JPS61284923A - Pattern forming method - Google Patents

Pattern forming method

Info

Publication number
JPS61284923A
JPS61284923A JP60126022A JP12602285A JPS61284923A JP S61284923 A JPS61284923 A JP S61284923A JP 60126022 A JP60126022 A JP 60126022A JP 12602285 A JP12602285 A JP 12602285A JP S61284923 A JPS61284923 A JP S61284923A
Authority
JP
Japan
Prior art keywords
pattern
mask
exposure
size
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60126022A
Other languages
Japanese (ja)
Inventor
Toshihiko Tanaka
稔彦 田中
Nobuo Hasegawa
昇雄 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP60126022A priority Critical patent/JPS61284923A/en
Publication of JPS61284923A publication Critical patent/JPS61284923A/en
Pending legal-status Critical Current

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE:To enable a resist pattern to be formed as per the designed size regardless of the size and shape of the pattern by changing the optical transmittance of the optically transmissive portion of a mask in dependence on the pattern size and shape. CONSTITUTION:Using an apparatus comprising a substrate wafer coated with a resist, a light source for exposure, and a mask for pattern transfer, a latent image is formed by projecting an exposure light from the light source for exposure through the mask to expose the resist film, and thereafter development is carried out to form a pattern. In such pattern forming method, the optical transmittance of the optically transmissible portion of the mask is changed in dependence on the pattern size and shape. Exposure is performed using a mask (reticle) which has the respective patterns in the shape of a lattice, isolated line or hole having a pattern size of, e.g., 0.6-5mum, the optical transmittances of which respective patterns have the values as shown. In this case, a thin film of Cr is evaporated on the reticle, and the optical transmittances are changed by changing the film thickness.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はパターン形成方法に関し、詳しくは高い集積度
を有する半導体集積回路や磁気バブル素子の微細パター
ン形成に特に有用なパターン形成−5方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a pattern forming method, and more particularly to a pattern forming method 5 which is particularly useful for forming fine patterns in semiconductor integrated circuits and magnetic bubble elements having a high degree of integration.

〔発明の背景〕[Background of the invention]

半導体回路を製造するためには種々な太きさおよび形状
のパターンを一括して形成する必要があり、しかもこれ
らのパターンには高い寸法精度が要求される。
In order to manufacture semiconductor circuits, it is necessary to form patterns of various thicknesses and shapes all at once, and these patterns are required to have high dimensional accuracy.

光りソグラフイでは光回折の影響を受けるのでパターン
の形状およびサイズに応じて実際に形成されるパターン
のサイズが設計値から例えば第2図に示すようにシフト
するC以下この現象を寸法変換差と呼ぶ)。この現象は
特に解像限界付近で顕著である。寸法および形状が種々
なパターンを同時に形成することから、寸法変換差によ
り必然的にパターン間の寸法精度が低下する。
Since optical lithography is affected by optical diffraction, the size of the actually formed pattern shifts from the design value, as shown in Figure 2, depending on the shape and size of the pattern.This phenomenon is referred to as dimensional conversion difference. ). This phenomenon is particularly noticeable near the resolution limit. Since patterns with various sizes and shapes are formed simultaneously, the dimensional accuracy between patterns inevitably decreases due to dimensional conversion differences.

従来は形成すべきパターンの最小寸法が約2μmであり
、光学系の限界解像度に比べ大きなパターンであった。
Conventionally, the minimum dimension of the pattern to be formed was about 2 μm, which was larger than the limit resolution of the optical system.

しかも要求される精度が約±0.2μmであったため、
この寸法変換差はあまり大き       ゛な問題で
はなかった。
Moreover, since the required accuracy was approximately ±0.2 μm,
This dimensional conversion difference was not a very big problem.

しかし半導体の高集積化にともない必要なパターンの寸
法は微細になり、最小寸法約0.6μmのパターンを形
成する必要が生じる。つまり解像限界にごく近い寸法の
パターンを形成する必要があす、シかも寸法精度も約±
0.1μmと厳しくなつており、寸法変換差が大きな問
題としてクローズアップされてきた。なお、この種の寸
法変換差に関する議論は電子通信学会技術研究報告5S
D83−182に中瀬によってなされている。
However, as semiconductors become more highly integrated, the required pattern dimensions become finer, and it becomes necessary to form patterns with a minimum dimension of about 0.6 μm. In other words, it is necessary to form a pattern with dimensions very close to the resolution limit, and the dimensional accuracy is also about ±
0.1 μm, and dimensional conversion differences have been highlighted as a major problem. Note that the discussion regarding this type of dimensional conversion difference can be found in the Technical Research Report 5S of the Institute of Electronics and Communication Engineers.
It was done by Nakase in D83-182.

寸法変換差がわずかな場合にはマスク状のパターン寸法
を補正することにより、この寸法変換差を補正すること
ができる。しかし寸法変換差が大きな場合マスク上の寸
法補正では不十分であり、しかも裕度がほとんどない。
If the dimensional conversion difference is small, this dimensional conversion difference can be corrected by correcting the mask-like pattern size. However, when the dimensional conversion difference is large, dimensional correction on the mask is insufficient and there is almost no margin.

このため、そバら寸法変換差により寸法が設計値よりシ
フトするパターンを精度よく形成するため釦は、おのお
ののパターンごとに別々に露光する必要がある。しかし
、このおのおのの露光において露光時間を変えることに
より寸法変換差を補正する方法では工程が長く複雑にな
るばかりでなく、お互いの露光間の合わせ余裕をとる必
要があり、高集積化の妨げになるという問題があった。
Therefore, in order to accurately form a pattern whose dimensions shift from the design value due to the difference in dimension conversion, each button must be exposed separately for each pattern. However, this method of correcting dimensional conversion differences by changing the exposure time for each exposure not only makes the process longer and more complicated, but also requires a margin for alignment between each exposure, which hinders high integration. There was a problem.

〔発明の目的〕 本発明の目的は上記従来技術の問題点を解決し、パター
ンのサイズおよび形状に関係なく設計寸法通りのレジス
トパターンを形成する方法を提供することである。
[Object of the Invention] An object of the present invention is to solve the problems of the prior art described above and to provide a method for forming a resist pattern according to the designed dimensions regardless of the size and shape of the pattern.

〔発明の概要〕[Summary of the invention]

パターン寸法および形状に応じてパターン寸法が設計値
からシフトする現象は主にマスク上に形成されたパター
ンを透過してきた露光光の光強度分布および光強度が光
回折などの影響により変化することにより生ずる。設計
値からの寸法シフトを十分に補正するためには上記露光
光の光強度および光強度分布をともに補正する必要があ
るが、十分な検討を行なつ次結果、光強度分布の補正の
みで寸法補正を実用上十分に行なえることを見い出した
。そして光強度を補正するために÷スフの透過率をパタ
ーンに応じて変化させた。
The phenomenon in which the pattern dimensions shift from the design values depending on the pattern dimensions and shape is mainly due to changes in the light intensity distribution and light intensity of the exposure light that has passed through the pattern formed on the mask due to the effects of light diffraction, etc. arise. In order to sufficiently correct the dimensional shift from the design value, it is necessary to correct both the light intensity and the light intensity distribution of the exposure light mentioned above, but after thorough consideration, we found that the dimensions can be corrected by only correcting the light intensity distribution. It has been found that the correction can be carried out satisfactorily for practical purposes. Then, in order to correct the light intensity, the transmittance of the screen was changed according to the pattern.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて説明する。 The present invention will be explained below using examples.

露光装置としては10倍の縮小率をもつ縮小投影露光装
置を用いた。レンズのNAにューメリカル アパーチャ
: Numerical Apertuve )は0.
315であり、露光波長は水銀のi線(365nm)で
ある。
As the exposure device, a reduction projection exposure device having a reduction ratio of 10 times was used. The numerical aperture (NA) of the lens is 0.
315, and the exposure wavelength is mercury i-line (365 nm).

0.6〜5μmまでのパターンサイズを有する格子状、
孤立ライン状およびホール秋冬パターンを有し、かつそ
れら各パターンの光透過率がWE1図に示される値をも
つマスク(レチクル)を用いて露光を行なった。レチク
ルVCCrの薄膜を蒸着し、その膜厚を変えることによ
って光透過率を変えた。
grid-like pattern with pattern size from 0.6 to 5 μm;
Exposure was carried out using a mask (reticle) having isolated line and hole autumn/winter patterns, and the light transmittance of each of these patterns having the values shown in Figure WE1. A thin film of reticle VCCr was deposited, and the light transmittance was varied by varying the film thickness.

またCr面に露光光に対する反射防止膜を形成すること
により、Crの薄膜を形成したことによる光干渉の悪影
響を排除した。レチクルの光透過率を変える方法として
はCr蒸着のほかにAg。
Furthermore, by forming an antireflection film against exposure light on the Cr surface, the adverse effects of optical interference caused by forming a thin Cr film were eliminated. In addition to Cr vapor deposition, Ag is a method for changing the light transmittance of a reticle.

At等の蒸着、露光光を吸収する色素を含有する膜の形
成、あるいは露光光を吸収する色素のレチクルへのドー
プなどがある。
Examples include vapor deposition of At or the like, formation of a film containing a dye that absorbs exposure light, or doping of a reticle with a dye that absorbs exposure light.

Siウェーハ上にフォトレジストを形成した基板を上記
方法釦より露光し、その後現像を行なった。形成された
パターン寸法の設計値からのずれ量は格子状、孤立ライ
ン状およびホール秋冬パターンの形および大きさにかか
わりなく±O,OSμmの範囲内に収まった。
A substrate on which a photoresist was formed on a Si wafer was exposed to light using the method button described above, and then developed. The amount of deviation of the formed pattern dimensions from the design value was within the range of ±O, OS μm regardless of the shape and size of the grid, isolated line, and hole autumn/winter patterns.

なお、上記実施例ではSiウェーハを基板に用いたが基
板材料にはほとんど依存しないので、oaAs、w、A
4 T t、S A02.5i3N4jpolys i
、 WS i意、 Mo5it、ポリイミド膜などの基
板でも開運ない。またNAo、315のレンズを用いた
がこれに限らず、また波長もi線ばかりでなく、水銀の
g線(436n m ’>でもh線(405nm)でも
よい。例えば波長がg線でレンズのNAが0.28の場
合、マスク上の各パターンの光透過率を第3図に示す値
にしたところ0.9μm以上のパターン間の寸法変換差
を約±065μm以下にすることができた。
In the above example, a Si wafer was used as the substrate, but since it hardly depends on the substrate material, oaAs, w, A
4 T t, S A02.5i3N4jpolys i
, WS i, Mo5it, polyimide film, etc. substrates also have no good luck. In addition, although a NAo, 315 lens was used, the wavelength is not limited to this, and the wavelength may also be not only the i-line but also the mercury g-line (436nm'>) or the h-line (405nm).For example, if the wavelength is the g-line and the lens is When the NA was 0.28, when the light transmittance of each pattern on the mask was set to the value shown in FIG. 3, the dimensional conversion difference between patterns of 0.9 μm or more could be reduced to about ±065 μm or less.

また縮小投影露光装置の縮小率も10倍とは限らず5倍
あるいは7倍でも問題ない。さらにこの方法はスキャナ
ー露光法およびコンタクト露光法にも応用できる。
Further, the reduction ratio of the reduction projection exposure apparatus is not limited to 10 times, but may be 5 times or 7 times without any problem. Furthermore, this method can also be applied to scanner exposure methods and contact exposure methods.

〔発明の効果〕〔Effect of the invention〕

本発明により、パターンの大小および形に関係なく寸法
が設計値通りのパターンを形成することができた。この
結果、回路設計が容易となった。
According to the present invention, it was possible to form a pattern whose dimensions were as designed, regardless of the size and shape of the pattern. As a result, circuit design has become easier.

また微細パターンと比較的大きなパターンを高い精度を
保ちながら共存させることが可能となったためマスク数
を削減することができ、半導体製造工程を大幅に減らす
ことができ九。
In addition, it has become possible to coexist fine patterns and relatively large patterns while maintaining high precision, making it possible to reduce the number of masks and significantly reducing the number of semiconductor manufacturing processes.9.

【図面の簡単な説明】[Brief explanation of drawings]

第1図およびtXa図は本発明の実施例になるマスクの
設計寸法と光透過率との関係曲線図、第2図は従来のマ
スクにおける設計寸法とずれ量との関係曲線図である。 等 1 呪 *;l  h  三「う&  (/1Ara)亨 2図 o、4−   o、b  oJ5/、o      2
.o   3.0 4.0鐘針す痣(p幻 13 口
FIG. 1 and the tXa diagram are curve diagrams of the relationship between the design dimensions and light transmittance of a mask according to an embodiment of the present invention, and FIG. 2 is a diagram of the relationship curve between the design dimensions and the amount of deviation in a conventional mask. etc. 1 Curse *;l h 3 'u & (/1Ara) Toru 2 figure o, 4- o, b oJ5/, o 2
.. o 3.0 4.0 bell needle bruise (p phantom 13 mouth

Claims (1)

【特許請求の範囲】[Claims] 少なくともレジストをコーティングした基板ウェーハと
露光用光源とパターン転写用のマスクからなる装置を用
いて上記マスクごしに上記露光用光源から露光光を照射
し、上記レジスト膜を露光することにより潜像を形成し
、その後現像を行なつてパターンを形成するパターン形
成方法において、上記マスクの透光部の光透過率をパタ
ーン寸法および形状に応じて変化させることを特徴とす
るパターン形成方法。
Using an apparatus consisting of a substrate wafer coated with at least a resist, an exposure light source, and a pattern transfer mask, exposure light is irradiated from the exposure light source through the mask to expose the resist film to form a latent image. 1. A pattern forming method in which a pattern is formed by forming a pattern and then developing the pattern, the method comprising changing the light transmittance of a light-transmitting part of the mask according to the pattern size and shape.
JP60126022A 1985-06-12 1985-06-12 Pattern forming method Pending JPS61284923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60126022A JPS61284923A (en) 1985-06-12 1985-06-12 Pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60126022A JPS61284923A (en) 1985-06-12 1985-06-12 Pattern forming method

Publications (1)

Publication Number Publication Date
JPS61284923A true JPS61284923A (en) 1986-12-15

Family

ID=14924769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60126022A Pending JPS61284923A (en) 1985-06-12 1985-06-12 Pattern forming method

Country Status (1)

Country Link
JP (1) JPS61284923A (en)

Similar Documents

Publication Publication Date Title
US5815247A (en) Avoidance of pattern shortening by using off axis illumination with dipole and polarizing apertures
KR100549153B1 (en) Method of manufacturing photo mask
US20030118920A1 (en) Multi-tone photomask and method for manufacturing the same
JPH0690505B2 (en) Photo mask
KR20030014760A (en) Lithographic method of manufacturing a device
JPH075675A (en) Mask and preparation thereof
JP3160332B2 (en) Halftone phase shift photomask
JP4613364B2 (en) Resist pattern formation method
TWI286795B (en) Manufacturing method for semiconductor integrated circuit device
JP2877200B2 (en) Photomask for exposure and method of manufacturing the same
JP3347670B2 (en) Mask and exposure method using the same
JPS63216052A (en) Exposing method
JPH10254122A (en) Photomask for exposure
JP2000267257A (en) Mask and method for exposure using the same
US5798192A (en) Structure of a mask for use in a lithography process of a semiconductor fabrication
JP3110855B2 (en) Method of manufacturing projection exposure substrate and pattern forming method using this substrate
JPS61284923A (en) Pattern forming method
US20030039892A1 (en) Method of optical proximity correction
JP3110801B2 (en) Photomask manufacturing method and photomask
JPH09288346A (en) Photomask
JPH02189913A (en) Forming method for pattern of semiconductor device
JP3331760B2 (en) Halftone phase shift mask and mask blank used for it
JP3173314B2 (en) Method for manufacturing phase shift mask
JPH06132216A (en) Pattern forming method
KR20050007176A (en) Reticle, semiconductor exposure apparatus and method, and semiconductor device manufacturing method