JPS61284688A - Doppler underwater speed measuring instrument - Google Patents

Doppler underwater speed measuring instrument

Info

Publication number
JPS61284688A
JPS61284688A JP60127606A JP12760685A JPS61284688A JP S61284688 A JPS61284688 A JP S61284688A JP 60127606 A JP60127606 A JP 60127606A JP 12760685 A JP12760685 A JP 12760685A JP S61284688 A JPS61284688 A JP S61284688A
Authority
JP
Japan
Prior art keywords
underwater
ellipse
layers
layer
flow velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60127606A
Other languages
Japanese (ja)
Other versions
JPH0380270B2 (en
Inventor
Takeshi Sakuma
健 佐久間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP60127606A priority Critical patent/JPS61284688A/en
Publication of JPS61284688A publication Critical patent/JPS61284688A/en
Publication of JPH0380270B2 publication Critical patent/JPH0380270B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To analogize the underwater speed at the depth in addition to a measuring layer as well from the displayed layer by three-dimensionally displaying the underwater speed of multiple layers. CONSTITUTION:The signal for setting optional three layers of measuring depths is inputted to a CPU4 via an interface circuit 7 by a panel switch 8 and is stored in a RAM6. Said signal is outputted to a signal processor 1 via an interface circuit 3. The current directions and flow rate values of the three layers are calculated from the waves reflected from the sea bottom and the sea inside and gyro signals in the processor 1 and are inputted via the circuit 3 to the CPU4 which stores the values into the RAM6. The information on a flow rate scale is inputted as the set value of the switch 8 into the CPU4 via the circuit 7 and is stored in the RAM6. The CPU4 reads the current direction, flow rate and flow rate scale out of the RAM6, determines of the scale of the elliptical display, the major axis and minor axis of the ellipse and the end point coordinates of vector and three-dimensionally displays 10 the same via a display conversion circuit9. The underwater speed at the depth except the measuring display layer can be thus analogized from the displayed layer.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は船舶から海中に超音波を発射し海底又は海中か
ら反射する反射波に生じるドツプラ効果に基づいて水中
移動物体等の水中速度を測定表示する装置に関する。
[Detailed Description of the Invention] Industrial Application Field The present invention measures and displays the underwater speed of an underwater moving object based on the Doppler effect generated in the reflected waves that emit ultrasonic waves from a ship into the sea and reflect from the seabed or the sea. Regarding equipment.

(従来の技術) 従来のこの種の測定表示装置においては、信号処理器で
パルスを発生しこれを送受波器に供給し、該送受波器か
ら海底に向けて超音波信号を発射する。海底及び魚群、
プランクトン等で反射された反射波は再び送受波器に受
信され電気信号に変換され前記信号処理器に入力される
(Prior Art) In a conventional measurement display device of this type, a signal processor generates pulses, supplies the pulses to a transducer, and emits an ultrasonic signal from the transducer toward the ocean floor. seabed and fish schools,
The reflected waves reflected by plankton and the like are received by the transducer again, converted into electrical signals, and input to the signal processor.

この電気信号をもとに魚群等の水中移動物体の海底に対
する速度(速さと方向)が計測、演算処理される。この
場合、従来は水中速度を数値で表示するか、又は平面的
にベクトルで表示していた。
Based on this electrical signal, the velocity (velocity and direction) of underwater moving objects such as schools of fish relative to the seabed is measured and processed. In this case, the underwater speed has conventionally been displayed numerically or as a flat vector.

(発明が解決しようとする問題点) このため、測定層が複数の場合には深度方向の様手が判
明しにくり、又測定層以外の途中の層の水中速度t−換
推することが困難であった。
(Problems to be Solved by the Invention) For this reason, when there are multiple measurement layers, it is difficult to determine the behavior in the depth direction, and it is difficult to convert the underwater velocity t of intermediate layers other than the measurement layer. It was difficult.

又流速の警報範囲と水中速度とが同時表示にな゛つてい
なかったので、流速指示値と流速の警報設定値との比較
が容易でなかった。
Also, because the flow velocity alarm range and underwater velocity were not displayed simultaneously, it was not easy to compare the flow velocity indication value and the flow velocity alarm set value.

(問題点を解決するための手段) 本発明は、これらの欠点を除去するため、任意の複数層
についての測定深度を設定するための手段、該設定値を
記憶し、信号処理器に指定する手段、絶対方位系での流
向流速値を演算処理する手段、設定された多層の流向、
流速値を記憶し、+を円表示のスケール及び楕円の長軸
(Means for Solving the Problems) In order to eliminate these drawbacks, the present invention provides means for setting measurement depths for arbitrary multiple layers, storing the set values, and specifying them to a signal processor. means, means for calculating flow direction and flow velocity values in an absolute orientation system, set multilayer flow direction,
Memorize the flow velocity value, + is the scale of the circle display and the major axis of the ellipse.

短軸、ベクトルの終点座標を求める中央処理装置の演算
処理手段により、多層の水中速度を立体的に表示しうる
ようにしたもので測定層以外(実施例) 第1図は本発明の一実施例のブロック図で。
Using the arithmetic processing means of the central processing unit that calculates the coordinates of the short axis and the end point of the vector, it is possible to three-dimensionally display the underwater velocity of multiple layers, other than the measurement layer (example). Figure 1 shows one embodiment of the present invention. In the example block diagram.

1は水中速度計の信号処理器、2は送受波器で。1 is the signal processor of the underwater speedometer, and 2 is the transducer.

1及び2で水中速度計を構成する。3は流向。1 and 2 constitute an underwater speedometer. 3 is the flow direction.

流速インターフェース回路、4は中央処理装置(以下C
PUと呼ぶ)、5は第1記憶回路(以下ROMと呼ぶ)
、6は第2記憶回路(以下RAMと呼ぶ)、7はパネル
入力インターフェース回路、8はパネルスイッチ、9は
表示変換回路、および10はブラウン管表示器であって
3〜10で水中速度表示装置を構成する。
Flow velocity interface circuit, 4 is a central processing unit (hereinafter referred to as C
5 is a first memory circuit (hereinafter referred to as ROM)
, 6 is a second memory circuit (hereinafter referred to as RAM), 7 is a panel input interface circuit, 8 is a panel switch, 9 is a display conversion circuit, and 10 is a cathode ray tube display, and 3 to 10 are underwater speed display devices. Configure.

次に本発明装置の動作につき第2図の表示例を参照して
説明する。まず水中速度計の信号処理器1で発生したパ
ルスが、送受波器2に供給され該送受波器2から海底に
向けて斜め下方に例えば4本の超音波信号が発射される
。海底および海中の魚群、プランクトン等で反射された
反射波は、再び送受波器2に到来し、電気信号に変換さ
れて、信号処理器1に入力される。この電気信号をもと
に、魚群等の水中移動物体の海底に対する速度(速さと
方向)を計測、演算することは特許第805192号「
魚群の移動速度および移動方向探知方式」により知られ
ている。
Next, the operation of the apparatus of the present invention will be explained with reference to the display example shown in FIG. First, pulses generated by the signal processor 1 of the underwater speedometer are supplied to the transducer 2, and the transducer 2 emits, for example, four ultrasonic signals diagonally downward toward the seabed. Reflected waves reflected by schools of fish, plankton, etc. on the seabed and in the sea reach the transducer 2 again, are converted into electrical signals, and are input to the signal processor 1. Based on this electrical signal, the speed (velocity and direction) of underwater moving objects such as schools of fish relative to the seabed can be measured and calculated, as disclosed in Japanese Patent No. 805192.
It is known for its method of detecting the moving speed and direction of fish schools.

一般に小魚群、プランクトン等の反射物体はそれ自体動
いていないか、動いていても微少速度でるるため、潮海
流と共に移動していると考えられる。又海中の上層から
下層に亘り広く分布していると考えられる為、任意深度
の移動物体の水中速度を測定することにより、任意深度
の流向、流速を知ることができる。
In general, reflective objects such as schools of small fish and plankton are not moving, or even if they are moving, they are moving at very small speeds, so they are considered to be moving with the tidal currents. Furthermore, since it is thought to be widely distributed from the upper to the lower layers of the ocean, by measuring the underwater speed of a moving object at a given depth, it is possible to know the current direction and current velocity at a given depth.

本発明は水中速度表示装置のパネルスイッチ8で任意3
層の測定深度を設定する信号をパネル入力インターフェ
ース回路7を介して、 CPU4に入力せしめ、 RA
M6に記憶させると同時に。
The present invention allows the underwater speed display device to have any 3
A signal for setting the measurement depth of the layer is input to the CPU 4 via the panel input interface circuit 7, and the RA
At the same time as storing it in M6.

流向流速インターフェース回路3を介して、信号処理器
1に出力させる点に1つの特長がある。
One of the features is that it is output to the signal processor 1 via the flow direction/flow speed interface circuit 3.

この任意3層は例えば上層10m、中層50m、下層1
00mのように設定される。信号処理器1では、前述し
たように、海底および海中で反射された反射波と絶対方
位系での流速を表示する為に入力するジャイロ信号とか
ら、前記3層の流向、流速値が演算され、流向、1N速
イン−ター7工−ス回路3に出力される。CPU4は流
向、流速インターフェース回路3から、3層の流向。
These three arbitrary layers are, for example, an upper layer of 10 m, a middle layer of 50 m, and a lower layer of 1.
00m. As described above, the signal processor 1 calculates the current direction and current velocity values of the three layers from the reflected waves reflected on the seabed and under the sea and the gyro signal input to display the current velocity in the absolute azimuth system. , flow direction, and are output to the 1N-speed interface circuit 3. The CPU 4 controls the flow direction and the flow direction of the three layers from the flow rate interface circuit 3.

流速値を入力し、 RAM6に記憶する。又流速スケー
ルの情報をパネルスイッチ8の設定値として、パネル入
力インタ−7エース回路7を介してCPU4に入力し、
 RAM6に記憶する。この値はブラウン管表示器10
上に表示する楕円の長軸の長さのスケールを決定するも
ので1例えば3層のそれぞれが2knots15cm、
5knots15cm10knots15cmのように
設定される。CPU4はこれらの値をもとに1表示する
楕円の長袖、短軸、ベクトルの終点座標を求め1表示変
換回路9に出力する。これら一連の処理プログラムはR
OM5に格納されてお、9 、 CPU4が、このプロ
グラムを遂次読出し、実行することによって。
Input the flow velocity value and store it in RAM6. In addition, information on the flow velocity scale is inputted to the CPU 4 via the panel input interface 7 ace circuit 7 as a setting value of the panel switch 8,
Store in RAM6. This value is on the cathode ray tube display 10
This determines the length scale of the long axis of the ellipse displayed above.1 For example, each of the three layers is 2 knots 15 cm,
The settings are as follows: 5 knots 15 cm, 10 knots 15 cm. Based on these values, the CPU 4 determines the coordinates of the long sleeve, short axis, and end point of the vector of the ellipse to be displayed one time, and outputs the coordinates to the one display conversion circuit 9. These series of processing programs are R
The program is stored in the OM5, and the CPU 4 sequentially reads and executes the program.

入出力および演算処理が行なわれる。Input/output and arithmetic processing are performed.

つぎに流向、流速および流速スケールから。Next, from the flow direction, flow velocity, and flow velocity scale.

楕円の長袖、短軸、ベクトルの終点座標を求める方法に
つき、第3図を参照して説明する。流向TA、流速RA
i、真北Nを上にした同心円Ci’とベクトルOPiで
表わし、楕円Ovの長軸Pを流速RAと等しい長さとし
、又短軸qを長軸Pの1/3 とすれば、楕円Ovの式
は下記で表わされる。
A method for determining the long axis, short axis, and end point coordinates of the ellipse will be explained with reference to FIG. 3. Flow direction TA, flow rate RA
i, expressed by a concentric circle Ci' with true north N on top and a vector OPi, and if the major axis P of the ellipse Ov is equal in length to the flow velocity RA, and the minor axis q is 1/3 of the major axis P, then the ellipse Ov The formula is expressed below.

ここでN−8軸ky軸、W−E軸をX軸とする。Here, the N-8 axis, ky axis, and W-E axis are assumed to be the X axis.

従って1点P2からX軸におろした垂線と、楕円Ovと
の交点p1(X++3’υの座標は下記の式で表わされ
る。このベクトル算出里が楕円表示での流向TAを表わ
す。
Therefore, the coordinates of the intersection point p1 (X++3'υ) between the perpendicular drawn from one point P2 to the X axis and the ellipse Ov are expressed by the following formula. This vector calculation distance represents the flow direction TA in the ellipse representation.

x r=x o+P 、 s 1nTAy Y r=”
! ofq cosjA実際のCRT表示に必要な長軸
p+、短軸q+、交点Pl(x++3’+)の値は、流
速スケールΔVを考慮すると、上層については下式で求
められる。
x r=x o+P , s 1nTAy Y r=”
! ofq cosjA The values of the long axis p+, the short axis q+, and the intersection Pl(x++3'+) necessary for actual CRT display can be obtained for the upper layer by the following formula, taking into account the flow velocity scale ΔV.

前記は1つの上層について述べたものであるが。Although the above describes one upper layer.

同様に他の2層(中、下層)についても、それぞれ長軸
、短軸、ベクトルの終点座標を求め。
Similarly, for the other two layers (middle and lower layers), find the long axis, short axis, and vector end point coordinates, respectively.

表示変換回路9に出力する。楕円の中心座標0のX軸の
値については、各層の測定深度に対応した値として出力
される。表示変換回路9は。
It is output to the display conversion circuit 9. The value of the X-axis at the center coordinate 0 of the ellipse is output as a value corresponding to the measured depth of each layer. The display conversion circuit 9 is.

これらの値をもとに、指円とベクトルを描く為の映像信
号に変換して、ブラウン管表示器1゜に出力する。これ
によってブラウン管表示器1゜には、第2図に示すよう
な水中速度の楕円aとベクトルbが表示される。3層の
水中速度は。
Based on these values, it is converted into a video signal for drawing finger circles and vectors and output to a 1° cathode ray tube display. As a result, the underwater velocity ellipse a and vector b as shown in FIG. 2 are displayed on the cathode ray tube display 1°. What is the underwater speed of the three layers?

その測定深度に対応した間隔で、浅い方から順番に上か
ら下へと運べられる。例えば、上層が10m、中層が5
0m、下層が100m  とすると上中層の間隔と中下
層の間隔の比は4:5となる。これにより、深度方向の
概念が把握しやすくなる。
They are carried from top to bottom in order from shallowest to lowest at intervals corresponding to the measured depth. For example, the upper layer is 10m and the middle layer is 5m.
0m and the lower layer is 100m, the ratio of the distance between the upper and middle layers and the distance between the middle and lower layers is 4:5. This makes it easier to understand the concept of depth.

又3つの楕円の上には、流速RAの一番大きな層の楕円
aとベクトルbが表示され、さらに他の層のベクトルも
表示される為、平面での関係が理解しやすくなる。又あ
る層を基準とした他の2層の相対速度も点線のベクトル
Cで表示することもできる。各層の流向TA+流速R人
は色別に表示すると、さらに枦かりやすくなる。
Moreover, the ellipse a and vector b of the layer with the largest flow velocity RA are displayed above the three ellipses, and the vectors of other layers are also displayed, making it easier to understand the relationships on the plane. Furthermore, the relative speeds of the other two layers with respect to a certain layer can also be displayed as a dotted line vector C. If the flow direction TA + flow velocity R of each layer is displayed in different colors, it will be easier to see.

さらにCPU4はパネルスイッチ8の情報をパネル入力
インターフェース回路7を介して入力し。
Further, the CPU 4 inputs information from the panel switch 8 via the panel input interface circuit 7.

流速の警報範囲を決定し2表示変換回路9に出力する。The flow velocity alarm range is determined and output to the two-display conversion circuit 9.

これによりブラウン管表示器10には、・赤色の棒グラ
フdが表示される。第2図の例では、 1.5knot
sが警報範囲となり、3層のうちのいづれか1層でも流
速が1.5knots以上になると警報ブザーが鳴る。
As a result, a red bar graph d is displayed on the cathode ray tube display 10. In the example in Figure 2, 1.5 knots
s becomes the alarm range, and if the flow velocity becomes 1.5 knots or more in any one of the three layers, an alarm buzzer will sound.

又空スペースeには各層の流向、流速値が数値で表示さ
れる。「深度」の欄には各層の測定深度10m、50m
、100mが、「流速」の欄には0.8kn 、 0.
6kn 、 0.4knが、そして「流向」の欄にはE
SE(112°)、NE(45°)、N(0°)が。
In addition, the flow direction and flow velocity values of each layer are displayed numerically in the empty space e. The measurement depth of each layer is 10m and 50m in the "Depth" column.
, 100m, but in the "flow velocity" column it is 0.8kn, 0.
6kn, 0.4kn, and E in the "flow direction" column.
SE (112°), NE (45°), and N (0°).

それぞれの層に対応して表示される。Displayed corresponding to each layer.

(発明の効果) 以上説明したように本発明は多層の水中速度を立体的に
表示しうるので、測定表示層以外の層の水中速度につい
ても2表示された各層からある程度類推できる。
(Effects of the Invention) As explained above, the present invention is capable of three-dimensionally displaying underwater velocities in multiple layers, so that the underwater velocities of layers other than the measurement display layer can be inferred to some extent from the two displayed layers.

このような表示により9巻網船での投縄時の綱成りが容
易に想像でき、漁業における効率を著1バ曲μ六虻Aこ
左づ:〒央スヂ11占を右ナスーV流速警報機能では過
大速度による破網の防止に役立つことが期待できる。
This kind of display makes it easy to imagine the line structure when setting a line on a purse seiner, and it also shows the efficiency in fishing. The warning function is expected to help prevent net breakage due to excessive speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図。 第2図はCRT表示面上に表示された図形、情報の平面
図、第3図は楕円、ベクトル算出の説明図である。
FIG. 1 is a block diagram showing one embodiment of the present invention. FIG. 2 is a plan view of figures and information displayed on the CRT display screen, and FIG. 3 is an explanatory diagram of ellipse and vector calculation.

Claims (1)

【特許請求の範囲】[Claims] 水中に超音波信号を発射し海底および海中からの反射波
とジャイロコンパス信号とから水中移動物体等の水中速
度を測定する装置において、任意の複数層についての測
定深度を設定するための手段、該設定値を記憶し、水中
速度計の信号処理器に指定する手段、絶対方位系での流
向、流速値を演算処理する手段、設定された多層の流向
、流速を記憶し、楕円表示のスケール及び楕円の長軸、
短軸、ベクトルの終点座標を求める中央処理装置の演算
手段により、楕円の大きさで流速、楕円中心からのベク
トル方向で流向を夫々れ多層に深度方向に重ね立体表示
し、同時に流速の警報範囲を表示するようにしたことを
特徴とするドップラ水中速度測定装置。
In a device that emits an ultrasonic signal underwater and measures the underwater speed of an underwater moving object, etc. from reflected waves from the seabed and underwater and a gyro compass signal, a means for setting measurement depths for arbitrary plural layers; A means for storing set values and specifying them in the signal processor of the underwater speedometer, a means for calculating flow direction and flow velocity values in the absolute azimuth system, a means for memorizing the set multilayer flow direction and flow velocity, and a scale and ellipse display. long axis of the ellipse,
The calculation means of the central processing unit that calculates the coordinates of the minor axis and the end point of the vector displays the flow velocity as the size of the ellipse and the flow direction as the vector direction from the center of the ellipse, superimposed in the depth direction in multiple layers.At the same time, the warning range of the flow velocity is displayed. A Doppler underwater velocity measurement device characterized by displaying.
JP60127606A 1985-06-12 1985-06-12 Doppler underwater speed measuring instrument Granted JPS61284688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60127606A JPS61284688A (en) 1985-06-12 1985-06-12 Doppler underwater speed measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60127606A JPS61284688A (en) 1985-06-12 1985-06-12 Doppler underwater speed measuring instrument

Publications (2)

Publication Number Publication Date
JPS61284688A true JPS61284688A (en) 1986-12-15
JPH0380270B2 JPH0380270B2 (en) 1991-12-24

Family

ID=14964245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60127606A Granted JPS61284688A (en) 1985-06-12 1985-06-12 Doppler underwater speed measuring instrument

Country Status (1)

Country Link
JP (1) JPS61284688A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950367A (en) * 1982-09-14 1984-03-23 Furuno Electric Co Ltd Tidal current observing device
JPS5945584U (en) * 1982-09-16 1984-03-26 古野電気株式会社 Ship speed display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4042068A (en) * 1975-06-25 1977-08-16 Westinghouse Electric Corporation Elevator system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5950367A (en) * 1982-09-14 1984-03-23 Furuno Electric Co Ltd Tidal current observing device
JPS5945584U (en) * 1982-09-16 1984-03-26 古野電気株式会社 Ship speed display device

Also Published As

Publication number Publication date
JPH0380270B2 (en) 1991-12-24

Similar Documents

Publication Publication Date Title
US20220252708A1 (en) Sonar transducer having a gyroscope
JPH11316277A (en) Scanning sonar for automatically tracking school of fish
JP2016217939A (en) Ship track display device
JPS61284688A (en) Doppler underwater speed measuring instrument
JPS622184A (en) Doppler underwater speed measuring instrument
US4225949A (en) Method of and apparatus for navigating unmarked channels
KR102132165B1 (en) Smart electronic fishing float, and system for providing fishing information using the same
JPH0313552B2 (en)
JPS58205875A (en) Method for displaying reflection of underwater object
JPS622185A (en) Doppler underwater speed measuring and indicating instrument
JPS6050296B2 (en) Water temperature measurement method on ships
JPS61265590A (en) Fish-finder
JPH0439973B2 (en)
JPH0515542A (en) Ultrasonic tomographic apparatus
JPH0442727Y2 (en)
JPH04265881A (en) Finder of fish school
JPS5946809A (en) Device for displaying wake and tidal current condition
JPS58100765A (en) Detector for underwater body
JPH0226744B2 (en)
JPH05302974A (en) Acoustic positioning apparatus
JP2000314741A (en) Power flow display device
JPH0140055Y2 (en)
JPH023473B2 (en)
JPH04138273U (en) Ultrasonic Doppler current meter
JPS5967460A (en) Apparatus for observing tide