JPS61284773A - Fine particle reducing iron powder and its production - Google Patents

Fine particle reducing iron powder and its production

Info

Publication number
JPS61284773A
JPS61284773A JP60125494A JP12549485A JPS61284773A JP S61284773 A JPS61284773 A JP S61284773A JP 60125494 A JP60125494 A JP 60125494A JP 12549485 A JP12549485 A JP 12549485A JP S61284773 A JPS61284773 A JP S61284773A
Authority
JP
Japan
Prior art keywords
iron powder
iron
reduced
magnetic
reduced iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60125494A
Other languages
Japanese (ja)
Other versions
JPH0648389B2 (en
Inventor
Akira Yamaguchi
陽 山口
Kikuo Takano
高野 喜久夫
Takeo Nakano
建男 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanto Denka Kogyo Co Ltd
Original Assignee
Kanto Denka Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Denka Kogyo Co Ltd filed Critical Kanto Denka Kogyo Co Ltd
Priority to JP60125494A priority Critical patent/JPH0648389B2/en
Publication of JPS61284773A publication Critical patent/JPS61284773A/en
Publication of JPH0648389B2 publication Critical patent/JPH0648389B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Developing Agents For Electrophotography (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve picture image characteristics by using the iron powders formed an iron oxide layer on the surface thereof and having a specific particles size to the titled iron powders. CONSTITUTION:The used iron powders are powders formed the iron oxide layer on the surface thereof and having 0.1-5mum the particle size. The prescribed iron powders are produced by reducing one or >=2 kinds of the iron oxides or the iron contg. hydroxides such as a hematite, a maghematite, an akaganeite and a lepidochrocite with a reducing gas at a temp. of 300-600 deg.C, followed by cooling it. The obtd. reduced iron powders are oxidized on the surface thereof, using a gas contg. <=10vol.% an oxygen. The reduced iron powder has 0.1-5mum the particle size. The thickness of the iron oxide layer is preferable to be 0.2-10wt.% the oxygen content. Thus, the content of the magnetic material contd. in the toner is reduced, and may be relatively increased the amount of the resin.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、電子写真磁性トナー用磁性材料として適する
、表面に酸化鉄層を形成した微粒子還元鉄粉及びその製
造法に関するもので、本発明の還元鉄粉は電子写真磁性
トナー中に10〜50重量%含有されて用いられる。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a fine particle reduced iron powder having an iron oxide layer formed on its surface, which is suitable as a magnetic material for electrophotographic magnetic toner, and a method for producing the same. The reduced iron powder is used in an electrophotographic magnetic toner in an amount of 10 to 50% by weight.

〔従来の技術及び発明が解決しようとする問題点〕電子
写真の現像方式としては、合成樹脂とカーボンの混合体
からなる粉体をトナーとし、これをキャリヤー鉄粉で生
成した磁気ブラシにより電子写真感光体に移動させる二
成分方式と、トナー中にマグネタイト、フェライト等の
磁性粉を混入し、トナー自体に磁性を保持させキャリヤ
ーを用いない一成分方式とがある。
[Prior art and problems to be solved by the invention] In the electrophotographic development method, powder made of a mixture of synthetic resin and carbon is used as toner, and this is used as a toner to develop electrophotography using a magnetic brush made of carrier iron powder. There is a two-component method in which toner is transferred to a photoreceptor, and a one-component method in which magnetic powder such as magnetite or ferrite is mixed into the toner to maintain magnetism in the toner itself and no carrier is used.

二成分方式のトナーは、通常合成樹脂が9ON量%以上
で残りは非磁性の着色物質で構成されているので、−成
分方式のトナーと比較して、熱容量及び溶融粘度が低く
、熱や圧力によって完全に紙に定着できること、及び磁
性材料を含有していないので、湿度の高い状況でも電気
的なリークが起こりにく(画像特性の劣化が生じないこ
と等、主として画像特性が優れているために、現在のと
ころ二成分方式の方が一成分方式よりも一般的である。
Two-component type toners usually consist of synthetic resin at 9% or more and the rest is non-magnetic colored material, so compared to -component type toners, they have a lower heat capacity and melt viscosity, and are less susceptible to heat and pressure. Because it can be completely fixed on paper, and because it does not contain magnetic materials, electrical leakage does not occur even in high humidity conditions (mainly because it has excellent image characteristics, such as no deterioration of image characteristics) However, two-component methods are currently more popular than single-component methods.

しかしながら、二成分方式は、現像剤中のトナー濃度が
画質に与える影響が大きいこと、長時間の使用によって
現像剤の劣化が起きるため現像剤の交換が必要であるこ
と、及び現像剤の循環等のために現像のメカニズムが複
雑で装置が大型化する等の欠点を有する。
However, with the two-component method, the toner concentration in the developer has a large effect on image quality, the developer deteriorates after long-term use, so the developer needs to be replaced, and the developer circulation etc. Therefore, the developing mechanism is complicated and the device becomes large.

一方、−成分方式では、トナーは合成樹脂が30〜60
重量%で残りはマグネタイトやフェライトのような磁性
粉で構成されているため、紙への定着性が劣り画像特性
が二成分方式より悪いという欠点はあるが、装置の方は
現像のメカニズムが簡単で且つ調整が容易であり、トナ
ーの追加供給だけで現像剤の交換が不要で、しかも現像
ユニフトが簡素であるため、装置の保守が大幅に容易に
なるとともに、装置の軽量化、低コスト化が図れる魅力
を有している。
On the other hand, in the -component method, the toner has a synthetic resin content of 30 to 60%.
The remainder of the weight percentage is made up of magnetic powders such as magnetite and ferrite, which has the disadvantage of poor fixation to paper and poorer image characteristics than two-component methods, but the developing mechanism is simpler with this device. It is easy to adjust, and there is no need to replace the developer just by supplying additional toner. Moreover, the development unit is simple, which greatly facilitates maintenance of the device, and reduces the weight and cost of the device. It has the charm of being able to achieve this.

そこで、−成分方式では、二成分方式に較べて最大の欠
点となっている画像特性を向上させるために、少ない樹
脂含有量でもトナーの紙への定着性を良くすることを目
的として、特殊で且つ高価・高級な樹脂を使用したり、
分子量の低い樹脂を混合する等の工夫がなされている。
Therefore, in the -component method, in order to improve the image characteristics, which is the biggest drawback compared to the two-component method, special In addition, using expensive and high-grade resin,
Efforts have been made to mix resins with low molecular weight.

しかし、トナーの構成成分として上記樹脂とともに従来
使用されているマグネタイトやフェライトのような磁性
粉は1.0000e程度の磁場で飽和磁束密度(σS)
が40〜65emu/g程度であるため、該磁性粉をト
ナー中に40〜70重量%も含有させなければならない
が、この磁性粉は硬いためドラム表面の感光体を損傷さ
せやすく、又磁性粉の含有量を多くすると黒色が支配的
となり、青、赤、茶等の着色トナーを製造することは極
めて困難になる。
However, magnetic powders such as magnetite and ferrite, which are conventionally used together with the above resins as constituent components of toner, have a saturation magnetic flux density (σS) in a magnetic field of about 1.0000e.
Since the magnetic powder is about 40 to 65 emu/g, the toner must contain 40 to 70% by weight of the magnetic powder, but since this magnetic powder is hard, it easily damages the photoreceptor on the drum surface. When the content of toner is increased, black color becomes dominant, and it becomes extremely difficult to produce colored toners such as blue, red, and brown.

特に、磁性粉の含有量が多いことは、高温多湿時にはか
ぶりが多く画像が悪くなり、帯電量の調整等、トナー特
性のコントロールが難しくなるという欠点を招いている
In particular, a high content of magnetic powder causes disadvantages such as increased fogging and poor images at high temperatures and high humidity, and difficulty in controlling toner characteristics such as adjusting the amount of charge.

このように、−成分方式の有する欠点はトナー中の樹脂
の含有量が少なく且つ磁性粉の含を量が多いことに起因
しているため、−成分方式においては、微細で且つ優れ
た磁気特性を有する磁性材料が出現すれば、トナー中の
磁性材料(磁性粉)の含有量を減少し相対的に樹脂含有
量を増加させ得るので、上述の一成分方式の有する欠点
が全て改善されると考えられる。
In this way, the drawbacks of the -component method are due to the low resin content and high magnetic powder content in the toner. If a magnetic material with 100% of the magnetic material appears, it would be possible to reduce the content of magnetic material (magnetic powder) in the toner and relatively increase the resin content, which would improve all the drawbacks of the one-component method mentioned above. Conceivable.

しかし、鉄粉、合金粉は、磁束密度が大きいが、5μm
以下の微粒子を経済的に製造することが困難であるため
、一般的には磁性トナー用の磁性材料として使用されて
いない。
However, iron powder and alloy powder have a large magnetic flux density, but 5 μm
Since it is difficult to economically produce the following fine particles, they are generally not used as magnetic materials for magnetic toners.

従って、本発明の目的は、従来の電子写真磁性トナー及
び磁性材料の欠点を解決するため、安価で且つ微細で磁
束密度が大きい新規な磁性材料を提供するとともに、該
磁性材料を用いた画像特性の優れた新規な電子写真磁性
トナーを提供することにある。
Therefore, an object of the present invention is to provide a novel magnetic material that is inexpensive, fine, and has a high magnetic flux density, and to provide image characteristics using the magnetic material, in order to solve the drawbacks of conventional electrophotographic magnetic toners and magnetic materials. An object of the present invention is to provide an excellent new electrophotographic magnetic toner.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は、上記目的を達成するため種々検討を行う
中で、微細な磁性材料を製造する方法として、既に広く
工業的に生産されているヘマタイト、マグヘマタイト、
マグネタイト、ウースタイト、ベルトライト、ゲーサイ
ト、アカガナイト及びレピドクロサイト等の鉄酸化物又
は鉄含水酸化物の一種又は二種以上を原料とする方法に
着眼した。これらの鉄酸化物又は鉄含水酸化物は、安価
であり、且つ粒子径が既に1.0μm以下であるため、
そのままの粒子径を保持すれば低いコストで粒子径の小
さい磁性材料が製造できる。例えば、種々の粒子径のヘ
マタイト、マグネタイト、マグヘマタイト等を水素ガス
のような還元性ガスで還元すると、はぼ原料の粒子径に
比例した大きさの還元鉄粉が得られる。しかしながら、
この還元鉄粉は、粒子径が小さくなるにつれて表面の活
性度合が高くなり、還元鉄粉の粒子径が5μmより小さ
くなると、大気に触れると発熱し、全体がヘマタイトに
なるまで酸化される。そのため、この還元鉄粉の製造、
貯蔵、輸送、更に磁性トナーの製造工程までも大気を遮
断して作業を行う必要があリ、コスト的にも安全上の見
地からも工業的な材料としては不適当である。
While conducting various studies to achieve the above object, the present inventors discovered that hematite, maghematite, which has already been widely produced industrially, was used as a method for manufacturing fine magnetic materials.
We focused on a method using one or more iron oxides or iron hydrated oxides such as magnetite, oostite, bertolite, goethite, acanite, and lepidocrocite as raw materials. These iron oxides or iron hydrated oxides are inexpensive and have a particle size of 1.0 μm or less, so
If the particle size is maintained as it is, a magnetic material with a small particle size can be manufactured at low cost. For example, when hematite, magnetite, maghematite, etc. of various particle sizes are reduced with a reducing gas such as hydrogen gas, reduced iron powder having a size proportional to the particle size of the raw material can be obtained. however,
The surface activity of this reduced iron powder increases as the particle size decreases, and when the particle size of the reduced iron powder becomes smaller than 5 μm, it generates heat when exposed to the atmosphere and is oxidized until the entire surface becomes hematite. Therefore, the production of this reduced iron powder,
It is necessary to shut off the atmosphere during storage, transportation, and even the manufacturing process of magnetic toner, making it unsuitable as an industrial material from both cost and safety standpoints.

そこで、本発明者等は、更に種々検討した結果、ヘマタ
イト、マグヘマタイト、マグネタイト、ウースタイト、
ベルトライト、ゲーサイト、アカガナイト及びレピドク
ロサイト等の鉄酸化物又は鉄含水酸化物を還元し、冷却
後、穏やかに酸化することによって、表面に薄く酸化鉄
層を形成した還元鉄粉が得られ、この還元鉄粉は粒子径
が小さく、酸化に対して安定で且つ飽和磁束密度が大き
いこと、及びこの還元鉄粉を10〜50重量%含有させ
た磁性トナーは紙への定着性が良いばかりでなく、得ら
れる画像も鮮明で画像特性が優れていることを見出し、
本発明に至ったものである。
Therefore, as a result of further various studies, the present inventors found that hematite, maghematite, magnetite, oostite,
By reducing iron oxides or iron hydrated oxides such as bertolite, goethite, acaganite, and lepidocrocite, cooling them, and then gently oxidizing them, reduced iron powder with a thin iron oxide layer formed on the surface can be obtained. This reduced iron powder has a small particle size, is stable against oxidation, and has a large saturation magnetic flux density, and a magnetic toner containing 10 to 50% by weight of this reduced iron powder has good fixing properties to paper. We discovered that the images obtained were clear and had excellent image characteristics.
This led to the present invention.

即ち、本発明は、表面に酸化鉄層が形成されており、且
つ粒子径が0.1〜5μmであることを特徴とする電子
写真磁性トナー用還元鉄粉を提供するものである。
That is, the present invention provides reduced iron powder for electrophotographic magnetic toner, which has an iron oxide layer formed on its surface and has a particle size of 0.1 to 5 μm.

また、本発明は、ヘマタイト、マグヘマタイト、マグネ
タイト、ウースタイト、ベルトライト、ゲーサイト、ア
カガナイト及びレピドクロサイト等の鉄酸化物又は鉄含
水酸化物の一種又は二種以上を、300〜600℃の温
度下で還元性ガスにより還元し、次いで冷却した後、酸
素濃度が10容量%以下のガスで表面を酸化することを
特徴とする還元鉄粉の製造法を提供するものである。
Further, the present invention provides one or more iron oxides or iron hydrated oxides such as hematite, maghematite, magnetite, oostite, bertolite, goethite, acaganite, and lepidocrocite at a temperature of 300 to 600°C. The present invention provides a method for producing reduced iron powder, which comprises reducing the powder with a reducing gas, followed by cooling, and then oxidizing the surface with a gas having an oxygen concentration of 10% by volume or less.

先ず、本発明の還元鉄粉について詳述する。First, the reduced iron powder of the present invention will be explained in detail.

本発明の還元鉄粉の表面の酸化鉄層の厚さは、粒子の大
きさに関係なく成る程度の厚ざが必要であり、そのため
に酸素含有量で見ると、粒子が小さい程酸素含有量を多
くしなければ安定化されない傾向がある。即ち、粒子径
が1〜5μmの場合は、全体の酸素含有量が0.2〜4
重量%でも安定であるが、粒子径が1μm未満の場合は
、全体の酸素含有量が0.5〜10重量%と多くならな
いと酸化に対して不安定である。
The thickness of the iron oxide layer on the surface of the reduced iron powder of the present invention needs to have a thickness that does not depend on the size of the particles. Therefore, in terms of oxygen content, the smaller the particles, the higher the oxygen content. There is a tendency that it cannot be stabilized unless it is increased. That is, when the particle size is 1 to 5 μm, the total oxygen content is 0.2 to 4
Although it is stable even when the particle size is less than 1 μm, it is unstable against oxidation unless the total oxygen content is as high as 0.5 to 10% by weight.

従って、磁性トナー用の磁性材料としては粒子径が小さ
い程好ましいが、表面を安定化させると粒子径が小さい
程酸化鉄層が相対的に厚くなり、飽和磁束密度が大きい
という特徴は薄れてくる。
Therefore, as a magnetic material for magnetic toner, the smaller the particle size, the better, but when the surface is stabilized, the iron oxide layer becomes relatively thicker as the particle size becomes smaller, and the characteristic of high saturation magnetic flux density diminishes. .

これらの要因を総合すると、本発明の還元鉄粉は、粒子
径が0.1〜5μmで、酸化鉄層の厚さが好ましくは酸
素含有量が0.2〜10重量%となる厚さであるのが適
当である。
Taking these factors together, the reduced iron powder of the present invention has a particle size of 0.1 to 5 μm and a thickness of the iron oxide layer that preferably has an oxygen content of 0.2 to 10% by weight. It is appropriate that there be.

尚、ここでいう粒子径とは電子顕微鏡で観察して視野に
入る凡そ100個の粒子の中で最大の粒子の径で代表し
ている。
Incidentally, the particle size here refers to the diameter of the largest particle among about 100 particles that come into view when observed with an electron microscope.

また、本発明の還元鉄粉の飽和磁束密度(σS)は、測
定磁場1,0000eで少なくとも80 emu/ g
以上であることが好ましい。
Further, the saturation magnetic flux density (σS) of the reduced iron powder of the present invention is at least 80 emu/g at a measuring magnetic field of 1,0000 e.
It is preferable that it is above.

次に、本発明の還元鉄粉の製造法について詳述する。Next, the method for producing reduced iron powder of the present invention will be described in detail.

本発明の還元鉄粉の原料としては、ヘマタイト、マグヘ
マタイト、マグネタイト、ウースタイト、ベルトライト
、ゲーサイト、アカガナイト及びレピドクロサイト等の
鉄酸化物又は鉄含水酸化物が用いられ、これらは単独で
も二種以上混合したものでも良い。
As raw materials for the reduced iron powder of the present invention, iron oxides or iron hydrated oxides such as hematite, maghematite, magnetite, oostite, bertolite, goethite, acaganite, and lepidocrocite are used, and these may be used alone or in combination. A mixture of more than one species may also be used.

還元条件を選ぶことによって、粒子を大きく成長させる
ことはできるが、大きな原料を細かくすることはできな
いので、原料の粒子径は、所望の製品の粒子径よりも小
さいものでなければならない。還元方法と表面の酸化方
法については、還元段階では粒子同士が焼結しないこと
、又表面の酸化段階では内部まで酸化しないことが肝要
であり、反応方式は流下式、流動層式、回転式或いは固
定床式等の何れの方法であっても可能である。
Although it is possible to grow particles to a large size by selecting reduction conditions, large raw materials cannot be made fine, so the particle size of the raw material must be smaller than the particle size of the desired product. Regarding the reduction method and the surface oxidation method, it is important that the particles do not sinter with each other during the reduction stage, and that the inside is not oxidized during the surface oxidation stage. Any method such as a fixed bed method is possible.

本発明の還元鉄粉の最も平易で好ましい製造法としては
、上記鉄酸化物又は鉄含水酸化物を、固定式或いは回転
式の炉に仕込み、300〜600℃の温度下で乾燥した
水素ガスにより3時間以上還元し、温度を常温程度まで
に下げてから、酸素濃度が10容量%以下の窒素ガスを
流して穏やかに表面を酸化する方法が挙げられる。還元
反応の段階では、酸化物を完全に還元することが望まし
いが、還元生成物の飽和磁束密度を高めることが目的で
あるので、内部に若干の未還元物質が残っていても実用
上支障はない。
The simplest and most preferable manufacturing method for the reduced iron powder of the present invention is to charge the above-mentioned iron oxide or iron hydrated oxide into a stationary or rotary furnace and dry it with hydrogen gas at a temperature of 300 to 600°C. One method is to reduce the surface for 3 hours or more, lower the temperature to about room temperature, and then flow nitrogen gas with an oxygen concentration of 10% by volume or less to gently oxidize the surface. At the reduction reaction stage, it is desirable to completely reduce the oxide, but since the purpose is to increase the saturation magnetic flux density of the reduction product, there is no practical problem even if some unreduced material remains inside. do not have.

還元温度が300℃未満であると還元を充分に行えず、
又600℃超であると粒子同士が焼結する惧れがある。
If the reduction temperature is less than 300°C, the reduction cannot be performed sufficiently,
Moreover, if the temperature exceeds 600°C, there is a risk that the particles will sinter with each other.

また、表面の酸化に用いるガスの酸素濃度を10容量%
超とすると酸化が急激に進行し、粒子内部まで酸化され
る慣れがある。
In addition, the oxygen concentration of the gas used for surface oxidation was increased to 10% by volume.
If it is too high, oxidation will proceed rapidly and the inside of the particles will be oxidized.

このようにして製造される本発明の還元鉄粉の飽和磁束
密度は、測定磁場1.0000eで少なくとも80 e
mu/ g以上であり、従来から使用されているマグネ
タイトやフェライトのような磁性材料より高い価を示す
The reduced iron powder of the present invention produced in this way has a saturation magnetic flux density of at least 80 e at a measuring magnetic field of 1.0000 e.
mu/g or higher, and exhibits a higher value than conventionally used magnetic materials such as magnetite and ferrite.

本発明の還元鉄粉は、電子写真磁性トナーに含有されて
用いられるもので、電子写真磁性トナー中に10〜50
重量%含有させることにより紙への定着性の良い電子写
真磁性トナーが得られる。
The reduced iron powder of the present invention is used by being contained in an electrophotographic magnetic toner, and the reduced iron powder is used in an electrophotographic magnetic toner.
By containing the above amount by weight, an electrophotographic magnetic toner having good fixability to paper can be obtained.

また、電子写真磁性トナーのもう一つの構成成分である
合成樹脂としては、スチレン系、ビニル系、アクリル酸
エステル系、メタクリル酸エステル系、ポリアマイド系
、エポキシ系、フェノール系等の樹脂の単独重合体又は
共重合体が使用され、また、電子写真磁性トナーには、
必要に応じて、荷電制御剤、流動性改質剤、着色材、可
塑剤、充填剤等を加えても良い。
Synthetic resins that are another component of electrophotographic magnetic toner include homopolymers of styrene, vinyl, acrylic ester, methacrylic ester, polyamide, epoxy, and phenol resins. or a copolymer is used, and for electrophotographic magnetic toner,
If necessary, a charge control agent, a fluidity modifier, a coloring agent, a plasticizer, a filler, etc. may be added.

本発明の還元鉄粉を用いた電子写真磁性トナーの製造に
際しては、エクストルーダー、熱ニーダ−2熱ロール等
の熱混練機を使用して構成材料を充分に混練した後、冷
却してハンマーミルで粉砕し、次いで分級して平均lO
μ鴎の大きさの磁性トナーを製造する方法、或いは樹脂
溶液中に磁性材料(還元鉄粉)及び(bの材料を分散さ
せ、これを加熱気流中で噴霧乾燥して磁性トナーを製造
する方法等を利用することができる。
When producing an electrophotographic magnetic toner using the reduced iron powder of the present invention, the constituent materials are sufficiently kneaded using a heat kneader such as an extruder, a heat kneader, and two heat rolls, and then cooled and then milled using a hammer mill. The average lO
A method of manufacturing a magnetic toner with the size of a μ seaweed, or a method of manufacturing a magnetic toner by dispersing a magnetic material (reduced iron powder) and material (b) in a resin solution and spray-drying it in a heated air stream. etc. can be used.

〔実施例〕〔Example〕

以下に実施例及び比較例を挙げて本発明を更に詳細に説
明する。
The present invention will be explained in more detail by giving Examples and Comparative Examples below.

実施例1 顔料用ヘマタイト(森下弁柄製、?IR−2702 )
を還元炉に仕込み、水素ガス雰囲気中で450℃まで昇
温させ、該温度に5時間保持した後、加熱を止め、常温
まで冷却した。冷却後、炉内ガスを窒素で置換し、次い
で酸素濃度5容量%の窒素ガスを4時間炉内に導入し、
穏やかに酸化した後、炉内の生成物を取出し解砕して表
面に酸化鉄層を形成した微粒子還元鉄粉を得た。この還
元鉄粉の特性は、飽和磁束密度が101 emu/g 
(測定磁場1.0000e) 、最大粒子径的0.8μ
m、酸素含有量3.9重量%、酸化開始温度1’70℃
であった。
Example 1 Hematite for pigments (manufactured by Morishita Bengara, ?IR-2702)
was charged into a reduction furnace, heated to 450°C in a hydrogen gas atmosphere, and held at this temperature for 5 hours, then heating was stopped and cooled to room temperature. After cooling, the gas in the furnace was replaced with nitrogen, and then nitrogen gas with an oxygen concentration of 5% by volume was introduced into the furnace for 4 hours,
After mild oxidation, the product in the furnace was taken out and crushed to obtain fine reduced iron powder with an iron oxide layer formed on the surface. This reduced iron powder has a saturation magnetic flux density of 101 emu/g.
(measured magnetic field 1.0000e), maximum particle diameter 0.8μ
m, oxygen content 3.9% by weight, oxidation start temperature 1'70°C
Met.

次いで、上記還元鉄粉20重量部、軟化点100〜12
0℃のスチレン−メタクリル酸ブチル共重合体55重量
部、軟化点125℃のポリスチレン20重量部及びカー
ボンブラック5重量部を熔融混練し、常温まで冷却後、
ハンマーミルにて粗粉砕し、更にジェットミルにて微粉
砕し、風力分級機により約10μmの磁性トナーを得た
Next, 20 parts by weight of the above reduced iron powder, softening point 100-12
55 parts by weight of styrene-butyl methacrylate copolymer at 0°C, 20 parts by weight of polystyrene with a softening point of 125°C, and 5 parts by weight of carbon black were melt-kneaded, and after cooling to room temperature,
The powder was coarsely pulverized with a hammer mill, further finely pulverized with a jet mill, and a magnetic toner with a size of about 10 μm was obtained using an air classifier.

この磁性トナーを用いて、セレン感光板ドラム上に静電
画像を形成し、常法に従い磁気ブラシ法により現像し、
普通紙上に転写し定着したところ、良好な画像を得るこ
とができた。
Using this magnetic toner, an electrostatic image is formed on a selenium photosensitive plate drum, and developed by a magnetic brush method according to a conventional method.
When the image was transferred onto plain paper and fixed, a good image was obtained.

実施例2 立方状マグネタイト(関東電化工業型、MBC−100
)を還元炉に仕込み、水素ガス雰囲気中で500℃まで
昇温させ、該温度に5時間保持した後、加熱を止め、常
温まで冷却した。冷却後、炉内ガスを窒素で置換し、次
いで酸素濃度5容量%の窒素ガスを4時間炉内に導入し
、穏やかに酸化した後、炉内の生成物を取出し解砕して
表面に酸化鉄層を形成した微粒子還元鉄粉を得た。この
還元鉄粉の特性は、飽和磁束密度が82 en+u/ 
g (測定磁場1.0000e) 、最大粒子径的1.
2μm、酸素含有量6.3重量%、酸化開始温度190
℃であった。
Example 2 Cubic magnetite (Kanto Denka Kogyo type, MBC-100
) was placed in a reduction furnace, heated to 500° C. in a hydrogen gas atmosphere, and held at this temperature for 5 hours, then heating was stopped and cooled to room temperature. After cooling, the gas in the furnace is replaced with nitrogen, and then nitrogen gas with an oxygen concentration of 5% by volume is introduced into the furnace for 4 hours to gently oxidize, and then the products in the furnace are taken out and crushed to oxidize the surface. Fine reduced iron powder with an iron layer formed thereon was obtained. The characteristic of this reduced iron powder is that the saturation magnetic flux density is 82 en+u/
g (measured magnetic field 1.0000e), maximum particle diameter 1.
2μm, oxygen content 6.3% by weight, oxidation start temperature 190
It was ℃.

次いで、上記還元鉄粉を使用して実施例1と同様にして
磁性トナーを得た。この磁性トナーをセレン感光板ドラ
ムを装着した電子写真複写機に入れ、普通紙上に転写し
定着したところ、良好な画像を得ることができた。
Next, a magnetic toner was obtained in the same manner as in Example 1 using the above reduced iron powder. This magnetic toner was placed in an electrophotographic copying machine equipped with a selenium photosensitive plate drum, and when it was transferred and fixed onto plain paper, a good image was obtained.

実施例3 顔料用ヘマタイト(バイエル製、140M)と立方状マ
グネタイト(関東電化工業型、にBC−200)を重量
比1:1の割合で混合し、還元炉に仕込み、以下実施例
1と同様に実施して表面に酸化鉄層を形成した微粒子還
元鉄粉を得た。この還元鉄粉の特性は、飽和磁束密度が
188emu/g(測定磁場1.0000e)、最大粒
子径的1.5μm、酸素台を量0.83重量%、酸化開
始温度170℃であった。
Example 3 Pigment-use hematite (manufactured by Bayer, 140M) and cubic magnetite (Kanto Denka Kogyo type, BC-200) were mixed at a weight ratio of 1:1, and the mixture was charged into a reduction furnace and the same procedure as in Example 1 was carried out. Fine particles of reduced iron powder with an iron oxide layer formed on the surface were obtained. This reduced iron powder had a saturation magnetic flux density of 188 emu/g (measuring magnetic field of 1.0000 e), a maximum particle diameter of 1.5 μm, an oxygen content of 0.83% by weight, and an oxidation start temperature of 170°C.

次いで、上記還元鉄粉を使用して実施例1と同様にして
磁性トナーを得た。この磁性トナーをセレン感光板ドラ
ムを装着した電子写真複写機に入れ、普通紙上に転写し
定着したところ、良好な画像を得ることができた。
Next, a magnetic toner was obtained in the same manner as in Example 1 using the above reduced iron powder. This magnetic toner was placed in an electrophotographic copying machine equipped with a selenium photosensitive plate drum, and when it was transferred and fixed onto plain paper, a good image was obtained.

比較例1 飽和磁束密度が62 e+mu/g (測定磁場1.0
000e)である立方状マグネタイト(関東電化工業部
、WBC−100) 20重量部を実施例1で得られた
還元鉄粉20重量部の代わりに使用した以外は実施例I
と同様にして磁性トナーを得た。この磁性トナーをセレ
ン感光板ドラムを装着した電子写真複写機に入れ、普通
紙上に転写し定着したところ、かぶりが多く、良好な画
像は得られなかった。
Comparative Example 1 Saturation magnetic flux density is 62 e+mu/g (measurement magnetic field 1.0
Example I except that 20 parts by weight of cubic magnetite (Kanto Denka Kogyo Department, WBC-100), which is 000e), was used instead of 20 parts by weight of the reduced iron powder obtained in Example 1.
A magnetic toner was obtained in the same manner as above. When this magnetic toner was put into an electrophotographic copying machine equipped with a selenium photosensitive drum and transferred and fixed onto plain paper, there was a lot of fogging and a good image could not be obtained.

比較例2 飽和磁束密度が62 emu/g (測定磁場1 、0
000e)である立方状マグネタイト(関東電化工業部
、KBC−100) 50重量部を実施例1で得られた
還元鉄粉20重量部の代わりに使用した以外は実施例1
と同様にして磁性トナーを得た。この磁性トナーをセレ
ン感光板ドラムを装着した電子写真複写機に入れ、普通
紙上に転写し定着したところ、画像のかぶりは改善され
たが、定着性がやや悪く、又高温多湿条件下ではかぶり
が出て画像が汚れた。
Comparative Example 2 Saturation magnetic flux density was 62 emu/g (measured magnetic field 1, 0
Example 1 except that 50 parts by weight of cubic magnetite (000e) (Kanto Denka Kogyo Department, KBC-100) was used instead of 20 parts by weight of the reduced iron powder obtained in Example 1.
A magnetic toner was obtained in the same manner as above. When this magnetic toner was placed in an electrophotographic copying machine equipped with a selenium photosensitive plate drum and transferred and fixed onto plain paper, the image fog was improved, but the fixing performance was somewhat poor, and fogging occurred under high temperature and high humidity conditions. It came out and the image was dirty.

〔発明の効果〕〔Effect of the invention〕

本発明の還元鉄粉は、微細で且つ飽和磁束密度が大きい
ため、電子写真磁性トナー用磁性材料として好適なもの
であり、本発明の還元鉄粉によれば、トナー中の磁性材
料の含有量を減少し相対的に樹脂の含有量を増加させ得
ることができ、紙への定着性が良く且つ画像特性の優れ
た電子写真磁性トナーが得られ、しかも還元鉄粉が経済
的に製造することができる等の効果が奏せられる。
The reduced iron powder of the present invention is fine and has a high saturation magnetic flux density, so it is suitable as a magnetic material for electrophotographic magnetic toner. It is possible to obtain an electrophotographic magnetic toner that has good fixing properties to paper and excellent image characteristics, and can be produced economically using reduced iron powder. Effects such as being able to do this can be achieved.

Claims (4)

【特許請求の範囲】[Claims] (1)表面に酸化鉄層が形成されており、且つ粒子径が
0.1〜5μmであることを特徴とする電子写真磁性ト
ナー用還元鉄粉。
(1) Reduced iron powder for electrophotographic magnetic toner, which has an iron oxide layer formed on its surface and has a particle size of 0.1 to 5 μm.
(2)酸素含有量が0.2〜10重量%である特許請求
の範囲第(1)項記載の還元鉄粉。
(2) The reduced iron powder according to claim (1), which has an oxygen content of 0.2 to 10% by weight.
(3)測定磁場1,000 0eでの飽和磁束密度が少
なくとも80emu/g以上である特許請求の範囲第(
1)項記載の還元鉄粉。
(3) The saturation magnetic flux density at a measurement magnetic field of 1,000 0e is at least 80 emu/g or more (
Reduced iron powder described in section 1).
(4)ヘマタイト、マグヘマタイト、マグネタイト、ウ
ースタイト、ベルトライト、ゲーサイト、アカガナイト
及びレピドクロサイト等の鉄酸化物又は鉄含水酸化物の
一種又は二種以上を、300〜600℃の温度下で還元
性ガスにより還元し、次いで冷却した後、酸素濃度が1
0容量%以下のガスで表面を酸化することを特徴とする
還元鉄粉の製造法。
(4) One or more iron oxides or iron hydrated oxides such as hematite, maghematite, magnetite, oostite, bertolite, goethite, acaganite, and lepidocrocite are reduced at a temperature of 300 to 600°C. After being reduced by a reactive gas and then cooled, the oxygen concentration is reduced to 1.
A method for producing reduced iron powder characterized by oxidizing the surface with a gas of 0% by volume or less.
JP60125494A 1985-06-10 1985-06-10 Manufacturing method of reduced iron powder for magnetic toner Expired - Lifetime JPH0648389B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60125494A JPH0648389B2 (en) 1985-06-10 1985-06-10 Manufacturing method of reduced iron powder for magnetic toner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60125494A JPH0648389B2 (en) 1985-06-10 1985-06-10 Manufacturing method of reduced iron powder for magnetic toner

Publications (2)

Publication Number Publication Date
JPS61284773A true JPS61284773A (en) 1986-12-15
JPH0648389B2 JPH0648389B2 (en) 1994-06-22

Family

ID=14911487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60125494A Expired - Lifetime JPH0648389B2 (en) 1985-06-10 1985-06-10 Manufacturing method of reduced iron powder for magnetic toner

Country Status (1)

Country Link
JP (1) JPH0648389B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005264435B2 (en) * 2004-07-23 2010-12-09 Mitsui Mining & Smelting Co., Ltd. Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using said fluorine absorption/desorption agent

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521143A (en) * 1978-07-31 1980-02-15 Toda Kogyo Corp Manufacturing method for granular metal magnetic particle powder containing iron mainly

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5521143A (en) * 1978-07-31 1980-02-15 Toda Kogyo Corp Manufacturing method for granular metal magnetic particle powder containing iron mainly

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2005264435B2 (en) * 2004-07-23 2010-12-09 Mitsui Mining & Smelting Co., Ltd. Fluorine absorption/desorption agent for electrolysis solution in zinc electrolytic refining, and method for removing fluorine using said fluorine absorption/desorption agent

Also Published As

Publication number Publication date
JPH0648389B2 (en) 1994-06-22

Similar Documents

Publication Publication Date Title
JPS6036082B2 (en) Ferrite powder for electrophotographic magnetic toner and method for producing the same
US6638675B2 (en) Black magnetic toner
EP0936507A2 (en) Black magnetic composite particles and black magnetic toner using the same
WO2013014969A1 (en) Ferrite particle production method
JP4508908B2 (en) Toner production method
US7144626B2 (en) Magnetic iron oxide particles and magnetic toner using the same
JP4735810B2 (en) Magnetic iron oxide particle powder for magnetic toner and magnetic toner using the magnetic iron oxide particle powder
JPS61284773A (en) Fine particle reducing iron powder and its production
JP2003162088A (en) Electrophotographic toner containing polyalkylene wax or high crystalline wax
JP3664216B2 (en) Black magnetic particle powder for black magnetic toner and black magnetic toner using the black magnetic particle powder
EP1076267A1 (en) Black magnetic toner and black magnetic composite particles therefor
US6306552B1 (en) Carrier having specified bet specific surface area and dynamic current value and two-component developer thereof
JP2628967B2 (en) Magnetite particle powder and method for producing the same
JPS61291421A (en) Production of ferrite powder for magnetic toner for electrophotography
JPS6237780B2 (en)
JPH0651556A (en) Magnetic toner
JP4328928B2 (en) Black composite magnetic particle powder for black magnetic toner and black magnetic toner using the black composite magnetic particle powder
JPS6346412B2 (en)
JP2000356864A (en) Black composite magnetic particulate powder for black magnetic toner and black magnetic toner using same
JP4534125B2 (en) Iron-based black particle powder and black toner containing the iron-based black particle powder
US20020192584A1 (en) Black magnetic toner and black magnetic composite particles therefor
JP3880894B2 (en) Toner for developing electrostatic image and developing method
JPS607441A (en) Magnetic color toner
JPS6067962A (en) Magnetic color toner
JP2910788B2 (en) Needle-like magnetic particle powder containing iron as a main component and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term