JPS61285306A - Burning method for pulverized carbon fuel - Google Patents

Burning method for pulverized carbon fuel

Info

Publication number
JPS61285306A
JPS61285306A JP12621485A JP12621485A JPS61285306A JP S61285306 A JPS61285306 A JP S61285306A JP 12621485 A JP12621485 A JP 12621485A JP 12621485 A JP12621485 A JP 12621485A JP S61285306 A JPS61285306 A JP S61285306A
Authority
JP
Japan
Prior art keywords
fuel
pulverized coal
burner
load
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12621485A
Other languages
Japanese (ja)
Inventor
Manabu Orimoto
折本 学
Fumio Koda
幸田 文夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP12621485A priority Critical patent/JPS61285306A/en
Publication of JPS61285306A publication Critical patent/JPS61285306A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable to make turn-down ratio large by supplying a part of high density fuel to a burner having a fuel injection cylinder in such manner that at the end of fuel supply tube, fuel separation unit is installed. CONSTITUTION:Pulverized coal and air in a supply tube 25 are swirled by a cyclone 19 as a fuel separation device and a part of gas flow containing ultrafine pulverized coal flows into a cyclone inner cylinder 30 and is injected and burnt from a vent burner 23 via a vent tube 20, however, most part of pulverized coal is centrifugally separated and gathered in the inner wall side of the cyclone and injected along the wall sirling toward an end opening part of a injection by cylinder 5. At this time, the density of pulverized coal is controlled by a flow controlling device with no relation to burner load variation. Also, as the vent tube is essentially an air vent, density of coal is controlled even when load is low or high.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は微粉炭などの粉状炭素燃料を燃焼させる方法に
係り、特に高燃料比炭やオイルコークスを燃焼させる場
合でも幅広い負荷制御を行うことのできる燃焼方法に関
する。
[Detailed Description of the Invention] <Industrial Field of Application> The present invention relates to a method for burning pulverized carbon fuel such as pulverized coal, and in particular, a method that performs a wide range of load control even when burning high fuel ratio coal or oil coke. Regarding combustion methods that can be used.

〈従来技術及びその問題点〉 例えば火力発電所用ボイラにおいては、燃料事情の変化
により、石油燃料から石炭燃料への転換が積極的に行わ
れている。この場合、発電所の電力需要の変動、例えば
夏場、冬場の季節差、平日とと休日の差等により発電所
の発電負荷はかなり大きく変動する。最近では原子力発
電の発電量が増大しているため、原子力発電をベースロ
ードとし、従来はベースロードとして一定負荷で運転し
て来た火力発電所用大型ボイラを負荷変動させる必要が
生じている。
<Prior art and its problems> For example, in boilers for thermal power plants, conversion from petroleum fuel to coal fuel is actively being carried out due to changes in fuel conditions. In this case, the power generation load of the power station varies considerably due to fluctuations in the power demand of the power station, such as seasonal differences between summer and winter, and differences between weekdays and holidays. Recently, as the amount of power generated by nuclear power generation has increased, it has become necessary to use nuclear power generation as a base load and to vary the load of large boilers for thermal power plants, which have conventionally been operated at a constant load as a base load.

第2図は従来型微粉炭燃焼システムを示す。Figure 2 shows a conventional pulverized coal combustion system.

燃料はコールバンカ41から減炭機43を経て微粉炭機
45へ供給される。微粉炭機45内では燃料は粉砕され
1次空気7アン51からの熱空気によって乾燥9分級、
移送が行なわれる。微粉炭は微粉炭管46から微粉炭バ
ーナ48を経て火炉へ供給され風道47及び風箱50か
ら送気される燃焼空気と共に混合燃焼するものである。
Fuel is supplied from the coal bunker 41 to the pulverizer 45 via the coal reducer 43. In the coal pulverizer 45, the fuel is pulverized and dried by hot air from the primary air 7 amp 51.
Transfer takes place. The pulverized coal is supplied to the furnace from the pulverized coal pipe 46 through the pulverized coal burner 48, and is mixed and burned with combustion air sent from the wind duct 47 and the wind box 50.

なお同図において符号32.33は一次及び二次の空気
予熱器、40は送風機である。
In the figure, numerals 32 and 33 are primary and secondary air preheaters, and 40 is a blower.

以上の装置において、第3図の如く微粉炭機への燃料炭
の供給はその負荷率に比例しで供給されるのに対して、
−次空気量は微粉炭管内での微粉炭の堆積防止、バーナ
がらの逆火防止を目的に微粉炭機負荷率が50%以下に
おいても最大負荷の空気供給量の70%を保持するよう
制御している。
In the above device, fuel coal is supplied to the pulverizer in proportion to its load factor, as shown in Figure 3.
-The secondary air amount is controlled to maintain 70% of the maximum load air supply amount even when the pulverizer load rate is below 50%, in order to prevent pulverized coal from accumulating in the pulverized coal pipe and to prevent burner backfire. are doing.

一部バーナから火炉内に供給された微粉炭は炉内からの
輻射熱の影響で高負荷帯では雰囲気温度が高く、低負荷
帯では雰囲気温度が低下する。また燃料の性状、すなわ
ち燃料中に含まれる揮発分、全水分、灰分1粒径によっ
て着火温度、着火温度迄に到達する時間(着火時間)は
異なってくる。第4図はこれらの点につき具体的に示し
たものである。
Pulverized coal supplied into the furnace from some burners has a high ambient temperature in high load zones and a low ambient temperature in low load zones due to the influence of radiant heat from inside the furnace. Further, the ignition temperature and the time required to reach the ignition temperature (ignition time) vary depending on the properties of the fuel, that is, the volatile content, total moisture, and ash particle size contained in the fuel. FIG. 4 specifically shows these points.

高負荷域では雰囲気温度が高くがっ粉炭濃度が高いため
、同一揮発分、例えば30%の状態で着火温度約500
’C,の条件下において、着火時間は約0.05秒であ
るが、低負荷域では着火時間が約0.15秒と約3倍と
なる。ここで、高負荷域の雰囲気温度は約1200℃、
粉炭濃度はo、55、低負荷域の雰囲気温度は約100
0’c、粉炭濃度は0.3とする。この様に低負荷域で
は着火時間が長くなる結果、保炎が困難となり、いわゆ
る吹き飛び燃焼となり、火炎の長炎化、燃焼の不安定が
生じ、粉炭専焼での最低負荷のより一層の低下は困難で
ある。このためボイラに要求されるこれまで以上の低負
荷を実現することが困難となる場合も生じている。なお
、Box低減上は粉炭濃度を高めた方が効果的であるこ
とは判明しているが、微粉炭器の機能及び微粉炭輸送上
微粉炭濃度(0/ A 、 coal/Air重量比)
は0.6〜0.7が限界となっている。
In the high load area, the atmospheric temperature is high and the powdered coal concentration is high, so the ignition temperature is about 500% with the same volatile content, for example 30%.
Under the condition 'C, the ignition time is approximately 0.05 seconds, but in the low load range the ignition time is approximately three times as long as approximately 0.15 seconds. Here, the ambient temperature in the high load area is approximately 1200℃,
The powder coal concentration is o, 55, and the ambient temperature in the low load area is about 100.
0'c, and the powdered coal concentration is 0.3. In this way, in the low load range, the ignition time becomes longer, making it difficult to hold the flame, resulting in so-called blow-off combustion, resulting in a longer flame and unstable combustion, which further reduces the minimum load in pulverized coal-only combustion. Have difficulty. For this reason, it has sometimes become difficult to realize the lower loads required of boilers than ever before. In addition, it has been found that increasing the concentration of pulverized coal is more effective in terms of box reduction, but the pulverized coal concentration (0/A, coal/Air weight ratio) is
The limit is 0.6 to 0.7.

く本発明の目的〉 本発明は上述した問題点に鑑み創作したものであり、バ
ーナ負荷に係りなく常時適正な微粉炭濃度を保持でき、
従ってターンダウン比を大きくすることのできるバーナ
燃焼方法を提供することを目的とする。
Purpose of the present invention The present invention was created in view of the above-mentioned problems, and can maintain an appropriate pulverized coal concentration at all times regardless of the burner load.
Therefore, it is an object of the present invention to provide a burner combustion method that can increase the turndown ratio.

く本発明の概要〉 要するに本発明は粉状炭素燃料と搬送用気体の混合体を
搬送する燃料供給管の終端部付近に燃料分離装置(特に
サイクロンセパレータが好適)を配置し、該分離装置に
おいて燃料濃度の高い混合体と同濃度の低い混合体に分
離し燃料濃度の高い混合気をバーナに供給して燃焼せし
める如くなして低負荷時においてもバーナ供給燃料濃度
を適正に保持し得るよう構成した燃焼方法である。
Summary of the Invention In summary, the present invention provides a fuel separation device (especially preferably a cyclone separator) near the terminal end of a fuel supply pipe that conveys a mixture of powdered carbon fuel and a transportation gas, and in the separation device. The fuel mixture is separated into a mixture with a high fuel concentration and a mixture with a low concentration of the same, and the mixture with a high fuel concentration is supplied to the burner for combustion, so that the concentration of fuel supplied to the burner can be maintained at an appropriate level even under low load. This is a combustion method.

〈実施例〉 以下本発明の実施例につき具体的に説明する。<Example> Examples of the present invention will be specifically described below.

第1図(A)及び(B)において、符号5は微粉炭噴射
筒、19はこの噴射筒の基部、つまり微粉炭流入側端部
に設けたサイクロンセパレータである。
In FIGS. 1A and 1B, reference numeral 5 denotes a pulverized coal injection cylinder, and numeral 19 denotes a cyclone separator provided at the base of this injection cylinder, that is, at the end on the pulverized coal inflow side.

30はこのサイクロンセパレータ19内に配置し、かつ
微粉炭噴射筒5における流体の流れと逆の方向に、セパ
レータ内流体を流入させるよう構成したサイクロン内筒
である。°サイクロン内筒30はベント筒20を介して
ペントバーナz3に接続している。21はベント管内に
配置したダンパ等の流量制御装置、22は流量制御装置
駆動用の駆動装置である。また微粉炭供給管25は同図
(B)の如くサイクロンセパレータ19の側壁接線方向
に開口し、セパレータ内に旋回流を形成するよう構成し
ている。
Reference numeral 30 denotes a cyclone inner cylinder arranged within the cyclone separator 19 and configured to allow fluid in the separator to flow in the direction opposite to the flow of fluid in the pulverized coal injection cylinder 5. ° The cyclone inner cylinder 30 is connected to the pento burner z3 via the vent cylinder 20. 21 is a flow control device such as a damper disposed in the vent pipe, and 22 is a drive device for driving the flow control device. Further, the pulverized coal supply pipe 25 opens in the tangential direction of the side wall of the cyclone separator 19, as shown in FIG.

なお、符号3は3次空気、4は2次空気、6は噴射筒内
に形成したベンチュリー、11は点火トーチ、12はバ
ーナスロート、13はバーナ火炎、16は2次旋回ベー
ン、17は3次空気用レジスタ、18は2次空気用レジ
スタである。
In addition, the code|symbol 3 is tertiary air, 4 is secondary air, 6 is a venturi formed in the injection cylinder, 11 is an ignition torch, 12 is a burner throat, 13 is a burner flame, 16 is a secondary swirl vane, 17 is 3 A secondary air register 18 is a secondary air register.

以上の構成の装置において、微粉炭供給管25から流入
した微粉炭及び搬送空気(1次空気)はサイクロンセパ
レータ19内で旋回流を形成し供給微粉炭の一部は超微
粉を中心とする粒度分布の微粉炭を含む気体流としてサ
イクロン内筒30に流入し、ベンド管2oを経てペンド
バーナ23から噴射し、燃焼する。なお、ベント管2゜
中の混合体をバグフィルタ−で濾過して燃料は回収し、
気体は大気放出することもできるし、混合体を石炭バン
カ41に放出することもできる。
In the apparatus having the above configuration, the pulverized coal and conveying air (primary air) flowing from the pulverized coal supply pipe 25 form a swirling flow within the cyclone separator 19, and a part of the supplied pulverized coal has a particle size mainly of ultra-fine powder. It flows into the cyclone inner cylinder 30 as a gas flow containing distributed pulverized coal, passes through the bend pipe 2o, is injected from the pend burner 23, and is combusted. In addition, the mixture in the vent pipe 2° is filtered with a bag filter to recover the fuel.
The gas can be discharged into the atmosphere, or the mixture can be discharged into the coal bunker 41.

一方サイクロン19内では、供給微粉炭の大部分が遠心
分離され、サイクロンセパレータ19の内壁側に集まる
。この状態で分離微粉炭は噴射筒5の先端開口部に向っ
て旋回しながら壁面に沿って流れ噴射される。つまりサ
イクロン内筒30に流入する気流中の超微粒粉が多く、
かつ微粉炭濃度は低いものとなり、反対に噴射筒5から
は、この内筒30に流入した分だけ気体量が減少し相対
的に微粉炭濃度は上昇する。従って流量制御装置21を
調節することにより、バーナ負荷の変動に係りなく微粉
炭濃度を適正に保持でき良好な燃焼を行える。なお、ベ
ント管20は本来エアベントが可能であるので、上述の
低負荷時のみでなく、高負荷時においても微粉炭濃度制
御が可能である。
On the other hand, within the cyclone 19, most of the supplied pulverized coal is centrifuged and collected on the inner wall side of the cyclone separator 19. In this state, the separated pulverized coal flows along the wall surface while rotating toward the tip opening of the injection cylinder 5 and is injected. In other words, there are many ultrafine particles in the airflow flowing into the cyclone inner cylinder 30,
Moreover, the pulverized coal concentration becomes low, and conversely, the amount of gas from the injection tube 5 that flows into the inner tube 30 decreases, and the pulverized coal concentration relatively increases. Therefore, by adjusting the flow rate control device 21, the pulverized coal concentration can be maintained appropriately regardless of changes in burner load, and good combustion can be achieved. Note that since the vent pipe 20 is inherently capable of air venting, the pulverized coal concentration can be controlled not only during the above-mentioned low load but also during high load.

第5図は上述の装置を用いた制御例を示す。FIG. 5 shows an example of control using the above-described device.

同図において、微粉炭機1次風量は第3図にも示したと
おり負荷50%以下では約70%と一定にしている。こ
こで、流量制御装置21を調節してベント量(ペントバ
ーナ23へ供給する流量)を調節することにより (但
し図中微粉炭機−次風量下の斜線部のベント量は装置2
1の開度を小とした場合のベント量を示す)、バーナ口
空気量は低下し、相対的に微粉炭濃度は上昇する。なお
、符号すはベント量をaよりも大とした場合を示し、低
負荷となるほどベント量を大とし、微粉炭濃度を所定の
値に保持する。
In the figure, the pulverizer primary air volume is kept constant at about 70% when the load is 50% or less, as shown in FIG. Here, by adjusting the flow rate control device 21 to adjust the vent amount (flow rate supplied to the pento burner 23),
1), the amount of air at the burner port decreases, and the pulverized coal concentration relatively increases. Note that the symbol "a" indicates the case where the vent amount is larger than a, and the lower the load, the larger the vent amount is to maintain the pulverized coal concentration at a predetermined value.

以上の如く構成することにより微粉炭バーナの制御範囲
を広く、例えば従来技術の場合最低負荷が約40%であ
ったものを約20%に低下させることが可能である。以
上の実施例では燃料として微粉炭を使う場合をのべたが
、本発明は微粉炭燃料に限定されるものではなく、重油
からナフサやガソリンを抽出した残分であるオ≧ルコー
クスに適用されることはいうまでもない。
With the above configuration, it is possible to widen the control range of the pulverized coal burner, and for example, in the case of the prior art, the minimum load can be reduced from about 40% to about 20%. Although the above embodiments have been described using pulverized coal as fuel, the present invention is not limited to pulverized coal fuel, but can be applied to oil≧ol coke, which is the residue obtained by extracting naphtha or gasoline from heavy oil. Needless to say.

〈効果〉 本発明を実施することによりバーナ負荷に係りなくバー
ナの微粉炭濃度を調節し得るので、バーナのターンダウ
ン比を大きくすることができ、制御性の優れたバーナを
提供することができる。
<Effects> By implementing the present invention, the pulverized coal concentration in the burner can be adjusted regardless of the burner load, so the turndown ratio of the burner can be increased, and a burner with excellent controllability can be provided. .

また噴射筒からは微粉炭含有気体が旋回流として噴射さ
れ、中心部が微粉炭濃度が薄く、周囲に高い濃度の微粉
炭が供給され、着火性が高く、かつ中心部も高温雰囲気
となるため低濃度ながら着火性は向上し、バーナ全体と
しての燃焼性はこの点からも向丘する。
In addition, the pulverized coal-containing gas is injected as a swirling flow from the injection tube, and the pulverized coal concentration is low in the center, and the surrounding area is supplied with a high concentration of pulverized coal, which has high ignitability and creates a high-temperature atmosphere in the center as well. Although the concentration is low, ignitability is improved, and the combustibility of the burner as a whole improves from this point as well.

なおセパレータで分離された高濃度燃料混合体はベンチ
ュリ6を通ることにより噴射筒5内部の円周方向にわた
っての燃料の偏りを防止しまたベンチュリ部で燃料とガ
ス体(空気)の混合体の流速が上るので逆火防止の役目
をする。
The high-concentration fuel mixture separated by the separator passes through the venturi 6 to prevent the fuel from being uneven in the circumferential direction inside the injection tube 5, and to reduce the flow velocity of the mixture of fuel and gas (air) at the venturi section. rises, which helps prevent backfire.

燃料噴射筒5の先端部通路を絞って流速を上げ前記と同
様の目的を達成することができる。
The same purpose as described above can be achieved by narrowing the tip passage of the fuel injection tube 5 to increase the flow velocity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)は本発明の実施例を示す微粉床用バーナの
縦断面図、同(B)は(A)のA−A線による断面図、
第2図は微粉炭の供給系統を示す図、第3図は燃料炭量
及び−次空気量を微粉炭機負荷率との関係を示す線図、
第4図は着火温度及び着火時間と揮発分との関係を示す
線図、第5図は一次風量供炭量と微粉炭機負荷率との関
係を示す線図である。 5・・・・・・微粉炭噴射筒 19・・・・・・サイクロンセパレータ20・・・・・
・ベント管 21・・・・・・流量調節装置 23・・・・・・ペントバーナ 第3図 第4図 揮発分(匁daf
FIG. 1(A) is a longitudinal sectional view of a burner for a fine powder bed showing an embodiment of the present invention, and FIG. 1(B) is a sectional view taken along line A-A in FIG.
Fig. 2 is a diagram showing the supply system of pulverized coal, Fig. 3 is a diagram showing the relationship between the amount of thermal coal and the amount of secondary air with the pulverizer load factor,
FIG. 4 is a diagram showing the relationship between ignition temperature and ignition time and volatile content, and FIG. 5 is a diagram showing the relationship between primary air volume and coal supply amount and pulverizer load factor. 5...Pulverized coal injection cylinder 19...Cyclone separator 20...
・Vent pipe 21...Flow rate adjustment device 23...Pent burner Figure 3 Figure 4 Volatile matter (momme daf

Claims (1)

【特許請求の範囲】[Claims] 1、粉状炭素燃料と搬送用気体の混合体を、バーナに供
給して燃焼させる方法において、上記混合体を搬送する
燃料供給管の終端部近くに燃料分離装置を設け、該分離
装置において比較的高燃料濃度の混合体と低燃料濃度の
混合体に分離し、燃料濃度の高い混合体は燃料噴射筒を
有するバーナに供給して燃焼せしめ燃料濃度の低い混合
体はベント管を通して排出することを特徴とする粉状炭
素燃料の燃焼方法。
1. In a method in which a mixture of powdered carbon fuel and a conveying gas is supplied to a burner and combusted, a fuel separation device is provided near the end of the fuel supply pipe that conveys the mixture, and a comparison is made in the separation device. The mixture is separated into a mixture with a high fuel concentration and a mixture with a low fuel concentration, and the mixture with a high fuel concentration is supplied to a burner with a fuel injection tube to be burned, and the mixture with a low fuel concentration is discharged through a vent pipe. A method of combustion of powdered carbon fuel characterized by:
JP12621485A 1985-06-12 1985-06-12 Burning method for pulverized carbon fuel Pending JPS61285306A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12621485A JPS61285306A (en) 1985-06-12 1985-06-12 Burning method for pulverized carbon fuel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12621485A JPS61285306A (en) 1985-06-12 1985-06-12 Burning method for pulverized carbon fuel

Publications (1)

Publication Number Publication Date
JPS61285306A true JPS61285306A (en) 1986-12-16

Family

ID=14929553

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12621485A Pending JPS61285306A (en) 1985-06-12 1985-06-12 Burning method for pulverized carbon fuel

Country Status (1)

Country Link
JP (1) JPS61285306A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207908A (en) * 1987-02-24 1988-08-29 Godo Seitetsu Kk Powdery material supplier of incinerator
JPS63197909U (en) * 1987-05-29 1988-12-20
JP2002340306A (en) * 2001-05-17 2002-11-27 Babcock Hitachi Kk Burner for burning solid fuel and combustion device equipped therewith
WO2017022519A1 (en) * 2015-07-31 2017-02-09 中国電力株式会社 Coal-fired power generation equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512311A (en) * 1978-07-06 1980-01-28 Mitsubishi Heavy Ind Ltd Granular body fuel burner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5512311A (en) * 1978-07-06 1980-01-28 Mitsubishi Heavy Ind Ltd Granular body fuel burner

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63207908A (en) * 1987-02-24 1988-08-29 Godo Seitetsu Kk Powdery material supplier of incinerator
JPS63197909U (en) * 1987-05-29 1988-12-20
JP2002340306A (en) * 2001-05-17 2002-11-27 Babcock Hitachi Kk Burner for burning solid fuel and combustion device equipped therewith
WO2017022519A1 (en) * 2015-07-31 2017-02-09 中国電力株式会社 Coal-fired power generation equipment
JP2017032213A (en) * 2015-07-31 2017-02-09 中国電力株式会社 Coal fired power generation facility

Similar Documents

Publication Publication Date Title
JP2776572B2 (en) Pulverized coal burner
US4748919A (en) Low nox multi-fuel burner
US3788796A (en) Fuel burner
US5630368A (en) Coal feed and injection system for a coal-fired firetube boiler
JPS6362643B2 (en)
CN103267279A (en) Low-nitric-oxide direct-current pulverized coal combustor adaptive to meager coal boiler
US3699903A (en) Method for improving fuel combustion in a furnace and for reducing pollutant emissions therefrom
EP0284629B1 (en) Dust coal igniting burner device
KR890001113B1 (en) Method of reducing nox and sox emission
JPS6266007A (en) Primary air exchange for pulverized coal burner
JP2547550B2 (en) Pulverized coal combustion method and apparatus
JPS5864409A (en) Pulverized coal firing boiler
US5429059A (en) Retrofitted coal-fired firetube boiler and method employed therewith
CN112815303A (en) Coal and biomass coupled combustion system and boiler
JPS61285306A (en) Burning method for pulverized carbon fuel
JP3830582B2 (en) Pulverized coal combustion burner
US4423689A (en) Method of producing pulverized coal as fuel for pulverized-coal pilot burners
US1306234A (en) schutz
JPH08110014A (en) Fine powder coal combustor
WO1983001671A1 (en) Burner for pellets
CN85100561B (en) The coal dust coal slurry burning boiler of band precombustion chamber
CA1204999A (en) Low nox multifuel burner
US20130244188A1 (en) Oxygen to expand burner combustion capability
JPH01200106A (en) Method and device of feeding combustion air
EP0156048A1 (en) Coal burner