂と複合化した成形体の剛性
及び寸法安定性等を、従来の石こう針状結晶を複合化し
た場合と同等以上に向上せしめる一方、成形体の引張強
度並びに衝撃強度をポリ塩化ビニル樹脂に匹敵する強度
に改善せしめる石こう針状結晶とは、以下に示す性状を
有する新規な石こう針状結晶である。それは、平均径約
1.2μ以下であシ、且つ単位表面積当りの水の吸着量
が約0.3グ/77/以下、よシ好ましくは0.265
■/d以下であることを特徴とする石ζう針状結晶であ
る。
In other words, the rigidity, dimensional stability, etc. of the molded body composited with the IJm vinyl resin are improved to the same level or higher than those of the conventional composite of gypsum needle crystals, while the tensile strength and impact strength of the molded body are improved. The gypsum needle crystal that can improve the strength to be comparable to that of polyvinyl chloride resin is a new gypsum needle crystal that has the properties shown below. It has an average diameter of about 1.2 μm or less, and an adsorption amount of water per unit surface area of about 0.3 g/77/m or less, preferably 0.265 g/77/m
■It is a needle-like crystal characterized by a crystalline diameter of less than /d.

石こう針状結晶の平均径はマクロな量としてめなければ
ならないので沈降開始時間からめる。
The average diameter of gypsum needle crystals must be determined as a macroscopic quantity, so it can be determined from the time at which sedimentation begins.

ここに、沈降開始時間とは、以下に述べる方法によって
定義される値である。分級された■型態水石こう針状結
晶2gを1.00m1の蒸溜水に投入し、5分間撹拌す
ることにょシ水中に良く分散させる。
Here, the sedimentation start time is a value defined by the method described below. 2 g of classified type 1 water gypsum needle crystals were added to 1.00 ml of distilled water and stirred for 5 minutes to disperse well in the water.

次いで、深さ約161の200mメスシリンダーに上記
面こう針状結晶の分散したスラリーを投入、静置する。
Next, the slurry in which the face acicular crystals are dispersed is poured into a 200 m graduated cylinder having a depth of about 161 m and left to stand still.

やがて、石こう針状結晶の沈降が生じる。石こう剣状結
晶の沈降容積は、時間と共に減少するが、沈降容積が約
90−以上の場合は時間的減少率は小さく、沈降容積が
約90m1.を切ると沈降容積の時間的減少率は大きい
。以上の現象を基礎に、沈降容積が90−まで減少する
に要する静置時間を沈降開始時間と定義する。なお、上
記゛沈降容積とは、石こう針状結晶の分散したスラリー
部分の容積、即ち、ある任意の静置時間において、10
0−から上澄液を差し引いた容積を意味し、一般に用い
られるところの長時間静置後の固形分沈降の容積ではな
い。
Eventually, precipitation of gypsum needles occurs. The sedimentation volume of gypsum sword crystals decreases with time, but when the sedimentation volume is about 90 m1 or more, the rate of decrease over time is small, and the sedimentation volume is about 90 m1. When , the rate of decrease in sedimentation volume over time is large. Based on the above phenomenon, the standing time required for the sedimentation volume to decrease to 90- is defined as the sedimentation start time. In addition, the above-mentioned "sedimentation volume" refers to the volume of the slurry portion in which gypsum needle crystals are dispersed, that is, the volume of 10
It means the volume obtained by subtracting the supernatant liquid from 0-, and is not the volume of solid content sedimentation after standing still for a long time, which is generally used.

さて、上記した如く定義された沈降開始時間は、石こう
針状結晶の形状に依存するマクロな値である。本発明者
等の研究によれば、該沈降開始時間は石こう針状結晶の
径にのみ依存し、長さが20μ以上の場合はその長さに
は依存しない。石こう針状結晶の径が細くなれば、沈降
開始時間は長くなる。石こう針状結晶の径と沈降開始時
間との対応は、電子顕微鏡写真によりめることができる
Now, the sedimentation start time defined as described above is a macroscopic value that depends on the shape of the gypsum needle crystals. According to the research conducted by the present inventors, the settling start time depends only on the diameter of the gypsum needle crystals, and does not depend on the length when the length is 20 μm or more. The smaller the diameter of the gypsum needles, the longer the settling start time. The correspondence between the diameter of gypsum needle crystals and the settling start time can be determined from electron micrographs.

−視野数百本の石こう針状結晶が分散した電子顕微鏡写
真数枚について容量平均の径をめた。沈降開始時間約5
.8分は、電子顕微鏡写真よりめた平均径約1.2μに
相当する。
- The average diameter of the volume was determined for several electron micrographs in which hundreds of gypsum needle crystals were dispersed. Sedimentation start time approx. 5
.. 8 minutes corresponds to an average diameter of about 1.2μ determined from electron micrographs.

以上の方法で測定された平均径が1.2μ以下である石
こう針状結晶が、本発明に係わる細径石こう針状結晶で
ある。
Gypsum needle crystals having an average diameter of 1.2 μm or less as measured by the above method are the small diameter gypsum needle crystals according to the present invention.

単位表面積光シの水の吸着量は、次に示す方法で測定す
る。まず、試料を800°Cで60分間焼成する。該焼
成を前処理と呼ぶ。前処理された■型態水石こう針状結
晶の比表面積を、窒素を用いた通常のBET法で測定す
る。その値をA (m/II)とする。次に、水の吸着
量をめる、20℃において系の蒸気圧を変化させた時の
水の吸着量、即ち、吸着等混線をめ、相対湿度60%に
相当する蒸気圧下における水の吸着量をめる。その値を
B (f/f)とすれば、単位表面積当りの水の吸着量
は、B/A (f/Wf)である。該前処理条件は重要
である。
The amount of water adsorbed per unit surface area is measured by the following method. First, the sample is fired at 800°C for 60 minutes. This firing is called pretreatment. The specific surface area of the pretreated (1) type water gypsum needle crystals is measured by the usual BET method using nitrogen. Let that value be A (m/II). Next, calculate the amount of water adsorption, which is the amount of water adsorption when changing the vapor pressure of the system at 20°C. Measure the amount. If this value is B (f/f), the amount of water adsorbed per unit surface area is B/A (f/Wf). The pretreatment conditions are important.

一般に、α型中水石こう針状結晶あるいは■型態水石こ
う針状結晶を焼成する場合、高温で長時間焼成すればす
る程BET比表面積及び水の吸着量共に減少する傾向が
ある。しかし、本発明者等の研究によれば、むやみに高
温で長時間焼成すると、石こう針状結晶の表面が、あた
かも溶融したときのような状態となって、石こう針状結
晶の表面状態が大巾に変化するために、石こう針状結晶
の表面積等を測定する前処理としては不適当である。し
かし、800°Cで60分間焼成することによって、石
こう針状結晶の表面が溶融した形跡は認められない。
Generally, when α-type aquatic gypsum needle crystals or ■-type aquatic gypsum needle crystals are fired, the BET specific surface area and the adsorption amount of water tend to decrease as the firing is performed at a high temperature for a long time. However, according to the research of the present inventors, if the gypsum needle crystals are fired at an unnecessarily high temperature for a long time, the surface of the gypsum needle crystals becomes as if they were melted, and the surface condition of the gypsum needle crystals changes significantly. Because the width changes, it is unsuitable as a pretreatment for measuring the surface area of gypsum needle crystals. However, after firing at 800°C for 60 minutes, no evidence of melting of the surface of the gypsum needle crystals was observed.

一方、工業的に■型態水石こう針状結晶を製造する場合
、捷ずα型中水石こう針状結晶又は■型態水石こう針状
結晶を製造し、次いで、それら石こう針状結晶を焼成す
ることによって■型態水石こう針状結晶を得る。したる
に、該焼成温度は、通常400〜700°Cを採用する
。その理由は、第1に焼成温度が400°Cよシ低い場
合は、a型中水石こう針状結晶又は■型態水石こう針状
結晶が未転化のまま残る可能性が強いために好ましくな
い。第2に、該焼成温度が高くなればなる程エネルギー
コストが高くなる。α型中水石こう針状結晶又は■型態
水石こう針状結晶が■型態水石こう針状結晶に転化する
温度は600〜700°Cで十分である。従って、工業
的に採用される該焼成温度は通常約700°C以下であ
って、800°Cを越えることは少ない。以上の理由に
よって、前処理条件として800°C−60分間が採用
された。
On the other hand, when industrially producing ■-type hydrogypsum needle crystals, α-type medium hydrogypsum needle crystals or ■-type hydrogypsum needle crystals are produced without cutting, and then these gypsum needle crystals are fired. By doing so, ■ type water gypsum needle crystals are obtained. Therefore, the firing temperature is usually 400 to 700°C. The reason is that, firstly, if the firing temperature is lower than 400°C, there is a strong possibility that A-type aqueous gypsum needle crystals or ■-type aqueous gypsum needle crystals will remain unconverted, which is undesirable. . Second, the higher the firing temperature, the higher the energy cost. A temperature of 600 to 700[deg.] C. at which α-type aqueous gypsum needle crystals or ■-type aqueous gypsum needle crystals are converted into -type aqueous gypsum needle crystals is sufficient. Therefore, the firing temperature employed industrially is usually about 700°C or less, and rarely exceeds 800°C. For the above reasons, 800°C for 60 minutes was adopted as the pretreatment condition.

重要なことは、石こう針状結晶がα型中水石こう針状結
晶であれ、■型態水石こう針状結晶であれ、あるいは■
型態水石こう針状結晶(但し800°C未満の温度で焼
成した場合)であれ、該石こう針状結晶の、ポリ塩化ビ
ニル系樹脂に対する補強性が、該石こう針状結晶を前処
理した後の、単位表面積当りの水の吸着量でもって規定
されるという事実である。即ち、単位表面積当りの水の
吸着量が0.3■/〃〆、好ましくは0.26 ’5キ
/ nt以下のときに本発明の効果が発揮される。
What is important is whether the gypsum needles are α-type mesohydrite gypsum needles, ■ type aquatic gypsum needles, or ■
Even if the gypsum needle crystals are in the form of water gypsum needle crystals (however, when fired at a temperature below 800°C), the reinforcing properties of the gypsum needle crystals for the polyvinyl chloride resin will change after the gypsum needle crystals are pretreated. is defined by the amount of water adsorbed per unit surface area. That is, the effect of the present invention is exhibited when the amount of water adsorbed per unit surface area is 0.3 cm/nt or less, preferably 0.26'5 k/nt or less.

一般に、サファイアホイスカーやガラス繊維等の無機繊
維の単位断面積当りの破断(引張)強度は径依存性を有
しておシ、直径つまり、断面積が小さくなればなる程、
単位制面積当シの破断強度は大きくなる。本発明者等の
研究によれば、石こう針状結晶の場合も、上記傾向が大
筋として認められた。即ち、熱可塑性樹脂と石こう針状
結晶とを混練複合化する過程において、石こう針状結晶
の径が小さければ小さい程、該石こう針状結晶の破損が
少なく、結果的に複合体中の石こう針状結晶のアスペク
ト比が、より大きくなって、石こう針状結晶の樹脂補強
性が増大する。特に、石こう針状結晶の径が約2〜1μ
以下になると石こう針状結晶の破損の程度が著しく低下
する。一方、石こう針状結晶の径がほぼ同一であっても
該石こう針状結晶を熱可塑性樹脂と混練複合化する過程
において、該石こう針状結晶の破損の程度は必らずしも
同一ではない。つまり、複合体中の該石こう針状結晶の
アスペクト比、ひいては複合体の機械的強度が異なるこ
とを見出した。
Generally, the breaking (tensile) strength per unit cross-sectional area of inorganic fibers such as sapphire whiskers and glass fibers is diameter-dependent; the smaller the diameter, that is, the cross-sectional area, the more
The breaking strength per unit area increases. According to the research conducted by the present inventors, the above-mentioned tendency was generally recognized also in the case of gypsum needle crystals. That is, in the process of kneading and compounding thermoplastic resin and gypsum needle crystals, the smaller the diameter of the gypsum needle crystals, the less breakage of the gypsum needle crystals, and as a result, the gypsum needles in the composite are The aspect ratio of the gypsum needle crystals becomes larger, and the resin reinforcing properties of the gypsum needle crystals increase. In particular, the diameter of gypsum needle crystals is about 2 to 1 μm.
Below this, the degree of damage to the gypsum needle crystals is significantly reduced. On the other hand, even if the diameters of the gypsum needles are approximately the same, the degree of breakage of the gypsum needles during the process of kneading and compounding the gypsum needles with a thermoplastic resin is not necessarily the same. . In other words, it has been found that the aspect ratio of the gypsum needle crystals in the composite and, as a result, the mechanical strength of the composite differ.

ポリ塩化ビニル系樹脂についても、上記一般的傾向が成
立する。即ち、弾性率等は石こう針状結晶を混線分数せ
しめることによシ大巾に向上補強される。ポリ塩化ビニ
ル系樹脂との複合では、通常引張強度はペース強度より
補強されることはないが、しかし平均径が2〜1μ以下
であれば強度の低下が減少する。一方、公知の石こう針
状結晶の場合、平均径が約1.2μ以下であっても衝撃
強度の低下が大きい。しかるに、本発明に係る石こう針
状結晶を採用すると、弾性率等を、従来の石こう針状結
晶の場合に増して向上補強するのみならず衝撃強度につ
いては、ベース強度と同等の強度を附与することが実現
される。即ち、衝撃強度の改善において本発明は特徴的
である。
The above general tendency also holds true for polyvinyl chloride resins. That is, the modulus of elasticity and the like can be greatly improved and reinforced by making the gypsum needle crystals a cross-wire fraction. In a composite with a polyvinyl chloride resin, the tensile strength is usually not reinforced more than the paste strength, but if the average diameter is 2 to 1 μm or less, the decrease in strength is reduced. On the other hand, in the case of known gypsum needle crystals, the impact strength is significantly reduced even if the average diameter is about 1.2 μm or less. However, when the gypsum acicular crystals according to the present invention are adopted, not only the elastic modulus etc. are improved and reinforced more than the conventional gypsum acicular crystals, but also the impact strength is equivalent to the base strength. will be realized. That is, the present invention is unique in improving impact strength.

従来、塩ビ系複合材料の衝撃強度を大きく左右する因子
の1つに、フィラーの分散性が考えられてきた。フィシ
−の分散を良くすればする程衝撃強度の改善が著しい。
Conventionally, filler dispersibility has been considered to be one of the factors that greatly influences the impact strength of PVC-based composite materials. The better the dispersion of the fibers, the more remarkable the improvement in impact strength.

しかし、従来の石こう針状結晶を塩化ビニル系樹脂に良
分散させるためには、大きな粒状物や凝集物を取り除く
のはもちろん、加工方法として、例えばロール混練のよ
うなセン断力の大きい加工法を採用しない限シ石こう針
状結晶の良好な分散は実現が困難であった。しかし、ロ
ール混練する場合、石こう針状結晶の破損が著しく、加
工成形体中の石こうω1状結晶のアスペクト比が小さく
なってしまうために、該成形体の機械的強度の補強性は
小さくなる。特に引張強度の低下が著しくなる。ここに
、引張強度と衝撃強度のバランスの困難さがある。しか
るに、本発明に係る石こう針状結晶の分散は、従来の石
こう剣状結晶に比して良好であるので、ロール混線より
もゆるやかな加工条件、例えば車軸ベント押出機による
パウダー押出によって、良好な分散を達成することが可
能である。従って、本発明によれば、従来の場合に比べ
成形体の機械的強度、特に衝撃強度の改善が著しい。つ
まり、本発明に係る石こう針状結晶を採用すれば、ポリ
塩化ビニル系樹脂の一般的加工法であるところのパウダ
ー押出によって、引張強度並びに衝撃強度が共にベース
強度なみにバランスされた複合体を得ることが「可能で
ある。剛性が大巾に向上するのは勿論である。
However, in order to properly disperse conventional gypsum needle crystals in vinyl chloride resin, it is necessary to remove large particles and aggregates, and also to use processing methods that require large shearing force, such as roll kneading. Good dispersion of gypsum needle crystals was difficult to achieve unless the method was adopted. However, in the case of roll kneading, the gypsum acicular crystals are significantly damaged and the aspect ratio of the gypsum ω1-like crystals in the processed molded product becomes small, so that the reinforcement of the mechanical strength of the molded product becomes low. In particular, the decrease in tensile strength becomes significant. Here, there is a difficulty in balancing tensile strength and impact strength. However, since the dispersion of the gypsum needles according to the present invention is better than that of the conventional gypsum swords, the dispersion of the gypsum needles according to the present invention is better than that of the conventional gypsum swords. It is possible to achieve dispersion. Therefore, according to the present invention, the mechanical strength, particularly the impact strength, of the molded article is significantly improved compared to the conventional case. In other words, if the gypsum needle crystals according to the present invention are used, a composite material with both tensile strength and impact strength balanced to the base strength can be produced by powder extrusion, which is a common processing method for polyvinyl chloride resin. It is possible to obtain this. Of course, the rigidity will be greatly improved.

更に、本発明に係る石こう針状結晶をポリ塩化ビニル樹
脂以外の有機高分子、たとえば熱可塑性樹脂であるポリ
オレフィン系樹脂に複合化した場合、剛性率や引張強度
等の機械的強度が従来の石こう針状結晶の場合に較べて
著しく補強されることが判った。たとえば、代表的なポ
リオレフィン系樹脂であるポリプロピレン樹脂と本発明
の石こう針状結晶とを複合化した場合、引張強度は従来
の石こう針状結晶を複合化した場合に比べ、著しく補強
される。石こう針状結晶の破断強兵ひいては有機高分子
との複合体の補強性は、載面こう針状結晶の径に依存す
ること、更にほぼ同一の径であっても該複合体中のアス
ペクト比が異なり、補強性が異なることは既に説明した
。本発明に係わる石こう針状結晶は、径がほぼ同一であ
っても、従来の石こう針状結晶の場合に比して該複合体
の引張強度が著しく高い。即ち、ポリオレフィン系樹脂
の機械的強度の飛躍的向上において、本発明は特徴的で
ある。
Furthermore, when the gypsum needle crystals according to the present invention are composited with an organic polymer other than polyvinyl chloride resin, such as a polyolefin resin that is a thermoplastic resin, the mechanical strength such as rigidity and tensile strength is lower than that of conventional gypsum. It was found that the reinforcement was significantly greater than in the case of needle-shaped crystals. For example, when a polypropylene resin, which is a typical polyolefin resin, is composited with the gypsum needle crystals of the present invention, the tensile strength is significantly enhanced compared to when a conventional gypsum needle crystal is composited. The strength of rupture of gypsum acicular crystals and the reinforcing properties of the composite with organic polymers depend on the diameter of the acicular crystals on the surface, and even if the diameters are almost the same, the aspect ratio in the composite is It has already been explained that the reinforcing properties are different. The gypsum acicular crystals according to the present invention have significantly higher tensile strength of the composite than conventional gypsum acicular crystals even though the diameters are approximately the same. That is, the present invention is distinctive in dramatically improving the mechanical strength of polyolefin resins.

単繊維補強理論によれば、繊維強化された複合体の引張
強度′1゛sは第1式で示される。
According to the monofilament reinforcement theory, the tensile strength '1's of a fiber-reinforced composite is expressed by the first equation.

T’ S = l / d −x ・τ・V1+am 
(1−Vf) −−第1式 l・・・複合体中の繊維長。(Lj L l < 1゜
(臨界繊維長) d・・・繊維の径 χ・・・#l!維の配向に関する定数 τ・・・繊維とマトリックスとの界面セン断強度 Vl・・・繊維の容積分率 σm・・・マトリックスの強度 繊維が石こう針状結晶の場合、81式における1/d即
ちアスペクト比は、複合化過程で破損した後の平均の値
である。従って、複合体中のアスペクト比は、石こう針
状結晶自身の強靭さに依存すると考えられる。即ち、 jt / d ocσ。・・・・・・第2式ここに、σ
Gは石こう針状結晶自身の強度、たとえば、破断強度を
想定することができる。一方、ホイスカーやガラス繊維
の破断強度は、径依存性を有しており、径が細くなれば
なる程その破断強度は著しく増して、理論強度に近づく
ことが確認されている。該破断強度と径の関係は、たと
えば、指数関数で近似することができる。今、ホイスカ
ー状結晶であるところの石こう針状結晶についても、そ
の破断強度が」二記径依存性を有していると仮定すると
、形式的に σo oc l ’・・・・・・第3式と書くことがで
きる。従って、以上の第1〜第3式から TS’m(1,Vf ) =x−r−Vf−1/dcx
 l ’−・−。
T' S = l / d −x ・τ・V1+am
(1-Vf) --First formula l...Fiber length in the composite. (Lj L l < 1° (critical fiber length) d...Fiber diameter χ...#l! Constant related to fiber orientation τ...Interfacial shear strength between fiber and matrix Vl...Fiber Volume fraction σm... When the strength fibers of the matrix are gypsum needle crystals, 1/d in Equation 81, that is, the aspect ratio, is the average value after breakage in the composite process. The aspect ratio is considered to depend on the toughness of the gypsum needle crystal itself, i.e., jt / docσ.The second equation, where, σ
G can be assumed to be the strength of the gypsum needle crystal itself, for example, the breaking strength. On the other hand, it has been confirmed that the breaking strength of whiskers and glass fibers is diameter dependent, and as the diameter becomes smaller, the breaking strength increases significantly and approaches the theoretical strength. The relationship between the breaking strength and the diameter can be approximated by, for example, an exponential function. Now, assuming that the fracture strength of the gypsum needle crystal, which is a whisker-like crystal, has a diradial dependence, formally, σo oc l'...3 It can be written as expression. Therefore, from the first to third equations above, TS'm(1, Vf) =x-r-Vf-1/dcx
l'-・-.

第4式 %式% ・・・第5式 が近似的に成立すると考えられる。定数a及びbは、例
えば後述するステップ等の応力集中点の非常に少ないと
考えられる石こう剣状結晶についての実測値を代入する
ことによって決定される。引張強度の単位をに9 / 
ctl、径の単位をミクロンにとレバ、a; 0.60
 、 b; 6.41 f6ル。
4th formula % Formula % ... It is thought that the 5th formula holds approximately. The constants a and b are determined by substituting actual measured values for a gypsum sword crystal that is considered to have very few stress concentration points, such as the steps described below. The unit of tensile strength is 9 /
ctl, unit of diameter in micron, lever, a; 0.60
, b; 6.41 f6 le.

本発明者等の研究によれば、従来の石こう針状結晶は、
第5式からの偏差、即ち、ある径において、第5式から
めたTSと実測T8との差が大きい。特に、径が約1.
2μ以下の場合偏差は非常に大きくなる。これに対して
、このような石こう針状結晶を採用すれば、径が約1.
2μ以下であっても、第5式からの偏差は小さい。そこ
で、第5式において、任意の径dに対するTSを、理想
的な石こう針状結晶を採用した場合の複合体の引張強度
T8’(d) であると定義し、次に、任意の径の石こ
う針状結晶複合体の実測値T S ((1)をめ、TS
o(d)からの低下の大きさをめ、それをΔTS((1
)=T S’ (a)−TS(d)と定義する。
According to the research of the present inventors, conventional gypsum needle crystals are
The deviation from the fifth equation, that is, at a certain diameter, the difference between TS calculated from the fifth equation and the actual measurement T8 is large. In particular, the diameter is about 1.
If it is less than 2μ, the deviation becomes very large. On the other hand, if such gypsum needle crystals are used, the diameter will be about 1.
Even if it is 2μ or less, the deviation from the fifth equation is small. Therefore, in the fifth equation, TS for an arbitrary diameter d is defined as the tensile strength T8'(d) of the composite when ideal gypsum needle crystals are adopted, and then Actual measured value of gypsum needle crystal complex T S ((1), T S
Determine the magnitude of the drop from o(d) and calculate it as ΔTS((1
)=TS' (a)-TS(d).

石こう針状結晶複合体の引張強度は、次の如くしてめる
。分級後の■型態水石こう針状結晶40重量部を、ポリ
プロピレン樹脂粉末54重量部、アクリル酸変性ポリプ
ロピレン樹脂6重量部及び若干量の安定剤に対して添加
混合し、40朋単軸ベント押出(ダルメージスクリュー
)機によって、約240°Cにて押出ペレット化し、次
いで該乾燥ペレットを、金型温度60°C1射出圧約6
00 kg/cdでJISK−6745試験片を250
°Cで射出成形し、次いで、温度約23°Cにおいて引
張速度5朋/分で引張試験を実施する。
The tensile strength of the gypsum needle crystal composite is determined as follows. After classification, 40 parts by weight of Type 1 water gypsum needle crystals were added and mixed with 54 parts by weight of polypropylene resin powder, 6 parts by weight of acrylic acid-modified polypropylene resin, and a small amount of stabilizer, and 40 parts by weight of uniaxial vent extrusion. (Dulmage screw) machine at about 240°C, and then the dried pellets were pelletized at a mold temperature of 60°C and an injection pressure of about 6°C.
250 JISK-6745 test pieces at 00 kg/cd
Injection molding is carried out at a temperature of about 23° C. and a tensile test is carried out at a pulling rate of 5 mm/min.

他方、該石こう針状結晶の径dを沈降開始時間からめ、
同じ径における理想的な引張強度T8’(d)を第5式
からめ、次いでΔT8(d)= T S’((1)−T
S((1)をめる。
On the other hand, the diameter d of the gypsum needle crystals is determined from the sedimentation start time,
The ideal tensile strength T8'(d) at the same diameter is calculated from the fifth equation, and then ΔT8(d)=TS'((1)-T
S (fill in (1).

以上の如く定義されたΔTS(d)は該石こう針状結晶
の強靭さのパラメータと考えられる。即ちΔT8の小さ
い石こう針状結晶は、ΔTS(d)の大きい石こう針状
結晶に比して、より強靭である。
ΔTS(d) defined as above is considered to be a parameter of toughness of the gypsum needle crystal. That is, gypsum needle crystals with a small ΔT8 are stronger than gypsum needle crystals with a large ΔTS(d).

強靭な石こう針状結晶とは、樹脂との混練複合化過程に
おいて、破損の少ない、言い換えると結晶表面のステッ
プや転移等の応力集中点の少ない石こう針状結晶である
。該応力集中点は、結晶表面の活性点と考えられるから
、極性の大きい水分子の吸着能が著しく大きいと考えら
れる。つまり、ΔT8((1)の大きい石こう針状結晶
は水分子の吸着量も又大きいと考えられる。事実、従来
の石こう針状結晶はΔT8((1)が大きく、かつ単位
表面積光シの水の吸着量も大きいのに比して、本発明に
係る石こう針状結晶はΔTS(d)が小さく、かつ単位
表面積当りの水の吸着量も小さい。ΔTS(d)と単位
表面積当りの水の吸着量との間には、明瞭な一次の相関
がみられる。この関係を第3図に示す。
Strong gypsum needle crystals are gypsum needle crystals that are less likely to break during the kneading and compounding process with resin, in other words, have fewer stress concentration points such as steps and dislocations on the crystal surface. Since the stress concentration point is considered to be an active point on the crystal surface, it is considered that the adsorption capacity for highly polar water molecules is extremely large. In other words, it is thought that gypsum needle crystals with a large ΔT8 ((1)) also have a large adsorption amount of water molecules.In fact, conventional gypsum needle crystals have a large ΔT8((1)) and a large amount of water molecules per unit surface area. In contrast, the gypsum needle crystals according to the present invention have a small ΔTS(d) and a small adsorption amount of water per unit surface area. A clear first-order correlation can be seen between the amount of adsorption and this relationship is shown in FIG.

単位表面積光シの水の吸着量が0.8trry/vfは
ΔTS=60に相当し、より好ましい石こう針状結晶の
場合の単位表面積当りの水の吸着量が0.265 mW
/n?以下は、ΔT8が40kq/c−以下に相当する
。従って、本発明に係る石こう針状結晶は実用的にはΔ
T8で規定するのが好適である。
The amount of water adsorbed per unit surface area of light is 0.8 trry/vf, which corresponds to ΔTS=60, and the amount of water adsorbed per unit surface area of the more preferable gypsum needle crystal is 0.265 mW.
/n? The following corresponds to ΔT8 of 40 kq/c- or less. Therefore, the gypsum needle crystal according to the present invention is practically
It is preferable to specify T8.

さて、本発明に係る石こう針状結晶は、3項目で規定さ
れている。
Now, the gypsum needle crystal according to the present invention is defined by three items.

第1の条件、「平均径が約1.2μ以下」であることは
、前記した如く、石こう針状結晶の径依存性に基づくも
のと考えられる。径が約1.2μ以下になると、一般に
石こう針状結晶の強度が著しく増大するために、混練加
工時の破損が少なくなシ、その結果成形加工体中の石こ
う針状結晶のアスペクト比が大きくなって、引張強度が
改善されるものと考えられる。
The first condition, that the average diameter is about 1.2 μm or less, is considered to be based on the diameter dependence of gypsum needle crystals, as described above. When the diameter is about 1.2 μ or less, the strength of the gypsum needle crystals generally increases significantly, so there is less damage during kneading, and as a result, the aspect ratio of the gypsum needle crystals in the formed product increases. Therefore, it is thought that the tensile strength is improved.

第2の条件、即ち「単位表面積当りの水の吸着量が約0
.3η/R以下」であることが必要な理由については、
詳らかではない。しかし、単位表面積当りの水の吸着量
が異なるという事実は、窒素分子に比して極性の大きい
水分子を、優先的に吸着する場が存在し、その存在量が
該■型態水石こう針状結晶の種類によって大きく異なる
ものと解釈することが出来る。該吸着点(場)は、たと
えば結晶表面のステップあるいは転移等を想定する′こ
とが可能である。つまり、単位表面積当りの水の吸着量
が少ない石こう針状結晶は、結晶表面のステップ等が少
なく破損し難いと考えられる。特に好ましい石こう針状
結晶の、単位表面積当りの水の吸着量は0.265■/
 n?以下であって、ステップなどが特に少なく、理想
強度に近い石こう針状結晶であると考えられる。
The second condition is that the amount of water adsorbed per unit surface area is approximately 0.
.. Regarding the reason why it is necessary to be 3η/R or less,
It's not clear. However, the fact that the adsorption amount of water per unit surface area is different means that there are places that preferentially adsorb water molecules, which are more polar than nitrogen molecules, and the amount of water molecules that are present in the It can be interpreted that it varies greatly depending on the type of crystal. The adsorption point (field) can be assumed to be, for example, a step or transition on the crystal surface. In other words, it is considered that gypsum needle crystals that adsorb a small amount of water per unit surface area are less likely to break due to fewer steps on the crystal surface. Particularly preferred gypsum needle crystals have an adsorption amount of water per unit surface area of 0.265/
n? It is considered to be a gypsum needle-like crystal with a strength close to ideal, with a particularly small number of steps.

この事は、PPとの複合化に於いてその強度に対する補
強性(換言すればΔTSの減少)として発現されること
はmJ記の通シである。一方、PvCとの複合化に於い
ては、強度及び衝撃強度の著しい低下をもたらさないと
いう形で発現されることは、rrlJ記の通りである。
It is common knowledge in mJ that this is expressed as reinforcement for the strength (in other words, a reduction in ΔTS) when combined with PP. On the other hand, as described in rrlJ, when combined with PvC, the strength and impact strength are not significantly reduced.

更に、上記二つの条件を満す石こう針状結晶が「約20
μ以上の粒状物あるいは凝集物を実質的に含まない」も
のであれば、衝撃強度の改善という点から極めて好都合
である。一般に大きな粒状物あるいは、凝集物が存在す
るとそこが応力集中点となって、クラックが容易に進行
するために衝撃強度が低下するものと考えられる。粒状
物あるいは凝集物の除去は分級により例えば強制渦弐回
転壁型分級機により達成できる。分級の程度は、使用目
的に応じて適宜法めればよいが、少くとも粒状物あるい
は凝集物が重量で約1%以下になることが望まれる。
Furthermore, the number of gypsum needle crystals that meet the above two conditions is about 20.
It is extremely advantageous from the point of view of improving impact strength if it does not substantially contain particles or agglomerates with a size larger than μ. In general, it is thought that when large particles or aggregates are present, they become stress concentration points and cracks easily develop, resulting in a decrease in impact strength. Removal of particulates or agglomerates can be accomplished by classification, such as in a forced vortex two rotating wall classifier. The degree of classification may be determined as appropriate depending on the purpose of use, but it is desirable that the amount of particles or aggregates be at least about 1% by weight or less.

本発明に係る石こう針状結晶の、ポリ塩化ビニル系樹脂
に対する分散性が、従来の石こう針状結晶の場合に比し
て著しく良好であることは既に説明したが、その原因の
1つに、該吸着点が考えられる。即ち、従来の石こう針
状結晶は、該吸着点、言い換えると結晶表面の活性点が
多く、石こう針状結晶自身の凝集性が強いのに対して、
本発明に係る石こう針状結晶表面の活性点は非常に少な
いために、石こう針状結晶自身の凝集性が弱く、容易に
良分散するものと考えられる。そして、良分散の結果と
して衝撃強度が著しく改善されるものと考えられる。
As already explained, the dispersibility of the gypsum needle crystals according to the present invention in polyvinyl chloride resin is significantly better than that of conventional gypsum needle crystals, and one of the reasons for this is that The adsorption point is considered. In other words, conventional gypsum needle crystals have many adsorption points, in other words, active points on the crystal surface, and the gypsum needle crystals themselves have strong cohesiveness.
Since there are very few active sites on the surface of the gypsum needle crystals according to the present invention, it is thought that the gypsum needle crystals themselves have weak cohesiveness and are easily dispersed well. It is believed that the impact strength is significantly improved as a result of good dispersion.

以上の如く規定された石こう針状結晶は、次の如くして
製造することが出来る。原料2水石こうを水に対して0
.3〜30重量%分散してなる水性スラリーをオートク
レーブに収容し、撹拌しつつ加圧下に加熱し、α型中水
石こう針状結晶を製造する。
The gypsum needle crystals defined as above can be produced as follows. Raw materials 2 Water gypsum to water 0
.. An aqueous slurry containing 3 to 30% by weight of the slurry is placed in an autoclave and heated under pressure while stirring to produce α-type mesohydrate gypsum needle crystals.

ここに、原料2水石こうの性状は次の如き特徴を有して
いることことが必要である。即ち、(OO2)面のX線
回折ピークの半価幅(補正後の積分中)が約2.5Xl
□−11ラジアン特に好1しくは15×l0−4ラジア
ン以下であシ、かつ、水中に投入分散後約IO分経過後
の硫酸カルシウムの溶解度が約0.204%、特に好ま
しくは、0.202%以下であることが必要である。X
線回析は、理学電機株式会社!1liIX線回析装置(
Cat ff12028)を用いて次に示す条件で測定
した。
Here, the properties of the raw material dihydrate gypsum must have the following characteristics. That is, the half-value width (during integration after correction) of the X-ray diffraction peak of the (OO2) plane is approximately 2.5Xl.
□-11 radians, particularly preferably 15 x 10-4 radians or less, and the solubility of calcium sulfate after about 10 minutes after being introduced and dispersed in water is about 0.204%, particularly preferably 0. It is necessary that it is 202% or less. X
Line diffraction is done by Rigaku Denki Co., Ltd.! 1liIX X-ray diffraction device (
Cat ff12028) under the following conditions.

′varget ; Cu(45KV 40mA )J
・’i 1ter ; Ni Divergency ; 1/2゜ Jjeceiving 51it ; Q、3肩a+5
can 5peed ; l/2 ”/1nChart
Speed;8θMN/m ’I’ime Qonst ; 55ecなお、半fd
li幅補正用標準物質は、800 ’Cでアニールされ
た粒径80〜44μのα−81(’)2を用いた。
'varget; Cu (45KV 40mA)J
・'i 1ter; Ni Divergency; 1/2゜Jjeceiving 51it; Q, 3 shoulders a+5
can 5peed; l/2”/1nChart
Speed; 8θMN/m 'I'ime Qonst; 55ec, half fd
As the standard material for li width correction, α-81(')2 having a particle size of 80 to 44 μ and annealed at 800′C was used.

硫酸カルシウムの溶解度は、19℃において電気伝導度
よりめる。即ち19°Cにおいて、硫酸カルシウムの既
知の濃度の水溶液の電気伝導度を測定し、検量線を作成
する。次いで、測定すべき試料について、19°Cにお
いて電気伝導度を測定し、上記検量線から該試料の溶解
度をめるこ2が出来る。原料2水石こうの粒度は、数μ
〜100μ、より好ましくは、数μ〜60μが適当であ
る。
The solubility of calcium sulfate is determined by its electrical conductivity at 19°C. That is, the electrical conductivity of an aqueous solution of calcium sulfate with a known concentration is measured at 19°C, and a calibration curve is created. Next, the electrical conductivity of the sample to be measured is measured at 19°C, and the solubility of the sample can be estimated from the above calibration curve. The particle size of the raw material 2-water gypsum is several microns.
~100μ, more preferably several μ to 60μ is appropriate.

微細な原料2水石こうは、たとえば焼石こうを水和する
ことによって得られる。ここで採用される焼石こうは、
2水石こうやH型態水石こうを実質的に含まず、更に、
X線回折ピークの半価巾から、))allの式によって
めた微結晶粒径が大きく、該微結晶の格子歪の小さい焼
石こうか好ましい。
The fine raw material dihydrate gypsum is obtained, for example, by hydrating calcined gypsum. The baked gypsum used here is
Substantially does not contain dihydrate gypsum or H-type hydrogypsum, and furthermore,
It is preferable to use calcined gypsum, which has a large microcrystalline grain size calculated from the half-width of the X-ray diffraction peak by the formula ())all, and has a small lattice strain of the microcrystals.

好ましい焼石とうを、濃度0.8〜30重量%でもって
常温で、撹拌下に水和して得られる微細な水和2水石こ
うの溶解度(硫酸カルシウム換算)は、水利開始約1時
間後で約0.204%以下であシ、更に、該水和2水石
こう結晶の(002)面のX線回折ピークの半価巾は約
2.5 X I O−4ラジアン以下である。
The solubility (calcium sulfate equivalent) of fine hydrated dihydrate gypsum obtained by hydrating preferred calcined stone at a concentration of 0.8 to 30% by weight at room temperature with stirring is approximately 1 hour after the start of water use. It is about 0.204% or less, and furthermore, the half width of the X-ray diffraction peak of the (002) plane of the hydrated dihydrate gypsum crystal is about 2.5 X I O-4 radians or less.

原料2水石こうとは別に、種結晶を添加すると好ましい
結果を得ることの出来る場合がある。特に、原料2水石
こうの粒径が比較的大きい場合に、種結晶を添加するこ
とによって、得られるα視学水石こう針状結晶の径を1
.2μ以下に細くするととが出来る。該種結晶の一例と
して、焼石こうを前記した方法でもって水和して得られ
る微細な水和2水石こうを挙げることが出来る。ここで
採用される焼石こうは、2水石こうを通常の方法で仮焼
することによって得られる。焼石こうのX線回折ピーク
の半価巾よりめた微結晶粒子径が小さく、該微結晶め格
子歪の大きい焼石こうを水和して得られる微細な水和2
水石こうが、種結晶としての効果が大きい。即ち、好ま
しい種結晶は比較的少量の添加量でもって細径の石こう
針状結晶が得られる。種結晶としての効果の大きい水和
2水石こうの溶解度は大きい。また、(OO2)面のX
線回折ピークの半価巾が大きい水和2水石こうも、種結
晶としての効果が大きい。しかし、溶解度が0.204
%を越える種結晶又は、(002)面のX線回折ピーク
の半価巾が、2.5 X 10=ラジアンを越える種結
晶を、むやみに多く添加すると、得られる石こう針状結
晶の径は、細くなるものの単位表面積当りの水の吸着量
は多くなる。逆に、種結晶の添加量が少ないと、得られ
る石こう針状結晶の径が太くなる。
In addition to the raw material dihydrate gypsum, it may be possible to obtain favorable results by adding seed crystals. In particular, when the particle size of the raw dihydric gypsum is relatively large, adding seed crystals can increase the diameter of the resulting α-visual gypsum needle crystals by 1
.. If it is thinned to 2μ or less, a hole will be formed. An example of such seed crystals is fine hydrated dihydrate gypsum obtained by hydrating calcined gypsum by the method described above. The calcined gypsum used here is obtained by calcining dihydrate gypsum using a conventional method. Fine hydration 2 obtained by hydrating calcined gypsum whose microcrystalline particle size is smaller than the half width of the X-ray diffraction peak of calcined gypsum and whose lattice strain is large.
Gypsum is highly effective as a seed crystal. That is, a preferable seed crystal can produce small-diameter gypsum needle-like crystals with a relatively small amount of addition. Hydrated dihydrate gypsum, which is highly effective as a seed crystal, has a high solubility. Also, the X of the (OO2) plane
Hydrated dihydrate gypsum, which has a large line diffraction peak half width, is also highly effective as a seed crystal. However, the solubility is 0.204
% or the half width of the X-ray diffraction peak of the (002) plane exceeds 2.5 x 10 = radians, the diameter of the resulting gypsum needle crystals will be Although it becomes thinner, the amount of water adsorbed per unit surface area increases. Conversely, when the amount of seed crystals added is small, the diameter of the obtained gypsum needle crystals becomes thick.

添加する水和2水石こうの性質と添加量との好ましい組
み合せは、以下に水子範囲である。焼石こうを水和して
得られる微細な水和2水石こう(種結晶)の溶解度(水
利開始約1時間後、19’C)が0.204%以下であ
り、かつ該種結晶の(002)面のX線回折ピークの半
価巾(補正後の積分巾)が2.5XlO’ラジアン以丁
の場合は、前記した原料2水石こう(水中に投入分散後
約10分経過後の硫酸カルシウムの19°Cにおける溶
解度が約0.204%以下であシ、かつ、(OO2)面
のX線回折ピークの半価巾が約2.5X104ラジアン
以下である)に対して、核種結晶を重量で3%以上添加
することによって本発明に係る石こう針状結晶を製造す
ることが出来る。
Preferred combinations of the properties and amount of the hydrated dihydrate gypsum to be added are in the water range below. The solubility of fine hydrated dihydrate gypsum (seed crystals) obtained by hydrating calcined gypsum (about 1 hour after the start of water use, 19'C) is 0.204% or less, and the (002 ) If the half width (integral width after correction) of the X-ray diffraction peak of The solubility at 19°C of By adding 3% or more of , the gypsum needle crystals according to the present invention can be produced.

焼石こうを水和して得られる微細な水和2水石こう(種
結晶)の溶解度(水和開始約1時間経過後、19°C)
が0.204%を越えるか、又は、該水和2水石こう(
種結晶)の、(002)面のX線回折ピークの半価巾(
補正後の積分巾)が2.5×10 ラジアンを越える水
和2水石こうを種結晶として添加する場合は、前記した
原料2水石こうに対して、該種結晶を添加するに当って
、該種結晶(焼石とうを水和して得られる微細な水和2
水石こう)の溶解度(水利開始約1時間経過後、19°
C)をXパーセント、2を該種結晶の添加量(パーセン
ト)と置くとき(X、Z)座標において、第1図の斜線
部分で示される範囲の組み合せであって、更に、該種結
晶の(002)面のX線回折ピークの半価巾(補正後の
積分巾)をYラジアンと置くとき、(Y 、 Z)座標
において、第2図の斜線部分で示される範囲の組み合せ
を、共に満足する混合物を出発原料とすることによって
、本発明に係る石こう針状結晶を製造することが可能で
ある。
Solubility of fine hydrated gypsum (seed crystals) obtained by hydrating calcined gypsum (19°C after approximately 1 hour from the start of hydration)
exceeds 0.204%, or the hydrated dihydrate gypsum (
The half-width of the X-ray diffraction peak of the (002) plane of the (seed crystal)
When adding hydrated dihydrate gypsum with an integral width (after correction) exceeding 2.5 x 10 radians as a seed crystal, when adding the seed crystal to the above-mentioned raw material dihydrate gypsum, Seed crystals (fine hydration obtained by hydrating baked stone 2)
Water gypsum) solubility (about 1 hour after the start of water use, 19°
When C) is X percent and 2 is the amount (percent) of the seed crystal added, in the (X, Z) coordinates, it is a combination within the range shown by the shaded area in FIG. When the half width (integral width after correction) of the X-ray diffraction peak of the (002) plane is set as Y radian, the combination of the range shown by the shaded area in Figure 2 in the (Y, Z) coordinates is By starting from a satisfactory mixture it is possible to produce the gypsum needles according to the invention.

さて、石こうの溶解度は、該石こうの粒径や表面の結晶
性に依存すると考えられる。従って、石こうを水洗した
シ、あるいは、水中に分散せしめた状態で放置熟成する
ことによって、該石こうの溶解度を低下せしめることが
可能である。しかし、溶解度は、極く少量の、非常に微
細な粒子や、あるいは結晶表面の格子欠陥部分等でもっ
て決定される量であるから、溶解度が大巾に低下しても
、該石こうの結晶内部(表面でない)の状態まで大巾に
変化したとは考えられない。
Now, the solubility of gypsum is considered to depend on the particle size and surface crystallinity of the gypsum. Therefore, it is possible to reduce the solubility of the gypsum by washing the gypsum with water or leaving it to mature after being dispersed in water. However, solubility is determined by a very small amount of very fine particles or lattice defects on the crystal surface, so even if the solubility decreases significantly, the inside of the gypsum crystal It is inconceivable that there has been a drastic change to the (non-surface) state.

一方、X線回折ピークの半価巾は、着目している結晶面
に垂直な方向の結晶粒径及び該結晶面に垂直な方向の格
子歪の平均値とに依存する量である。焼石こうを前記し
た方法で水和して得られる2水石こうは、一般にC軸方
向に伸長した棒状結晶となる。しかるに、2水石こうの
(002)面は、C軸に垂直な面であるから(002)
面のX線回折ピークの半価巾は、該2水石こうの伸長軸
方向の大きさ及び、格子歪の平均値とに依存する。
On the other hand, the half width of the X-ray diffraction peak is a quantity that depends on the crystal grain size in the direction perpendicular to the crystal plane of interest and the average value of lattice strain in the direction perpendicular to the crystal plane. Dihydrate gypsum obtained by hydrating calcined gypsum by the above-described method generally becomes rod-shaped crystals extending in the C-axis direction. However, since the (002) plane of dihydrate gypsum is perpendicular to the C axis, (002)
The half width of the surface X-ray diffraction peak depends on the size of the dihydrate gypsum in the elongation axis direction and the average value of lattice strain.

水和2水石こうの微細な棒状結晶は、単結晶と考えられ
るから、C軸方向の大きさは数〜数十μであって、半価
巾への寄与はほとんど無視出来る程小さい。つまシ、水
和2水石こうの(002)面のX線回折ピークの半価巾
は、該2水石こうの表面及び内部を含む、C軸方向の平
均的な格子歪の 。
Since the fine rod-shaped crystals of hydrated gypsum are considered to be single crystals, the size in the C-axis direction is several to several tens of microns, and their contribution to the half-value width is so small that it can be almost ignored. The half width of the X-ray diffraction peak of the (002) plane of hydrated dihydrate gypsum is equal to the average lattice strain in the C-axis direction, including the surface and interior of the dihydrate gypsum.

大きさを示すパラメータであると考えられる。It is considered to be a parameter indicating the size.

本発明者等の研究によれば、溶解度の比較的高い水和2
水石こうを熟成することによって、該溶解度を大巾に低
下せしめた水和2水石こうの、(002)面のX線回折
ピークの半価1〕は、熟成前の該半価巾に比して若干の
減少はあるものの、溶解度の減少率に較べるとはるかに
小さCゎ上記現象は、溶解度が石こうの粒径及び表面状
態に依存する量であり、X線回折ピークの半価巾が石こ
うの結晶全体の平均的結晶状態を表わす量であることの
証左だと考えられる。石こう針状結晶の製造は、2水石
こうの水中への溶解とα型土水石こうとしての晶析とい
う動的平衝下で行なわれる。
According to the research conducted by the present inventors, hydration 2 with relatively high solubility
The half value 1 of the X-ray diffraction peak of the (002) plane of hydrated dihydrate gypsum, whose solubility has been greatly reduced by aging the hydrogypsum, is compared to the half value before aging. Although there is a slight decrease in solubility, it is much smaller than the rate of decrease in solubility.The above phenomenon is due to the fact that solubility depends on the grain size and surface condition of gypsum, and the half-width of the X-ray diffraction peak This is considered to be evidence that the quantity represents the average crystal state of the entire crystal. The production of gypsum needle crystals is carried out under dynamic equilibrium conditions in which dihydrate gypsum is dissolved in water and crystallized as α-type gypsum.

2水石こうの溶解が進行すると、2水石こう結晶の内部
が新たな表面層となるだめに、系の溶解度は、新生表面
層の性質即ち、当初の2水石こう結晶内部の性質、換言
すれば、X線回折ピークの半価巾でもって規定されると
考えられる。ここに、X線回折ピークの半価巾の測定の
重要さがあると考えられる。
As the dissolution of dihydrate gypsum progresses, the interior of the dihydrate gypsum crystal becomes a new surface layer, so the solubility of the system depends on the properties of the new surface layer, that is, the properties of the original interior of the dihydrate gypsum crystal, in other words. , is considered to be defined by the half width of the X-ray diffraction peak. This is considered to be the importance of measuring the half width of the X-ray diffraction peak.

しかし、溶解度の低下は有効である。α型土水石こうの
晶析においては、2水石こうの溶解度と、α型土水石こ
うの溶解度の差が、即ち、過飽和度であると考えられる
から、2水石こうの溶解度を低下させればそれだけ過飽
和度が低下して、ゆるやかな晶析が実現されるものと考
えられる。一般に、不純物や格子欠陥あるいはステップ
等の少ない結晶は、過飽和度を低く押さえてゆるやかな
晶析速度の干に実現される。
However, reducing solubility is beneficial. In the crystallization of α-type gypsum, the difference between the solubility of dihydrate gypsum and the solubility of α-type gypsum is considered to be the degree of supersaturation, so if the solubility of dihydrate gypsum is lowered, It is thought that the degree of supersaturation is reduced accordingly, and gradual crystallization is realized. In general, crystals with few impurities, lattice defects, or steps are achieved by keeping the degree of supersaturation low and achieving a slow crystallization rate.

α型土水石こう針状結晶は、実質的には115゜〜13
0°Cで製造される。スラリーの撹拌は、スラリー固形
分の沈降を防げる範囲で低速撹拌が好ましい。撹拌速度
が低いと、得られる石こう針状結晶の径を細くすること
が出来る。
α-type earth water gypsum needle crystals are substantially 115° to 13
Manufactured at 0°C. It is preferable to stir the slurry at a low speed within a range that prevents sedimentation of the solid content of the slurry. When the stirring speed is low, the diameter of the obtained gypsum needles can be made smaller.

製造されたα型土水石こう針状結晶は、脱水分離後乾燥
し、次いで400〜700°Cで焼成することによって
安定な■型態水石こう針状結晶が得られる。
The produced α-type clay gypsum needle crystals are dehydrated and separated, dried, and then calcined at 400 to 700°C to obtain stable ■-type clay gypsum needle crystals.

石こう針状結晶を合成樹脂に添加する割合は、5〜75
重量%が適当である。5%未満の場合は、石こう針状結
晶を添加複合化する優位性が少なく、また、75%を越
える複合化は困難な場合が多い。
The ratio of adding gypsum needle crystals to the synthetic resin is 5 to 75%.
Weight % is appropriate. When the content is less than 5%, there is little advantage in adding gypsum needle crystals to the composite, and it is often difficult to create a composite when the content exceeds 75%.

次に、実施例を記載する。Next, examples will be described.

実施例1 排煙脱硫副生2水石こうを、180°Cで16時間仮焼
することにより、微結晶粒子径約0.125ミクロン、
微結晶の格子歪約1.4X10”である焼石こうを得た
。次いで、該焼石こうを水和せしめた。水利開始約1時
間後の使用直前における硫酸カルシウムの溶解度は、0
.202%、(002)面のX線回折ピークの半価巾は
約1.45X10’ラジアンであった。スラリー濃度約
5重量%の該水和2水石こうスラリーを外部加熱式オー
トクレーブに収容し、撹拌しつつ加圧下に加熱した。ス
ラリー温度を約130°Cまで昇温し、5分間保持して
反応を完結させた。
Example 1 By calcining the flue gas desulfurization by-product dihydrate gypsum at 180°C for 16 hours, the microcrystalline particle size was approximately 0.125 microns.
Calcined gypsum with a microcrystalline lattice strain of approximately 1.4 x 10" was obtained. The calcined gypsum was then hydrated. The solubility of calcium sulfate immediately before use, approximately 1 hour after the start of water use, was 0.
.. The half width of the X-ray diffraction peak of the 202% (002) plane was approximately 1.45×10′ radian. The hydrated dihydrate gypsum slurry having a slurry concentration of about 5% by weight was placed in an externally heated autoclave and heated under pressure while stirring. The slurry temperature was raised to about 130°C and held for 5 minutes to complete the reaction.

内温を約90°Cに冷却後素早く脱水分離し、σ視学水
石こう針状結晶の脱水ケーキを得だ。次いで該脱水ケー
キを約700°Cの熱風焼成炉(C投入し、約30分間
乾燥焼成することによって、■型態水石こう針状結晶を
得た。次いで、ミクロプレックス132MP(安用−ア
ルビネ2分級機)によって約20μ以上の粒状物及び凝
集物を除き、平均径約0.79μの■型態水石こう針状
結晶を得た。分級後の該■型態水石こう針状結晶を、8
00℃で60分間焼成(前処理)した後の単位表面積光
シの水の吸着量を測定した。結果を表1に示す。
After cooling the internal temperature to about 90°C, it was quickly dehydrated and separated to obtain a dehydrated cake of σ-visual water gypsum needle crystals. Next, the dehydrated cake was placed in a hot air calcining furnace (C) at about 700°C and dried and calcined for about 30 minutes to obtain type 1 water gypsum needle crystals. Particulate matter and aggregates of about 20μ or more were removed using a classifier) to obtain type 1 water gypsum needle crystals with an average diameter of about 0.79μ.After classification, the 2 type water gypsum needle crystals were
After baking (pretreatment) at 00°C for 60 minutes, the amount of water adsorbed per unit surface area was measured. The results are shown in Table 1.

1001)に対して10重量%添加し、40MM単軸ベ
ント押出機によって、ベルト状ストランドを押出した。
1001), and a belt-like strand was extruded using a 40 MM single-screw vent extruder.

次いで、175℃にて予熱5分、50kg / ctA
圧で5分間プレスすることによって、厚さ約3MIIの
試験片を作成し、温度約23°Cの恒温室にて重さ30
0g、撃シン3/8インチの錘によるデュポン衝撃強度
(半数破壊高さ、cm)を測定した。結果を表1に示す
Then preheat at 175℃ for 5 minutes, 50kg/ctA
A specimen with a thickness of approximately 3 MII was prepared by pressing for 5 minutes under high pressure, and the specimen weighed 30 mm in a constant temperature room at a temperature of approximately 23°C.
The DuPont impact strength (height at break, cm) was measured using a weight of 0 g and a weight of 3/8 inch percussion. The results are shown in Table 1.

また上記ベルト技ストランドから引張試験片を切出しJ
ISK−6745に準拠して引張試験を行った。結果を
表1に示す。一方分級後の■型無水石こう針状結晶を上
記鉛配合のPVCに対して20重量%添加し40Mベン
ト押出機によってペレット化し、次いで同一の押出機で
もってベルト状ストランドを押出した。該ベルト状スト
ランドから引張試験片を切り出しJISK−6745に
準拠して引張試験を行なった。その結果を表1に示す。
In addition, a tensile test piece was cut out from the above belt technique strand.
A tensile test was conducted according to ISK-6745. The results are shown in Table 1. On the other hand, 20% by weight of the classified ■-shaped anhydrous gypsum needle crystals were added to the lead-containing PVC and pelletized using a 40M vent extruder, and then a belt-like strand was extruded using the same extruder. A tensile test piece was cut out from the belt-like strand and subjected to a tensile test in accordance with JISK-6745. The results are shown in Table 1.

上記の分級後の■型態水石こう針状結晶を、ポリプロピ
レン樹脂(PP)54重量部、アクリル酸変性P、P6
重量部、及び若干量の安定剤に対して、40重量部添加
し40朋単軸ベント押出機によってペレット化し、次い
で、該乾燥ベレットを射出成形機を用いて常法によりJ
IS K−6745試験片を作成し、温度約23°Cに
おいて引張試験を実施した。結果を表1に示す。
After the above classification, the ■ type water gypsum needle crystals were mixed with 54 parts by weight of polypropylene resin (PP), acrylic acid modified P, and P6.
40 parts by weight were added to each part by weight and some amount of stabilizer, and the pellets were pelletized using a single-screw vent extruder.Then, the dried pellets were molded using a conventional method using an injection molding machine.
IS K-6745 specimens were prepared and tensile tests were conducted at a temperature of approximately 23°C. The results are shown in Table 1.

比較例1 実施例1とは異なる排煙脱硫副生2水石こうを220°
Cで4時間仮焼することによシ、微結晶粒子径的0.1
5μ徽結晶の格子歪が約1゜8 X I O−8である
焼石こうを得た。次いで、該焼石こうを水和せしめた。
Comparative Example 1 Flue gas desulfurization by-product dihydrate gypsum, which is different from Example 1, was heated at 220°
By calcining for 4 hours at C, the microcrystalline particle diameter is 0.1
Calcined gypsum with a lattice strain of about 1°8×I O-8 in a 5μ crystal was obtained. The calcined gypsum was then hydrated.

水利開始約1時間後、使用直前の硫酸カルシウムの溶解
度は約0.207%、(002)面のX線回折ピークの
半価巾は約3.9X]、0’ラジアンであった。以下、
実施例1と同様の方法によって、太さ約0.65μの、
分級後の■度無水石こう針状結晶を得だ。次いで、実施
例1と全く同様の方法によって単位表面積当りの水の吸
着量を測定し、更に、PVC及びPPとの複合体の諸物
性を測定した。その結果を表1に示す。
About 1 hour after the start of water use, the solubility of calcium sulfate immediately before use was about 0.207%, and the half width of the X-ray diffraction peak of the (002) plane was about 3.9X], 0' radian. below,
By the same method as in Example 1, a thickness of about 0.65 μm was obtained.
After classification, anhydrous gypsum needle crystals were obtained. Next, the amount of water adsorbed per unit surface area was measured in exactly the same manner as in Example 1, and various physical properties of the composite with PVC and PP were also measured. The results are shown in Table 1.

比較例2 気流仮焼した焼石こうの微結晶粒子径は約0.06μ、
微結晶の格子歪は約8.2X10−8であった。
Comparative Example 2 The microcrystalline particle size of air-flow calcined calcined gypsum is approximately 0.06μ,
The lattice strain of the microcrystal was approximately 8.2×10 −8 .

この焼石こうを水和して得られる二水石こうの溶解度は
、使用直前で約0.235%、(002)面のX線回折
ピークの半価巾は約5.8 X 10−4ラジアンであ
った。以下、実施例1と同様の方法によって太さ約0.
59μの分級後の■度無水石こう針状面こうを得た。次
いで、実施例1と全く同様の方法によって単位表面積当
シの水の吸着量及びPVC並びにPPとの複合体の諸物
性を測定した。
The solubility of dihydrate gypsum obtained by hydrating this calcined gypsum is approximately 0.235% immediately before use, and the half-value width of the X-ray diffraction peak of the (002) plane is approximately 5.8 x 10-4 radians. there were. Hereinafter, the same method as in Example 1 was used to obtain a thickness of about 0.
An anhydrous gypsum acicular surface was obtained after classification of 59 μm. Next, the amount of water adsorbed per unit surface area and various physical properties of the composite with PVC and PP were measured in exactly the same manner as in Example 1.

その結果を表1に示す。The results are shown in Table 1.

比較例3 粒子径IO〜60μの排煙脱硫副生2水石こうを、水中
に投入撹拌後、約10分経過後の溶解度は約0.200
%、(002)面のX線回折ピークの半価巾は約i、1
x1o’ラジアンであった。該原料2水石こうに対して
、比較例1で用いた水和2水石こうを、約1゜5重量%
添加したスラリーを用いて、実施例1と同様の方法によ
って太さ約1.5μの分級された■度無水石こう針状結
晶を得た。次いで、実施例1と全く同様の方法によって
単位表面積当りの吸着量及びPVC並びにPPとの複合
体の諸物性を測定した。その結果を表1に示す。
Comparative Example 3 Flue gas desulfurization by-product dihydrate gypsum with a particle size of IO ~ 60μ was poured into water and stirred, and the solubility after about 10 minutes was about 0.200.
%, the half width of the X-ray diffraction peak of the (002) plane is approximately i, 1
x1 o' radians. About 1.5% by weight of the hydrated dihydrate gypsum used in Comparative Example 1 was added to the raw material dihydrate gypsum.
Using the added slurry, classified anhydrous gypsum needle crystals having a thickness of approximately 1.5 μm were obtained in the same manner as in Example 1. Next, the amount of adsorption per unit surface area and various physical properties of the composite with PVC and PP were measured in exactly the same manner as in Example 1. The results are shown in Table 1.

実施例2 比較例3で用いた原料2水石こうに対して、比較例2で
用いた水和2水石こうを、重量で約5%添加した。以下
、実施例1と同様の方法によって、太さ約0.83μの
分級された■度無水石こう針状結晶を得た。次いで、実
施例1と全く同様の方法によって、単位表面積当りの水
の吸着量及びPVC並びにPPとの複合体の諸物性を測
定した。その結果を表1に示す。
Example 2 To the raw dihydrate gypsum used in Comparative Example 3, about 5% by weight of the hydrated dihydrate gypsum used in Comparative Example 2 was added. Thereafter, in the same manner as in Example 1, classified anhydrous gypsum needle crystals having a thickness of approximately 0.83 μm were obtained. Next, the amount of water adsorbed per unit surface area and various physical properties of the composite with PVC and PP were measured in the same manner as in Example 1. The results are shown in Table 1.

実施例3 実施例1で用いた水和2水石こうスラリーを脱水分離後
、水洗し、再び水に分散せしめた。溶解度は約0199
%、(0’02)面のX線回折ピークの半価巾は約1.
4XlO’ラジアンであった。
Example 3 The hydrated dihydrate gypsum slurry used in Example 1 was dehydrated and separated, washed with water, and dispersed in water again. Solubility is about 0199
%, the half width of the X-ray diffraction peak of the (0'02) plane is approximately 1.
It was 4XlO' radians.

以下実施例1と同様の方法によって、太さ約0.77μ
の、分級された■度無水石こう針状結晶を得た。
Hereinafter, by the same method as in Example 1, a thickness of about 0.77 μm was obtained.
Classified anhydrous gypsum needle crystals were obtained.

次いで、実施例1と全く同様の方法によって単位表面積
当りの水の吸着量及びP V O並びにPPとの複合体
の諸物性を測定した。結果を表1に示す。
Next, the amount of water adsorbed per unit surface area and various physical properties of the composite with P VO and PP were measured in exactly the same manner as in Example 1. The results are shown in Table 1.

実施例4 比較例3で用いた原料2水石こうに対して、実施例1で
用いた微細な水和2水石こうを重量で15%添加した。
Example 4 To the raw dihydrate gypsum used in Comparative Example 3, 15% by weight of the fine hydrated dihydrate gypsum used in Example 1 was added.

以下、実施例1と同様の方法によって、太さ約0.93
μの分級された■度無水石こう針状結晶を得だ。次いで
、実施例1と同様の方法によって、単位表面積当りの水
の吸着量及びPVC並びにPPとの複合体の諸物性を測
定した。その結果を表1に乃くす。
Hereinafter, by the same method as in Example 1, a thickness of about 0.93
Anhydrous gypsum needle crystals classified by μ were obtained. Next, by the same method as in Example 1, the amount of water adsorbed per unit surface area and various physical properties of the composite with PVC and PP were measured. The results are shown in Table 1.

(板子余白) 44、図面の簡単な説明 第1図及び第2図は、それぞれ水和2水石こうの、(溶
解度)−(添加量)及び(半値巾)−(添加量)の組み
合せ範囲を示すグラフ、第3図は、石こう針状結晶の、
単位表面積当シの水の吸着量と、載面こう針状結晶をP
Pと複合化した場合のΔTSとの関係を示すグラフ、第
4図及び第5図は、それぞれ、実施例及び比較例におけ
る水和2水石こうの(溶解度)−(添加量)及び(半値
巾)−(添加量)の組み合せを示すグラフである。
(Panel margin) 44. Brief explanation of the drawings Figures 1 and 2 show the combination ranges of (solubility) - (addition amount) and (half-width) - (addition amount) of hydrated dihydrate gypsum, respectively. The graph shown in Figure 3 shows the graph of gypsum needle crystals.
The adsorption amount of water per unit surface area and the surface acicular crystals are P
Graphs 4 and 5 showing the relationship between ΔTS when compounded with P are (solubility) - (addition amount) and (half-width) of hydrated dihydrate gypsum in Examples and Comparative Examples, respectively. ) - (addition amount) is a graph showing the combination.

A・・・実施例1、 B・・・比較例11C・・・比較
例2、 D・・・比較例3、E・・・実施例2、 F・
・・実施例3、G・・・実施例4゜ 特許出願人 鐘淵化学工業株式会社 代理人 弁理士 浅 野 真 − 水じ−λ水石こう乃ノー′i’ (’l)水4027に
、!;こうCk広量 とZ)≠−チp2矛Qにうの為外
−加f (2,)! 二 〜
A...Example 1, B...Comparative example 11C...Comparative example 2, D...Comparative example 3, E...Example 2, F.
...Example 3, G...Example 4゜Patent applicant Kanebuchi Chemical Industry Co., Ltd. agent Patent attorney Makoto Asano - Mizuji-λ Mizu Stone Kouno'i'('l) Water 4027, ! ;Kou Ck wide amount and Z)≠-Chip2 spear Q ni U no Tame outside-addition f (2,)! Two ~

Claims (5)

【特許請求の範囲】[Claims] (1)平均径約1.2μ以下であシ、且つ単位表面積光
シの水の吸着量が約0.811Ig/7&以下である石
こう針状結晶を合成樹脂に混入してなる複合化組成物。
(1) A composite composition obtained by mixing gypsum needle crystals with a synthetic resin having an average diameter of about 1.2μ or less and an adsorption amount of water per unit surface area of about 0.811Ig/7. .
(2)石こう中に約20μ以上の粒状物あるいは凝集物
を実質的に含まないものである特許請求の範囲第1項記
載の複合化組成物。
(2) The composite composition according to claim 1, which does not substantially contain particles or aggregates of about 20 microns or more in plaster.
(3)合成樹脂中に混入される石こう針状結晶の量が合
成樹脂に対して5〜75重量%である特許請求の範囲第
1項または第2項記載の複合化組成物。
(3) The composite composition according to claim 1 or 2, wherein the amount of gypsum needle crystals mixed into the synthetic resin is 5 to 75% by weight based on the synthetic resin.
(4)合成樹脂がポリ塩化ビニル系樹脂である特許請求
の範囲第1項または第2項記載の複合化組成物。
(4) The composite composition according to claim 1 or 2, wherein the synthetic resin is a polyvinyl chloride resin.
(5)合成樹脂がポリオレフィン系樹脂である特許請求
の範囲第1項または第2項記載の複合化組成物。
(5) The composite composition according to claim 1 or 2, wherein the synthetic resin is a polyolefin resin.
JP9708485A 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin Granted JPS60243156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9708485A JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9708485A JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP6183878A Division JPS54153846A (en) 1978-05-23 1978-05-23 Modified acicular crystals of gypsum suitable for compounding with synthetic resin, its preparation, and composite composition containing said gypsum and synthetic resin

Publications (2)

Publication Number Publication Date
JPS60243156A true JPS60243156A (en) 1985-12-03
JPS6128701B2 JPS6128701B2 (en) 1986-07-02

Family

ID=14182771

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9708485A Granted JPS60243156A (en) 1985-05-07 1985-05-07 Compounded composition of modified acicular crystal of gypsum and synthetic resin

Country Status (1)

Country Link
JP (1) JPS60243156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164746A (en) * 1986-01-16 1987-07-21 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition
JPS62177049A (en) * 1986-01-31 1987-08-03 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition for vinyl tile
JPS62184045A (en) * 1986-02-07 1987-08-12 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin molding

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62164746A (en) * 1986-01-16 1987-07-21 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition
JPS62177049A (en) * 1986-01-31 1987-08-03 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin composition for vinyl tile
JPS62184045A (en) * 1986-02-07 1987-08-12 Dainichi Color & Chem Mfg Co Ltd Polyvinyl chloride resin molding

Also Published As

Publication number Publication date
JPS6128701B2 (en) 1986-07-02

Similar Documents

Publication Publication Date Title
GB2090583A (en) Fibrous calcium sulphate
US20150158997A1 (en) Gypsum composite modifiers
US4029512A (en) Method for the preparation of fibrous insoluble calcium sulfate anhydrite
EP0132610A1 (en) Fibrous magnesium oxide and process for production thereof
Tomaszewska et al. Advanced organic-inorganic hybrid fillers as functional additives for poly (vinyl chloride)
CN105837932A (en) Preparation method for crystal polypropylene resin composition
JPWO2006043609A1 (en) Polyvinylidene fluoride resin powder for melt molding and method for producing a molded body using the resin powder
Liang et al. Crystallization properties and thermal stability of polypropylene composites filled with wollastonite
CN107286692A (en) A kind of crystal whisker reinforced and toughened plastics of modified gypsum base and preparation method thereof
CN109796630B (en) Preparation method of secondary modified light calcium carbonate for plastic products
Wu et al. Influence of lamellar structure on the stress–strain behavior of β nucleated polypropylene under tensile loading at elevated temperatures
JPS60243156A (en) Compounded composition of modified acicular crystal of gypsum and synthetic resin
US4997871A (en) Fibrous magnesium oxysulfate granular form and thermoplastic resin composition containing the magnesium oxysulfate
Din et al. Mechanical, thermal and flammability properties of dolomite filled polypropylene composites
CN114133705B (en) Preparation method of degradable plastic mixed particles
JPS6118574B2 (en)
CN109020395A (en) A kind of cement prefab, cement cementitious material and preparation method thereof
JP2766525B2 (en) Method for producing fibrous basic magnesium sulfate
CN112500639B (en) Isotropic high-strength polypropylene composite material and preparation method thereof
JPS6144106B2 (en)
Vašková et al. Biodegradable polymer packaging materials based on polycaprolactone, starch and polyhydroxybutyrate
JP2945262B2 (en) Polymer composition
JPS6136539B2 (en)
AU2003250655A1 (en) Oriented composite thermoplastic material with reactive filler
CN112409690B (en) High-melt-strength in-situ reinforced polypropylene composite material and preparation method thereof