JPS61286224A - Production of electroconductive fine powder - Google Patents

Production of electroconductive fine powder

Info

Publication number
JPS61286224A
JPS61286224A JP12746985A JP12746985A JPS61286224A JP S61286224 A JPS61286224 A JP S61286224A JP 12746985 A JP12746985 A JP 12746985A JP 12746985 A JP12746985 A JP 12746985A JP S61286224 A JPS61286224 A JP S61286224A
Authority
JP
Japan
Prior art keywords
chloride
solution
antimony
coprecipitate
fine powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12746985A
Other languages
Japanese (ja)
Other versions
JPH0114174B2 (en
Inventor
Masashi Sakamoto
坂本 正志
Haruo Okuda
奥田 晴夫
Hideo Takahashi
英雄 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishihara Sangyo Kaisha Ltd
Original Assignee
Ishihara Sangyo Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha Ltd filed Critical Ishihara Sangyo Kaisha Ltd
Priority to JP12746985A priority Critical patent/JPS61286224A/en
Publication of JPS61286224A publication Critical patent/JPS61286224A/en
Publication of JPH0114174B2 publication Critical patent/JPH0114174B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To obtain the fine powder having a superior electroconductivity by adding an aqueous hydrochloric acid solution of Sn chloride and Sb chloride and an alkaline aqueous solution into the water in parallel to each other to maintain the pH and by forming the coprecipitate. CONSTITUTION:The aqueous hydrochloric acid solution of Sn chloride and Sb chloride and the aqueous alkaline solution are added into the water in parallel to each other and the pH of the solution is maintained at 2-6. Next, the resultant coprecipitate is filtered, recovered and calcined.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は透明性を兼ね備えた導電性微粉末の製造方法に
関し、特に導電性プラスチックス、静電記録紙、帯電防
止用フィルムなどの導電性及び透明性付与剤、化学繊維
などの帯電防止剤として有用な導電性微粉末の製造方法
に関する。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for producing conductive fine powder that has transparency, and in particular to a method for producing conductive fine powder for use in conductive plastics, electrostatic recording paper, antistatic films, etc. The present invention also relates to a method for producing conductive fine powder useful as a transparency imparting agent and an antistatic agent for chemical fibers and the like.

(従来の技術) 導電性付与剤としては古くからカーボンブラックが知ら
れているが、このものは色が黒い、ビヒクルへの分散性
が悪い、発ガン性物質を含有しているなど、使用に際し
種々の制約を受けるのが現状である。これに対し、最近
ではアンチモンを含有した酸化スズ粉末の使用が報告さ
れており、このような粉末の製造法としては例えば、特
公昭55−6569号、特開昭57−71822号、特
開昭59−182229号などで提案されている。
(Prior art) Carbon black has been known as a conductivity imparting agent for a long time, but this material is black in color, has poor dispersibility in vehicles, and contains carcinogenic substances, making it difficult to use. Currently, it is subject to various restrictions. In contrast, the use of tin oxide powder containing antimony has recently been reported, and methods for producing such powder include, for example, Japanese Patent Publication No. 55-6569, Japanese Patent Application Laid-open No. 71822-1982, and Japanese Patent Application Publication No. 1987-71822. This method has been proposed in, for example, No. 59-182229.

(発明が解決しようとする問題点) 従来提案されている方法は、例えば、塩化第2スズと三
塩化アンチモンとアルコールとの混合溶液にアルカリ水
溶液を添加して水酸化スズと水酸化アンチモンとの共沈
物を生成させ、この共沈物を約80℃前後の温度で加熱
し熟成した後焼成する方法(特公昭55−6569号)
、塩化スズと塩化アンチモンをアルコール、塩酸或はア
セトンに溶解した溶液とアルカリとを熱水中に加え、p
H8以上に維持して反応させる方法(特開昭57−71
822号)、pH10以上のアルカリ水溶液を65℃以
上に保ちながら、この中に塩化スズ溶液を加え、最終的
にpHを5以下にして生成物を得、これを焼成して酸化
スズ微粉末を製造する方法(特開昭59−182229
号)などである。このような従来法は反応液の加熱を必
須とするものであり、*た得られる粉末の導電性はまだ
満足できるものでないためにその改良が望まれている。
(Problems to be Solved by the Invention) Conventionally proposed methods include, for example, adding an alkaline aqueous solution to a mixed solution of tin chloride, antimony trichloride, and alcohol to dissolve tin hydroxide and antimony hydroxide. A method of forming a coprecipitate, heating the coprecipitate at a temperature of about 80°C, ripening it, and then firing it (Japanese Patent Publication No. 55-6569)
, add a solution of tin chloride and antimony chloride in alcohol, hydrochloric acid, or acetone and an alkali to hot water,
Method for maintaining reaction at H8 or higher (Japanese Unexamined Patent Publication No. 57-71
No. 822), a tin chloride solution is added to an alkaline aqueous solution with a pH of 10 or higher while keeping it at 65°C or higher, the pH is finally adjusted to 5 or lower to obtain a product, and this is calcined to form tin oxide fine powder. Manufacturing method (Japanese Patent Application Laid-Open No. 59-182229
No.) etc. Such conventional methods require heating of the reaction solution, and since the conductivity of the resulting powder is still not satisfactory, improvements are desired.

本発明は、特に加熱することなく導電性の優れたアンチ
モン含有酸化スズ微粉末を製造する工業的方法に関する
The present invention particularly relates to an industrial method for producing fine antimony-containing tin oxide powder with excellent conductivity without heating.

(問題点を解決するための手段) 本発明は、塩化スズ及び塩化アンチモンの溶液を室温下
にてアルカリで中和するに際し、塩化スズ及び塩化アン
チモンの溶液中にアルカリ水溶液を添加する方法或はこ
れとは逆l:、アルカリ水溶液中に塩化スズ及び塩化ア
ンチモンの溶液を添加する方法では、優れた導電性のア
ンチモン含有酸化スズ微粉末は得られないが、水中に、
塩化スズ及び塩化アンチモンの溶液とアルカリ水溶液と
を並行的に加える中和法において、特に中和時のpHを
絶えず2〜6に保持しながら実施すると意外にも導電性
が著しく優れた微粉末が得られるという知見に基づくも
のである。
(Means for Solving the Problems) The present invention provides a method of adding an aqueous alkali solution to a solution of tin chloride and antimony chloride when neutralizing the solution of tin chloride and antimony chloride with an alkali at room temperature; On the contrary, the method of adding a solution of tin chloride and antimony chloride to an alkaline aqueous solution does not yield fine antimony-containing tin oxide powder with excellent conductivity.
In a neutralization method in which a solution of tin chloride and antimony chloride and an alkaline aqueous solution are added in parallel, a fine powder with extremely high conductivity is surprisingly obtained, especially when the pH is constantly maintained at 2 to 6 during neutralization. This is based on the knowledge that it can be obtained.

すなわち、本願発明は、塩化スズ及び塩化アンチモンの
溶液をアルカリで中和して酸化スズと酸化アンチモンの
共沈物から成る導電性微粉末を製造する方法において、
水中に、塩化スズ及び塩化アンチモンの塩酸水溶液とア
ルカリ水溶液とを中和反応液のpHを2〜6に保持する
よう5二添加して酸化スズと酸化アンチモンの水和物の
共沈物を生成させ、次に該反応液から該共沈物を回収し
、焼成することを特徴とする導電性微粉末の製造方法で
ある。
That is, the present invention provides a method for producing conductive fine powder consisting of a coprecipitate of tin oxide and antimony oxide by neutralizing a solution of tin chloride and antimony chloride with an alkali,
A hydrochloric acid aqueous solution and an alkali aqueous solution of tin chloride and antimony chloride are added to water to maintain the pH of the neutralization reaction solution at 2 to 6 to produce a coprecipitate of hydrated tin oxide and antimony oxide. This is a method for producing a conductive fine powder, which is characterized in that the coprecipitate is recovered from the reaction solution and calcined.

本発明方法で得られる導電性微粉末は、酸化アンチモン
を5b2o、として5〜30重量%望ましくは15〜2
5重量%含有し、残りが実質的に酸化スズ(Sn○2)
から成る組成を有し、粒径0.01〜0.2μのもので
ある。酸化アンチモンの量が上記範囲より少なすぎると
所望の導電性が得られ難くなり、また多すぎると酸化ア
ンチモンによる着色が強くなるので好ましくない。
The conductive fine powder obtained by the method of the present invention contains 5 to 30% by weight of antimony oxide, preferably 15 to 2% by weight, based on 5b2o.
Contains 5% by weight, and the remainder is essentially tin oxide (Sn○2)
It has a composition consisting of: and a particle size of 0.01 to 0.2μ. If the amount of antimony oxide is too small than the above range, it will be difficult to obtain the desired conductivity, and if it is too large, the coloration due to antimony oxide will become strong, which is not preferable.

本発明方法においてはまず、水中に、塩化スズ及び塩化
アンチモンの塩酸水溶液とアルカリ水溶液とを中和反応
液のpHを2〜6に保持するように添加して酸化スズと
酸化アンチモンの水和物の共沈物を生成させる。この場
合、中和反応液のpHが2〜6の酸性側に、望ましくは
pH2〜4に、特に望ましくはpH2〜3に保持される
ように、塩化スズ及び塩化アンチモンの塩酸水溶液とア
ルカリ水溶液とを並行的に添加して中和することが重要
である。中和法がこれとは異なる場合、例えば塩化スズ
及び塩化アンチモンの塩酸水溶液中にアルカリ水溶液を
添加したり、逆に、アルカリ水溶液中に塩化スズ及び塩
化アンチモンの塩酸水溶液を添加したりする方法では、
所望の導電性を有するアンチモン含有酸化スズ粉末が得
られない。なお、上記の並行的に添加するとは、中和反
応液のpHを所定範囲内に保持するように、該塩酸水溶
液とアルカリ水溶液とを別個にかつ連続的に或は断続的
に添加することも包含する。また本発明方法においては
、塩化スズ及び塩化アンチモンの塩酸水溶液は、側基酸
水溶液を別々に添加しても或は塩化スズと塩化アンチモ
ンとを塩酸中に予め混合、溶解した型で添加してもよい
が、予め混合した溶液を添加するのが摸作上望虫しい。
In the method of the present invention, first, a hydrochloric acid aqueous solution and an alkaline aqueous solution of tin chloride and antimony chloride are added to water so as to maintain the pH of the neutralization reaction solution at 2 to 6, thereby forming a hydrate of tin oxide and antimony oxide. to form a coprecipitate. In this case, a hydrochloric acid aqueous solution and an alkali aqueous solution of tin chloride and antimony chloride are mixed so that the pH of the neutralization reaction solution is maintained at an acidic side of 2 to 6, preferably at a pH of 2 to 4, and particularly preferably at a pH of 2 to 3. It is important to neutralize by adding in parallel. If the neutralization method is different from this, for example, adding an alkaline aqueous solution to an aqueous hydrochloric acid solution of tin chloride and antimony chloride, or conversely, adding a hydrochloric acid aqueous solution of tin chloride and antimony chloride to an alkaline aqueous solution, ,
Antimony-containing tin oxide powder having desired conductivity cannot be obtained. Note that the above-mentioned addition in parallel also means adding the hydrochloric acid aqueous solution and the alkaline aqueous solution separately and continuously or intermittently so as to maintain the pH of the neutralization reaction solution within a predetermined range. include. Furthermore, in the method of the present invention, the hydrochloric acid aqueous solution of tin chloride and antimony chloride can be added either by adding the side group acid aqueous solution separately or by adding the tin chloride and antimony chloride in a pre-mixed and dissolved form in the hydrochloric acid. Although it is possible, it is preferable to add a pre-mixed solution in terms of simulation.

本発明方法においては、中和反応を加熱することなく室
温下に実施できるので工業的に有利な方法であるが、必
要に応じ加熱して行なってもよく、その場合導電性を一
層向上させることができる。
The method of the present invention is an industrially advantageous method because the neutralization reaction can be carried out at room temperature without heating, but it may be carried out with heating if necessary, in which case the conductivity can be further improved. I can do it.

上記中和時のpHが前記範囲より低くなると酸化スズ及
び酸化アンチモンの水和物の共沈物が得られ難くなり、
また高くなると共沈物は得られるものの、導電性の優れ
た粉末が得られ難くなる。
When the pH at the time of neutralization is lower than the above range, it becomes difficult to obtain a coprecipitate of tin oxide and antimony oxide hydrate,
Moreover, if it becomes high, although a coprecipitate can be obtained, it becomes difficult to obtain powder with excellent conductivity.

中和に要する時間は、塩化スズ及び塩化アンチモンの量
によって異なり、−概に規定できないが、普通20分〜
4時間、好ましくは、30分〜2時間が過当である。
The time required for neutralization varies depending on the amounts of tin chloride and antimony chloride, and is generally between 20 minutes and 20 minutes, although it cannot be generally specified.
4 hours, preferably 30 minutes to 2 hours is sufficient.

塩化スズ及び塩化7ンチモンの塩酸水溶液における濃度
は、導電性微粉末中に酸化アンチモンがS b20 z
として、5〜30重量%望ましくは、15〜25重量%
含有し、残りが、実質的に酸化スズから成るような量で
ある。
The concentrations of tin chloride and antimony chloride in an aqueous hydrochloric acid solution are as follows: antimony oxide in the conductive fine powder is S b20 z
5 to 30% by weight, preferably 15 to 25% by weight
tin oxide, with the remainder consisting essentially of tin oxide.

中和剤として使用するアルカリ水溶液のアルカリとして
は、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウ
ム、炭酸カリウムなどのアルカリ金属の水酸化物、炭酸
塩やアンモニアなどが挙げられる。
Examples of the alkali in the aqueous alkali solution used as a neutralizing agent include alkali metal hydroxides, carbonates, and ammonia such as sodium hydroxide, potassium hydroxide, sodium carbonate, and potassium carbonate.

本発明方法においては、次に、中和反応終了後の反応液
から共沈物を濾過、洗浄して回収するが、共沈物を回収
する前の反応液のpHも中和反応時のpH2〜6の範囲
に維持されていることが重要である。中和反応をpHが
2〜6に維持されるように実施しても共沈物回収前の反
応液の最終pHがこの範囲から逸脱した場合は、所望の
導電性微粉末が得られ難い。
In the method of the present invention, the coprecipitate is then collected by filtration and washing from the reaction solution after the neutralization reaction, but the pH of the reaction solution before collecting the coprecipitate is also the same as the pH at the time of the neutralization reaction. It is important that it is maintained within the range of ~6. Even if the neutralization reaction is carried out so that the pH is maintained at 2 to 6, if the final pH of the reaction solution before collecting the coprecipitate deviates from this range, it is difficult to obtain the desired conductive fine powder.

回収した共沈物は、その後必要に応じて乾燥した後40
0〜1,200℃、望ましくは500〜700℃の温度
で焼成してアンチモン含有酸化スズとした後、通常の粉
砕処理を施して粒径0.01〜0.2μの導電性微粉末
とする。焼成温度が前記範囲より低すぎると焼成が不十
分となり所望の導電性が得られ難くなり、高すぎると粉
末粒子同志の焼結が起こり、その後粉砕処理を施しても
透明性を与えるような粒径の粉末にできない。なお、焼
成時間は30分〜5時間望ましくは1〜2時間が適当で
ある。
The recovered coprecipitate is then dried as necessary and then dried for 40 minutes.
After baking at a temperature of 0 to 1,200°C, preferably 500 to 700°C to obtain antimony-containing tin oxide, it is subjected to a conventional pulverization treatment to form a conductive fine powder with a particle size of 0.01 to 0.2μ. . If the firing temperature is too low than the above range, the firing will be insufficient and it will be difficult to obtain the desired conductivity. If the firing temperature is too high, the powder particles will sinter with each other, resulting in particles that remain transparent even after subsequent pulverization. It cannot be made into a powder of the diameter. The firing time is suitably 30 minutes to 5 hours, preferably 1 to 2 hours.

実施例1゜ 室温(25℃)の水1g中に、塩化スズ<5nCI2−
 ・5H20)232゜6g及び塩化アンチモン(S 
b+OL) 25 、0 gを3N−塩酸溶液500c
cに溶解した溶液と10%の水酸化す) +7ウム水溶
液とを系のpHを2〜3に維持するように60分間にわ
たって並行添加して酸化スズと酸化アンチモンの水和物
の共沈物を生成させた。なお、共沈物生成後の反応液の
最終pHは2.5であった。次に該共沈物を濾過し、濾
液の比抵抗が50μsになるまで洗浄して回収した。回
収した共沈物を乾燥した後電気炉で700℃にて1時間
焼成し、次いでパルペライザーで粉砕して平均粒径0.
09μの導電性微粉末を得た。
Example 1 Tin chloride<5nCI2- in 1g of water at room temperature (25°C)
・5H20) 232°6g and antimony chloride (S
b+OL) 25,0 g in 3N-hydrochloric acid solution 500c
A solution of tin oxide and a 10% aqueous solution of 7 um hydroxide were added in parallel over a period of 60 minutes to maintain the pH of the system at 2 to 3 to form a coprecipitate of hydrated tin oxide and antimony oxide. was generated. Note that the final pH of the reaction solution after the coprecipitate was formed was 2.5. Next, the coprecipitate was filtered, washed and collected until the specific resistance of the filtrate reached 50 μs. After drying the recovered coprecipitate, it was calcined in an electric furnace at 700°C for 1 hour, and then pulverized with a pulperizer to have an average particle size of 0.
A conductive fine powder of 0.09μ was obtained.

実施例2゜ 実施例1において、中和時のpHを4〜5に保持するよ
うに中和すること以外は同様に処理した。なお、本実施
例では中和終了後のpHは4.6になったので、塩酸を
加えて最終的にpHを3.0に調整した。
Example 2 The same procedure as in Example 1 was carried out except that the pH at the time of neutralization was maintained at 4 to 5. In this example, the pH after neutralization was 4.6, so hydrochloric acid was added to adjust the final pH to 3.0.

実施例3 実施例1において、70℃の加熱水1ρを使用すること
以外は同様に処理した。なお、中和終了後の最終pHは
2.9であった。
Example 3 The same procedure as in Example 1 was carried out except that 1 ρ of 70° C. heated water was used. Note that the final pH after neutralization was 2.9.

実施例4゜ 実施例1において、70℃の加熱水1gを使用すること
及び中和時のpHを4〜5に保持するように中和するこ
と以外は同様に処理した。なお、本実施例では中和終了
後のpHは5.0になったので、塩酸を加えて最終的に
pHを3 、0 !:調整した。
Example 4 The same procedure as in Example 1 was carried out except that 1 g of heated water at 70° C. was used and the pH during neutralization was maintained at 4 to 5. In addition, in this example, the pH after neutralization was 5.0, so hydrochloric acid was added and the final pH was adjusted to 3.0! :It was adjusted.

比較例1゜ 実施例1において、中和時のpHを6〜9に保持するよ
うに中和したこと以外は同様に処理した。なお、本比較
例では中和終了後の最終pHを7.0に調整した。
Comparative Example 1 The same procedure as in Example 1 was carried out except that the pH at the time of neutralization was maintained at 6 to 9. In this comparative example, the final pH after neutralization was adjusted to 7.0.

比較例2゜ 比較例1において、最終pHを3.0に調整すること以
外は同様に処理した。
Comparative Example 2 The same procedure as in Comparative Example 1 was carried out except that the final pH was adjusted to 3.0.

比較例3゜ 実施例3において、中和時のpHを6〜9に保持するよ
うに中和したこと以外は同様に処理した。なお、本比較
例では中和終了後の最終pHを7.OI:調整した。
Comparative Example 3 The same procedure as in Example 3 was carried out except that the pH at the time of neutralization was maintained at 6 to 9. In this comparative example, the final pH after neutralization was set to 7. OI: Adjusted.

比較例4 比較例3において、最終pHを3.0に調整すること以
外は同様に処理した。
Comparative Example 4 The same procedure as in Comparative Example 3 was carried out except that the final pH was adjusted to 3.0.

比較例5゜ 実施例1において、最終pHを9.0に調整すること以
外は同様に処理した。
Comparative Example 5 The same procedure as in Example 1 was carried out except that the final pH was adjusted to 9.0.

比較例6゜ 室温(25°C)の水IQ中に、塩化スズ(SnCL*
 5H20)232.6g及び塩化アンチモン(SbC
ρ、)25.0gを3N−塩酸溶液500ccに溶解し
た溶液を30分間にわたって添加した。その後攪拌しな
がら懸濁液の最終pHが3.0になるように10%の水
酸化ナトリウム水溶液を40分間にわたって添加した後
、実施例1と同様にして濾過、洗浄、乾燥した後文に同
様に処理した。
Comparative Example 6 In water IQ at room temperature (25°C), tin chloride (SnCL*
5H20) and 232.6 g of antimony chloride (SbC
A solution of 25.0 g of ρ, ) dissolved in 500 cc of 3N hydrochloric acid solution was added over 30 minutes. Thereafter, a 10% aqueous sodium hydroxide solution was added over 40 minutes while stirring so that the final pH of the suspension was 3.0, and then filtered, washed, and dried in the same manner as in Example 1. processed.

比較例7゜ 比較例6において、中和終了時のpHが7.0になるよ
うに水酸化ナトリウム水溶液を添加すること以外は同様
に処理した。
Comparative Example 7 Comparative Example 6 was treated in the same manner as in Comparative Example 6, except that an aqueous sodium hydroxide solution was added so that the pH at the end of neutralization was 7.0.

比較例8゜ 比較例6において、70℃の加熱水1gを使用すること
以外は同様に処理した。
Comparative Example 8 Comparative Example 6 was treated in the same manner as in Comparative Example 6 except that 1 g of 70° C. heated water was used.

比較例9゜ 比較例6において、70℃の加熱水IQを使用すること
及び中和終了時のpHが7.0になるように水酸化ナト
リウム水溶液を添加すること以外は同様に処理した。
Comparative Example 9 Comparative Example 6 was treated in the same manner as in Comparative Example 6, except that heated water IQ at 70° C. was used and an aqueous sodium hydroxide solution was added so that the pH at the end of neutralization was 7.0.

試験例1゜ 前記実施例及び比較例で得られたアンチモン含有酸化ズ
ス微粉末についてその粉体抵抗(Ωc+n)を次の方法
で測定し、表1の結果を得た。
Test Example 1 The powder resistance (Ωc+n) of the antimony-containing tin oxide fine powders obtained in the Examples and Comparative Examples was measured by the following method, and the results shown in Table 1 were obtained.

(粉体抵抗の評価) 試料粉末を100 Kg/am2の圧力で成型して円柱
状圧粉体(直径18mm、厚さ3mm)とし、その直流
抵抗を測定した。
(Evaluation of Powder Resistance) The sample powder was molded at a pressure of 100 Kg/am2 to form a cylindrical compact (diameter 18 mm, thickness 3 mm), and its DC resistance was measured.

なお、平均粒径は、電子顕微鏡写真法により測定したが
、比較例6〜9の微粉末は非常に不揃いのために平均粒
径の測定が困難であった。
Note that the average particle size was measured by electron microphotography, but the fine powders of Comparative Examples 6 to 9 were extremely irregular, making it difficult to measure the average particle size.

表1 実施例1 並行添加  25 2〜3 2.5  1,
7   0.092〃〃4〜53.02,0 0.1 3     〃       フ0    2〜3  
 2.9    1.0      0.Q54〃〃4
〜53.01,4 0.06 比較例1 並行添加  25 6〜9 フ、0 1.2
X104 0,1’l  //  //  //  3
,08,5 0.13 1/  70  II  7.
010.9 0.094  II  II  II  
3.06.0 0.085  II  25 2〜39
.04,3X1020.096一括添加  1/   
 −3,017,50,1〜2フ       II 
          II         −7,0
2,7X10’  0.1〜1.58 1/  70 
− 3.015.80.08〜19  II  II 
 −7,04,2X1020.08〜1.2試験例2゜ 前記実施例3で得られたアンチモン含有酸化スズ微粉末
をポリビニルアルコール樹脂に混合して塗料化(PVC
:28%)した後プラスチックフィルム(商品名7ジタ
ツク、富士写真フィルム株式会社製)に塗布した。塗膜
の乾燥膜厚は2μであった。
Table 1 Example 1 Parallel addition 25 2-3 2.5 1,
7 0.092〃〃4~53.02,0 0.1 3〃F0 2~3
2.9 1.0 0. Q54〃〃4
~53.01,4 0.06 Comparative Example 1 Parallel addition 25 6-9 F,0 1.2
X104 0,1'l // // // 3
,08,5 0.13 1/70 II 7.
010.9 0.094 II II II
3.06.0 0.085 II 25 2-39
.. 04.3X1020.096 bulk addition 1/
-3,017,50,1~2f II
II -7,0
2,7X10' 0.1~1.58 1/70
- 3.015.80.08-19 II II
-7,04,2
:28%) and then coated on a plastic film (trade name: 7 JITATSUKU, manufactured by Fuji Photo Film Co., Ltd.). The dry film thickness of the coating film was 2μ.

この塗膜の550nmの波長光における透過率を自記分
光光度計UV−240(高滓製作所製)で測定した結果
88.9%の良好なものであった。また、この塗膜の表
面抵抗をデジタルオームメーターR−506型(川口電
機株式会社製)で測定した結果1.0×10SΩ/口で
あった。
The transmittance of this coating film at a wavelength of 550 nm was measured using a self-recording spectrophotometer UV-240 (manufactured by Takasu Seisakusho), and the result was a good value of 88.9%. Further, the surface resistance of this coating film was measured using a digital ohmmeter model R-506 (manufactured by Kawaguchi Electric Co., Ltd.) and found to be 1.0×10 SΩ/mouth.

なお、実施例1で得られたアンチモン含有酸化スズ微粉
末についても同様の試験を行なったところ同等の結果が
得られた。
A similar test was conducted on the antimony-containing tin oxide fine powder obtained in Example 1, and similar results were obtained.

(発明の効果) 試験例1及び2の結果から明らかなように、本発明方法
は室温下においても優れた導電性微粉末が得られること
が判る。
(Effects of the Invention) As is clear from the results of Test Examples 1 and 2, it can be seen that the method of the present invention provides excellent conductive fine powder even at room temperature.

Claims (1)

【特許請求の範囲】[Claims]  塩化スズ及び塩化アンチモンの溶液をアルカリで中和
して酸化スズと酸化アンチモンの共沈物から成る導電性
微粉末を製造する方法において、水中に塩化スズ及び塩
化アンチモンの塩酸水溶液とアルカリ水溶液とを中和反
応液のpHを2〜6に保持するように添加して酸化スズ
と酸化アンチモンの水和物の共沈物を生成させ、次に該
反応液から該共沈物を回収し、焼成することを特徴とす
る導電性微粉末の製造方法。
In a method for producing conductive fine powder consisting of a coprecipitate of tin oxide and antimony oxide by neutralizing a solution of tin chloride and antimony chloride with an alkali, a hydrochloric acid aqueous solution and an alkali aqueous solution of tin chloride and antimony chloride are added to water. The pH of the neutralization reaction solution is maintained at 2 to 6 to form a coprecipitate of hydrated tin oxide and antimony oxide, and then the coprecipitate is collected from the reaction solution and calcined. A method for producing conductive fine powder, characterized by:
JP12746985A 1985-06-12 1985-06-12 Production of electroconductive fine powder Granted JPS61286224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12746985A JPS61286224A (en) 1985-06-12 1985-06-12 Production of electroconductive fine powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12746985A JPS61286224A (en) 1985-06-12 1985-06-12 Production of electroconductive fine powder

Publications (2)

Publication Number Publication Date
JPS61286224A true JPS61286224A (en) 1986-12-16
JPH0114174B2 JPH0114174B2 (en) 1989-03-09

Family

ID=14960696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12746985A Granted JPS61286224A (en) 1985-06-12 1985-06-12 Production of electroconductive fine powder

Country Status (1)

Country Link
JP (1) JPS61286224A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476613A (en) * 1992-06-29 1995-12-19 E. I. Du Pont De Nemours And Company Electroconductive material and process
EP0719730A1 (en) * 1994-12-27 1996-07-03 Ishihara Sangyo Kaisha, Ltd. Acicular electroconductive tin oxide fine particles and process for producing same
US5788887A (en) * 1996-11-01 1998-08-04 E. I. Du Pont De Nemours And Company Antimony doped tin oxide electroconductive powder
US5788913A (en) * 1996-11-01 1998-08-04 E. I. Du Pont De Nemours And Company Processes to prepare antimony doped tin oxide electroconductive powders
WO2002083567A3 (en) * 2001-04-12 2003-02-20 Engelhard Corp Additive for yag laser marking

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156606A (en) * 1980-05-06 1981-12-03 Mitsubishi Metal Corp Method of producing conductive fine powder
JPS5771822A (en) * 1980-10-24 1982-05-04 Mitsubishi Metal Corp Production of electrically conductive fine particles
JPS58209002A (en) * 1982-05-28 1983-12-05 チタン工業株式会社 Method of producing white conductive powder
JPS59102820A (en) * 1982-12-02 1984-06-14 Res Inst For Prod Dev Production of electrically-conductive alkali metal titanate
JPS60253112A (en) * 1984-05-30 1985-12-13 触媒化成工業株式会社 Method of producing light transmission flat plate conductiveblank

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56156606A (en) * 1980-05-06 1981-12-03 Mitsubishi Metal Corp Method of producing conductive fine powder
JPS5771822A (en) * 1980-10-24 1982-05-04 Mitsubishi Metal Corp Production of electrically conductive fine particles
JPS58209002A (en) * 1982-05-28 1983-12-05 チタン工業株式会社 Method of producing white conductive powder
JPS59102820A (en) * 1982-12-02 1984-06-14 Res Inst For Prod Dev Production of electrically-conductive alkali metal titanate
JPS60253112A (en) * 1984-05-30 1985-12-13 触媒化成工業株式会社 Method of producing light transmission flat plate conductiveblank

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476613A (en) * 1992-06-29 1995-12-19 E. I. Du Pont De Nemours And Company Electroconductive material and process
US5569413A (en) * 1992-06-29 1996-10-29 E. I. Du Pont De Nemours And Company Electroconductive material and process
EP0719730A1 (en) * 1994-12-27 1996-07-03 Ishihara Sangyo Kaisha, Ltd. Acicular electroconductive tin oxide fine particles and process for producing same
US5788887A (en) * 1996-11-01 1998-08-04 E. I. Du Pont De Nemours And Company Antimony doped tin oxide electroconductive powder
US5788913A (en) * 1996-11-01 1998-08-04 E. I. Du Pont De Nemours And Company Processes to prepare antimony doped tin oxide electroconductive powders
WO2002083567A3 (en) * 2001-04-12 2003-02-20 Engelhard Corp Additive for yag laser marking
US6693657B2 (en) 2001-04-12 2004-02-17 Engelhard Corporation Additive for YAG laser marking

Also Published As

Publication number Publication date
JPH0114174B2 (en) 1989-03-09

Similar Documents

Publication Publication Date Title
EP0267535B1 (en) Acicular electroconductive titanium oxide and process for producing same
JP3524550B2 (en) Improved process for producing silica-coated inorganic particles
EP0828690B1 (en) Spheroidally agglomerated basic cobalt (ii) carbonate and spheroidally agglomerated cobalt (ii) hydroxide, process for their production and their use
JPH0769633A (en) Preparation of fluorine dope oxidation tin powder
GB2181723A (en) Stabilised zirconia
JPH06207118A (en) White conductive titanium dioxide powder and its production
JPS61286224A (en) Production of electroconductive fine powder
JP3305405B2 (en) Rod-shaped fine particle conductive titanium oxide and method for producing the same
US3954951A (en) Preparation of red amorphous selenium
JP3646818B2 (en) Bismuth oxycarbonate powder and method for producing the same
JP2844011B2 (en) Conductive fine powder and method for producing the same
JPH10231441A (en) Microparticulate composite oxide black pigment and its production
JPS61141616A (en) Electrically conductive titanium dioxide fine powder, and production thereof
JP3609159B2 (en) Acicular conductive antimony-containing tin oxide fine powder and method for producing the same
JPS621574B2 (en)
JP3647929B2 (en) Method for producing conductive antimony-containing tin oxide fine powder
JP2858271B2 (en) Method for producing conductive fine powder
JPS61286221A (en) Preparation of white electroconductive powder
JPH03263705A (en) Manufacture of conductive fine powder
JPH04164813A (en) Production of zinc oxide powder
JPS63112421A (en) Production of antiomony-doped tin oxide powder
JP2508531B2 (en) Method for producing antimony oxide powder
JPS621572B2 (en)
JPH0479104A (en) Conductive powder and manufacture thereof
JPS621573B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees