JPS6128410B2 - - Google Patents

Info

Publication number
JPS6128410B2
JPS6128410B2 JP57150729A JP15072982A JPS6128410B2 JP S6128410 B2 JPS6128410 B2 JP S6128410B2 JP 57150729 A JP57150729 A JP 57150729A JP 15072982 A JP15072982 A JP 15072982A JP S6128410 B2 JPS6128410 B2 JP S6128410B2
Authority
JP
Japan
Prior art keywords
wheel
groove
steel wire
shoe
pressing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57150729A
Other languages
Japanese (ja)
Other versions
JPS5942115A (en
Inventor
Samon Yanagimoto
Takeshi Miki
Yoshitaka Kawakami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15072982A priority Critical patent/JPS5942115A/en
Publication of JPS5942115A publication Critical patent/JPS5942115A/en
Publication of JPS6128410B2 publication Critical patent/JPS6128410B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/005Continuous extrusion starting from solid state material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Extrusion Of Metal (AREA)
  • Metal Extraction Processes (AREA)

Description

【発明の詳細な説明】 本発明は鋼線を連続的に引抜く装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for continuously drawing steel wire.

鋼線を連続的に細くするには、所定径を有する
ダイスを通して回転ドラムに巻取る引抜き法が一
般的であるが、引抜き法では20〜30%ずつ減面し
素材をより細くするためには幾台ものダイスと巻
取機の組合せを並べる必要があり、操業中に断線
を起すと著しい生産性低下を余儀なくされると共
に設備が複雑で大がかりとなるので作業の調整を
行なうには非常な熟練を必要とされる。
To make the steel wire thinner continuously, the common method is to pass it through a die with a predetermined diameter and wind it around a rotating drum. It is necessary to line up a number of combinations of dies and winding machines, and if a wire breaks during operation, productivity will be significantly reduced, and the equipment will be complex and large-scale, so it requires great skill to coordinate the work. is required.

一方、上記手段より簡単な手段としてアルミニ
ウムのような非鉄軟金属を摩擦力を利用して加工
する連続押出し手段であるコンフオーム押出法が
知られているが、この手段の素材押付機構はシユ
ーと称する一体ものの高強度金属材料を用いた部
材を主体とするものである。
On the other hand, as a simpler method than the above method, the conform extrusion method is known as a continuous extrusion method that processes non-ferrous soft metals such as aluminum using frictional force, but the material pressing mechanism of this method is called a shoe. The main component is a one-piece, high-strength metal material.

第1図は従来手段に用いられる装置の一態様例
を示す模式図で、素材1はガイドロール5,5′
を介してホイール2と一体もののシユー4との間
に導入され、一体もののシユー4に押付力を与え
ることによつて素材1は第2図に例示するような
断面形状のホイール2の溝に充満する。即ち、ホ
イール溝断面形状例は第2図a〜bに示す通りで
あり、ホイール2に設けられた図の様な断面形状
の溝に素材1とシユー4との間で押しつぶし充満
させることにより摩擦力を発生させている。
FIG. 1 is a schematic diagram showing an example of an embodiment of a device used in the conventional means, in which the material 1 is a guide roll 5, 5'
By applying a pressing force to the integral shoe 4, the material 1 is introduced into the groove of the wheel 2 having a cross-sectional shape as illustrated in FIG. 2. do. That is, examples of wheel groove cross-sectional shapes are as shown in FIGS. 2 a to b, and the material 1 and shoe 4 are pressed together to fill the grooves provided in the wheel 2 and have the cross-sectional shapes shown in the figures, thereby reducing friction. It generates force.

ホイール2を回転駆動させることによつて素材
1はホイール2の溝との接触面に発生する摩擦力
により、ホイール2の外周に沿つて移動しダイス
3を経て製品として押出される。
By rotating the wheel 2, the material 1 is moved along the outer periphery of the wheel 2 due to the frictional force generated on the contact surface with the groove of the wheel 2, and is extruded as a product through the die 3.

しかしながら、こうした一体もののシユーでは
加工や熱処理が大がかりで煩雑となり製造困難と
なる。又、シユーの一部に局部摩耗を起すと全体
を交換しなければならず交換が大がかりで煩雑と
なるうえに、素材の押付接触長さは変えることが
できず不必要に長くなつたりする不都合があつ
た。又、一体もののシユーは剛性が高く素材径の
変動に応じて押付力が変動して不安定作業となる
ことがある。
However, such a one-piece shoe requires extensive processing and heat treatment, making it difficult to manufacture. In addition, if local wear occurs in a part of the shoe, the entire shoe must be replaced, making the replacement large-scale and complicated, and the pressing contact length of the material cannot be changed, making it unnecessarily long. It was hot. Furthermore, since the one-piece shoe has high rigidity, the pressing force may vary depending on changes in the diameter of the material, which may result in unstable work.

さらに従来手段では、素材を押しつぶしホイー
ル溝に充満させ素材を非常に大きな静水圧力下に
保つことにより発生する摩擦力を利用しているの
で、素材の降伏応力に対して十分な押付力を与え
ることが必要となり押付機構が複雑で大がかりな
ものとなる。従つて鋼線の如く素材の降伏応力に
対して十分な押付力を与えることの困難な素材に
は上記従来手段は応用されていない。又、第3図
のように従来手段のダイス3には素材溜め部があ
つてこの部分でデツドメタルD、即ちダイス3に
停滞し押出されない状態にある素材を形成させ、
このデツドメタルDとダイス3に流れ込んで来る
素材1との間に発生する摩擦熱を利用して強加工
を行なつているが、上記従来ダイスはアルミニウ
ム等の非鉄軟金属について可能であつて鋼線の如
く素材の降伏応力に対して十分な押付力を与える
ことのできない素材についてこれを実施するとダ
イスおよびシユーは耐えられない。
Furthermore, the conventional means utilizes the frictional force generated by crushing the material and filling the wheel groove and keeping the material under extremely large hydrostatic pressure, so it is difficult to provide sufficient pressing force against the yield stress of the material. is required, making the pressing mechanism complicated and large-scale. Therefore, the above-mentioned conventional means has not been applied to materials such as steel wires in which it is difficult to apply a sufficient pressing force to the yield stress of the material. Further, as shown in FIG. 3, the die 3 of the conventional method has a material reservoir, and in this part dead metal D, that is, the material that is stagnant in the die 3 and not extruded, is formed.
Frictional heat generated between this dead metal D and the material 1 flowing into the die 3 is used to perform heavy machining, but the conventional die described above is capable of processing non-ferrous soft metals such as aluminum, and steel wire If this is done on a material that cannot provide a sufficient pressing force for the yield stress of the material, such as, the die and shoe will not be able to withstand it.

本発明は、このような上記従来手段の欠点を解
消し鋼線においてもかゝる手段の適用を可能とし
たもので、ダイスの前方で引抜力を、後方で押込
力を与えることによつて破断なく高減面加工を可
能とするもので、押込力を有効に発生させること
のできる引抜機を提供するものである。
The present invention eliminates the drawbacks of the above-mentioned conventional means and makes it possible to apply such means to steel wire, by applying a pulling force at the front of the die and a pushing force at the rear. The object of the present invention is to provide a drawing machine that enables high surface reduction processing without breakage and that can effectively generate pushing force.

即ち本発明は、回転駆動されるホイールは外周
部に加工鋼線がはまる溝底角θが40゜≦θ≦90゜
となつているV型あるいは台形型のホイール溝を
有し、鋼線を該ホイール溝に押付けるシユーは独
立に制御可能な押付機構を有する複数個のセグメ
ントに分離構成されていると共に、シユーの終端
に隣接してダイス半角が45゜以下のテーパ穴を有
するダイスを形成し、その前方に巻取機を設置せ
しめホイールの回転とシユーの押付によつて発生
する押込力および巻取機の引抜力によつて鋼線の
連続加工が可能な機構としたことを特徴とする鋼
線の連続引抜機である。
That is, in the present invention, the wheel to be rotationally driven has a V-shaped or trapezoidal wheel groove on the outer periphery in which the groove bottom angle θ into which the processed steel wire fits is 40°≦θ≦90°, and the steel wire is inserted into the wheel groove. The shoe to be pressed against the wheel groove is separated into a plurality of segments each having an independently controllable pressing mechanism, and a die having a tapered hole with a die half angle of 45° or less is formed adjacent to the end of the shoe. A winding machine is installed in front of the winding machine, and the steel wire can be continuously processed by the pushing force generated by the rotation of the wheel and the pressing of the shoe, and the pulling force of the winding machine. This is a continuous steel wire drawing machine.

又、前記発明のシユーをセラミツクで構成した
もの、かつ又前記発明の押付機構が各セグメント
にスプリングを内蔵して押付力をこのスプリング
を介して素材に伝える機構を設けた鋼線の連続引
抜機である。
Further, there is provided a continuous drawing machine for steel wire, in which the shoe of the invention is made of ceramic, and the pressing mechanism of the invention has a built-in spring in each segment and a mechanism for transmitting pressing force to the material via the spring. It is.

以下に本発明を詳述する。 The present invention will be explained in detail below.

第4図は本発明の機構を示す模式図、又第6図
a,bは本発明におけるホイール溝断面形状の態
様を示す模式図であり、2は回転駆動されるホイ
ール、5,5′はガイドロールで素材1を前記ホ
イール2に設けられた溝と、押付機構7に設けら
れたセグメント6との内に導入せしめるためのも
のである。この場合、ホイール2の溝とセグメン
ト6との間の摩擦力により押込力が発生するの
で、素材1はホイール2の外周に沿つて移動す
る。又、3′はテーパ穴を有するダイス、9は素
材1に引抜力を与えることのできる巻取機であ
る。
FIG. 4 is a schematic diagram showing the mechanism of the present invention, and FIGS. 6 a and 6 b are schematic diagrams showing the cross-sectional shape of the wheel groove in the present invention, 2 is a rotary driven wheel, 5 and 5' are This guide roll is used to introduce the material 1 into the groove provided in the wheel 2 and the segment 6 provided in the pressing mechanism 7. In this case, a pushing force is generated by the frictional force between the groove of the wheel 2 and the segment 6, so the material 1 moves along the outer periphery of the wheel 2. Further, 3' is a die having a tapered hole, and 9 is a winding machine capable of applying a pulling force to the material 1.

この場合、ホイール2の溝断面形状としてV型
あるいは台形型を採用することによつて、素材1
とホイール2の溝との接触面に摩擦力を発生させ
る第2図a,b,cの如きアルミニウムなどの非
鉄軟金属用の従来手段と比較して、素材をホイー
ル2の溝に充満させなくても素材1とホイール2
の溝との接触面に摩擦力が発生するので押付機構
7が小規模で簡単なものにでき、素材1の降伏応
力に対して十分な押付力を与えることの困難な素
材1でも押出し加工が可能となる。
In this case, by adopting a V-shaped or trapezoidal groove cross-sectional shape of the wheel 2, the material 1
Compared to conventional means for non-ferrous soft metals such as aluminum, as shown in Figure 2 a, b, and c, which generate frictional force on the contact surface between the grooves of the wheel 2 and the grooves of the wheel 2, the material does not fill the grooves of the wheel 2. Even material 1 and wheel 2
Since a frictional force is generated on the contact surface with the groove, the pressing mechanism 7 can be made small and simple, and even the material 1 which is difficult to apply a sufficient pressing force to the yield stress of the material 1 can be extruded. It becomes possible.

但し、ホイール2の溝断面形状が台形型の場合
において、素材1が第7図に示すようにホイール
2の溝側面と溝底面の両面に接触しているときに
はホイール2の溝底面に発生する摩擦力がセグメ
ント6に発生する摩擦力とほゞ等しくなるので、
押込力として働くホイール2の溝側面に発生する
摩擦力は小さくなり本発明の効果は小さくなる。
そのためホイール2の溝断面形状が台形型の場合
には、素材1が第6図bに示すようにホイール2
の溝側面のみに接触する方が望ましい。又、押込
力は素材1とホイール2の間に発生する摩擦力
と、素材1とセグメント6の間に発生する摩擦力
の差であるが、素材1が10mmφの軟鋼、ホイール
2の半径が250mm、ホイール駆動用モータが
100kw、素材送り速度が50m/min、さらにセグ
メント6が第6図aに示す形状であつてセグメン
ト6の押付力Pが29ton、押込力F、ホイール2
の溝底角θであるとき、セグメント6の押付力P
が一定における場合の押込力Fとホイール2の溝
底角θとの関係を示すと第8図に示すようにな
り、ホイール2の溝底角θが鋭角になると押込力
Fは著しく大きくなる。
However, when the cross-sectional shape of the groove of the wheel 2 is trapezoidal, when the material 1 is in contact with both the groove side surface and the groove bottom surface of the wheel 2 as shown in FIG. 7, the friction generated on the groove bottom surface of the wheel 2. Since the force is approximately equal to the frictional force generated in segment 6,
The frictional force generated on the groove side surface of the wheel 2, which acts as a pushing force, becomes smaller, and the effect of the present invention becomes smaller.
Therefore, when the cross-sectional shape of the groove of the wheel 2 is trapezoidal, the material 1 is attached to the wheel 2 as shown in FIG.
It is preferable to contact only the side surfaces of the groove. Also, the pushing force is the difference between the frictional force generated between the material 1 and the wheel 2 and the frictional force generated between the material 1 and the segment 6, but the material 1 is mild steel with a diameter of 10 mm and the radius of the wheel 2 is 250 mm. , the wheel drive motor
100kw, the material feed speed is 50m/min, the segment 6 has the shape shown in Figure 6a, the pressing force P of the segment 6 is 29ton, the pressing force F, and the wheel 2.
When the groove bottom angle θ is, the pressing force P of the segment 6 is
The relationship between the pushing force F and the groove bottom angle θ of the wheel 2 when is constant is shown in FIG. 8, and when the groove bottom angle θ of the wheel 2 becomes an acute angle, the pushing force F becomes significantly large.

即ち、押付機構が小規模で簡単なものになると
共に、素材1の降伏応力に対して十分な押付力P
を与えることの困難な素材1でも押出し加工が可
能となる。又、このような関係は上記条件以外の
類似条件で実施しても同様な結果が得られるもの
である。同図に見られるように、ホイール2の溝
底角θを40゜≦θ≦90゜とするとホイール2の溝
加工が可能であり、さらに鋼線の押出し加工が可
能となる。一方、ホイール2の溝底角θが40゜よ
り小さい場合には押込力Fは一段と大きくなる
が、ホイール2の溝加工が困難になると共に素材
1の僅かな寸法変動によつても素材1はホイール
2の溝の深さ方向に大きな移動を生じるのでセグ
メント6から素材1への押付力が変動する原因と
なる。
That is, the pressing mechanism becomes small and simple, and the pressing force P is sufficient for the yield stress of the material 1.
Even the material 1, which is difficult to give, can be extruded. Moreover, even if such a relationship is implemented under similar conditions other than the above conditions, similar results can be obtained. As seen in the figure, when the groove bottom angle θ of the wheel 2 is set to 40°≦θ≦90°, the wheel 2 can be grooved, and furthermore, steel wire can be extruded. On the other hand, when the groove bottom angle θ of the wheel 2 is smaller than 40°, the pushing force F becomes even larger, but it becomes difficult to process the groove of the wheel 2, and even if the material 1 has a slight dimensional variation, the material 1 This causes a large movement in the depth direction of the groove of the wheel 2, which causes the pressing force from the segment 6 to the material 1 to fluctuate.

なお、溝底角θが90゜を超える場合にはホイー
ル2の溝加工は容易になるが、第8図に示すよう
に押込力Fは小さくなるので素材1の降伏応力に
対して十分な押付力Pを与えることの困難な素材
1では押出し加工が困難となる。
Note that when the groove bottom angle θ exceeds 90°, it becomes easier to groove the wheel 2, but as shown in Fig. 8, the pushing force F becomes small, so it is necessary to apply sufficient pressure against the yield stress of the material 1. If the material 1 is difficult to apply force P to, extrusion processing becomes difficult.

次にセグメント6は摩擦熱による軟化および局
部摩耗を防ぐために非常にすぐれた耐熱性および
耐摩耗性を備えているアルミナ、炭化珪素、窒化
珪素、高圧合成した窒化ホウ素、さらに金属とセ
ラミツクスとの複合材料であるサーメツトなどの
セラミツクで製造されていることが望ましいが、
上記性質を備えている金属材料で製造されていて
もよい。又、隣合うセグメントは接触している
か、あるいは素材1の移動が安定して行なえるよ
うに素材1の曲率に加工されていてもよいと共
に、素材1の導入側は素材1の導入がスムーズに
行なえるように面取りされていることが望まし
い。
Next, segment 6 is made of alumina, silicon carbide, silicon nitride, high-pressure synthesized boron nitride, and a composite of metal and ceramics, which have excellent heat and wear resistance to prevent softening and local wear caused by frictional heat. It is preferable that the material be made of ceramic such as cermet.
It may be manufactured from a metal material having the above properties. Further, adjacent segments may be in contact with each other, or may be processed to the curvature of the material 1 so that the material 1 can be moved stably, and the introduction side of the material 1 may be arranged so that the material 1 can be introduced smoothly. It is desirable that it be chamfered so that it can be easily removed.

この場合、複数個のセグメント6に分離構成す
る機構を採用するのは一体もののシユー4に比較
して加工が小規模で行なえるので製造容易であ
り、一部に摩耗が起つた場合の交換が簡易に行な
えるからである。
In this case, adopting a mechanism that is separated into multiple segments 6 is easier to manufacture as it can be processed on a smaller scale compared to the one-piece shoe 4, and it is easier to manufacture when parts become worn. This is because it is easy to do.

又、このような分割構造とすれば素材1に応じ
て押出しに必要な押付接触長さを任意に変えられ
ると共に、ホイール2の軸方向に正しく押付力が
作用するために均一圧力がかけられる。
Furthermore, with such a divided structure, the pressing contact length required for extrusion can be arbitrarily changed depending on the material 1, and since the pressing force is applied correctly in the axial direction of the wheel 2, uniform pressure can be applied.

このことはホイール2による引込時の素材1と
のスリツプを防止すると共に安定した押出しが可
能となる。
This prevents slippage between the material 1 and the material 1 when it is drawn in by the wheel 2, and enables stable extrusion.

又、ダイス3′の方向に向つて徐々に圧力を高
くすることも可能で素材1の軸圧縮力による座屈
防止も可能となる。この場合、押付機構7として
は油圧シリンダ、ネジあるいは空圧など各種の手
段を採用することが可能であるが、特に油圧シリ
ンダを用いる場合には強い力が発生容易で必要な
押付力の制御が可能である。
It is also possible to gradually increase the pressure in the direction of the die 3', thereby making it possible to prevent buckling of the material 1 due to the axial compressive force. In this case, various means such as a hydraulic cylinder, a screw, or pneumatic pressure can be used as the pressing mechanism 7, but especially when a hydraulic cylinder is used, a strong force is easily generated and the necessary pressing force cannot be controlled. It is possible.

第5図は各セグメント6にスプリング8を内蔵
する場合の実施態様例を示す押付部の部分拡大図
である。即ちセグメント6と押付機構7の間にス
プリング8を入れると剛性を低くすることがで
き、素材径の変動に応じて起るホイール2の回転
時の押付圧力変動が吸収できて安定操業が達成さ
れる。
FIG. 5 is a partially enlarged view of a pressing portion showing an embodiment in which a spring 8 is built into each segment 6. That is, by inserting the spring 8 between the segment 6 and the pressing mechanism 7, the rigidity can be lowered, and fluctuations in the pressing pressure when the wheel 2 rotates due to changes in the diameter of the material can be absorbed, and stable operation can be achieved. Ru.

又、ダイス3′の穴形状をダイス半角45゜以下
のテーパ穴とするのは、このようにすることによ
つて従来手段のような著しいデツドメタルが形成
されなくなるので熱発生が抑制され、これによつ
てダイス3′およびセグメント6の寿命が高まる
ものであり、ダイス半角45゜を超えると従来手段
のように著しいデツドメタルが形成されるように
なり熱発生を抑制できなくなるのでダイス3′お
よびセグメント6の寿命が縮められるからであ
る。
In addition, the hole shape of the die 3' is made into a tapered hole with a die half angle of 45 degrees or less, because by doing so, significant dead metal is not formed as in conventional means, and heat generation is suppressed. Therefore, the life of the die 3' and the segment 6 is increased.If the half angle of the die exceeds 45 degrees, a significant amount of dead metal is formed and heat generation cannot be suppressed as in the conventional method. This is because the lifespan of

以下実施例により本発明の効果をさらに具体的
に示す。
The effects of the present invention will be illustrated in more detail with reference to Examples below.

素材として10mmφの軟鋼で降伏応力は20Kg/mm2
である。ホイール半径250mm、ホイール溝断面形
状は溝底角60゜のV型、シユーが素材に接触する
部分のホイール中心に対する中心角、即ち第4図
に示すαを180゜とし、シユーは8個(図面では
5個)の炭化珪素のセラミツクでセグメントを構
成し、セグメント1個の長さは92mmとした。押付
機構は油圧シリンダを用い、押付力はセグメント
1個あたり3.6tonとし、引抜力は降伏応力の80%
とした。
The material is 10mmφ mild steel and the yield stress is 20Kg/mm 2
It is. The wheel radius is 250 mm, the cross-sectional shape of the wheel groove is V-shaped with a groove bottom angle of 60°, the center angle of the part where the shoes contact the material with respect to the center of the wheel, that is, α shown in Fig. 4 is 180°, and there are 8 shoes (in the drawing). In this case, the segments were composed of 5 silicon carbide ceramics, and the length of each segment was 92 mm. The pressing mechanism uses a hydraulic cylinder, the pressing force is 3.6 tons per segment, and the pulling force is 80% of the yield stress.
And so.

ホイール駆動用モータは100kwとし、素材送り
速度は50m/minとした。この結果、素材は最大
4.5mmφに加工でき、この減面率はほゞ80%に達
した。これは従来の引抜が30%程度しか減面でき
なかつたのに比較して3倍以上の能率向上であ
る。
The wheel drive motor was 100kw, and the material feed speed was 50m/min. As a result, the material is up to
It was possible to process it to 4.5mmφ, and the area reduction rate reached almost 80%. This is more than three times more efficient than conventional drawing, which could only reduce the area by about 30%.

以上述べた如く本発明は従来手段のホイール溝
断面形状の欠点を克服して鋼線の連続押出しを可
能としたものであるが、加工素材は中実材に限ら
ず中空材は勿論、管内部に非金属物質あるいは異
種金属を充填したものでも適用可能であり工業的
価値が大きいことは明らかである。
As described above, the present invention overcomes the drawback of the cross-sectional shape of the wheel groove of the conventional means and makes it possible to continuously extrude steel wire. It is clear that it is also applicable to a material filled with a nonmetallic substance or a different metal, and has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来手段の態様例を示す模式図、第2
図a,b,cは従来手段のホイール溝断面形状例
を示す模式図、第3図はデツドメタルの形成状況
を示す説明図、第4図は本発明の機構を示す模式
図、第5図は各セグメントにスプリングを内蔵す
る押付機構を示す実施態様例の部分拡大図、第6
図a,bは本発明のホイール溝断面形状例を示す
模式図、第7図は本発明のホイール溝断面形状の
他の態様を示す模式図、第8図は本発明のホイー
ル溝底角の効果を説明するための説明図である。 1は素材、2はホイール、3はダイス、3′は
テーパダイス、4はシユー、5,5′はガイドロ
ール、6はセグメント、7は押付機構、8はスプ
リング、9は巻取機。
FIG. 1 is a schematic diagram showing an example of a conventional means;
Figures a, b, and c are schematic diagrams showing examples of cross-sectional shapes of wheel grooves of conventional means, Figure 3 is an explanatory diagram showing how dead metal is formed, Figure 4 is a schematic diagram showing the mechanism of the present invention, and Figure 5 is a schematic diagram showing examples of wheel groove cross-sectional shapes. Partially enlarged view of an embodiment example showing a pressing mechanism with a built-in spring in each segment, No. 6
Figures a and b are schematic diagrams showing examples of wheel groove cross-sectional shapes according to the present invention, Figure 7 is a schematic diagram showing other aspects of wheel groove cross-sectional shapes according to the present invention, and Figure 8 is a schematic diagram showing examples of wheel groove cross-sectional shapes according to the present invention. It is an explanatory diagram for explaining an effect. 1 is a raw material, 2 is a wheel, 3 is a die, 3' is a taper die, 4 is a shoe, 5 and 5' are guide rolls, 6 is a segment, 7 is a pressing mechanism, 8 is a spring, and 9 is a winding machine.

Claims (1)

【特許請求の範囲】 1 回転駆動されるホイールは外周部に加工鋼線
がはまる溝底角θが40゜≦θ≦90゜となつている
V型あるいは台形型のホイール溝を有し、鋼線を
該ホイール溝に押付けるシユーは独立に制御可能
な押付機構を有する複数個のセグメントに分離構
成されていると共に、シユーの終端に隣接してダ
イス半角が45゜以下のテーパー穴を有するダイス
を形成し、その前方に巻取機を設置せしめホイー
ルの回転とシユーの押付によつて発生する押込力
および巻取機の引抜力によつて鋼線の連続加工が
可能な構成としたことを特徴とする、鋼線の連続
引抜機。 2 シユーがセラミツクにて構成されていること
を特徴とする、特許請求の範囲第1項記載の鋼線
の連続引抜機。 3 押付機構が各セグメントにスプリングを内蔵
して押付力をこのスプリングを介して素材に伝え
る機構であることを特徴とする、特許請求の範囲
第1項または第2項記載の鋼線の連続引抜機。
[Scope of Claims] 1. The wheel to be rotationally driven has a V-shaped or trapezoidal wheel groove on the outer periphery in which the groove bottom angle θ into which the processed steel wire is fitted satisfies 40°≦θ≦90°; The shoe for pressing the wire into the wheel groove is separated into a plurality of segments each having an independently controllable pressing mechanism, and a die having a tapered hole with a die half angle of 45° or less adjacent to the end of the shoe. A winding machine is installed in front of the winding machine, and the steel wire can be continuously processed by the pushing force generated by the rotation of the wheel and the pressing of the shoe, and the pulling force of the winding machine. A continuous drawing machine for steel wire. 2. The continuous steel wire drawing machine according to claim 1, wherein the shoe is made of ceramic. 3. Continuous drawing of steel wire according to claim 1 or 2, characterized in that the pressing mechanism has a built-in spring in each segment and transmits pressing force to the material via the spring. Machine.
JP15072982A 1982-09-01 1982-09-01 Continuous drawing machine of steel wire rod Granted JPS5942115A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15072982A JPS5942115A (en) 1982-09-01 1982-09-01 Continuous drawing machine of steel wire rod

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15072982A JPS5942115A (en) 1982-09-01 1982-09-01 Continuous drawing machine of steel wire rod

Publications (2)

Publication Number Publication Date
JPS5942115A JPS5942115A (en) 1984-03-08
JPS6128410B2 true JPS6128410B2 (en) 1986-06-30

Family

ID=15503130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15072982A Granted JPS5942115A (en) 1982-09-01 1982-09-01 Continuous drawing machine of steel wire rod

Country Status (1)

Country Link
JP (1) JPS5942115A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129303U (en) * 1990-04-12 1991-12-26

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6188915A (en) * 1984-10-05 1986-05-07 Nippon Steel Corp Continuous extrusion equipment of steel wire
JP2721004B2 (en) * 1989-03-01 1998-03-04 新日本製鐵株式会社 Continuous drawing equipment for metal wire or metal tube
CN105772525A (en) * 2016-05-16 2016-07-20 合肥工业大学 Online heating and quenching equipment production line based on continuous extrusion
JP7204901B2 (en) * 2019-04-25 2023-01-16 京セラ株式会社 capstan roll and wire drawing machine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52107258A (en) * 1976-03-05 1977-09-08 Kobe Steel Ltd Device for continuous forming
JPS5723710B2 (en) * 1975-12-25 1982-05-20

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723710U (en) * 1980-07-10 1982-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5723710B2 (en) * 1975-12-25 1982-05-20
JPS52107258A (en) * 1976-03-05 1977-09-08 Kobe Steel Ltd Device for continuous forming

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03129303U (en) * 1990-04-12 1991-12-26

Also Published As

Publication number Publication date
JPS5942115A (en) 1984-03-08

Similar Documents

Publication Publication Date Title
US5868050A (en) Process and device for the continuous, chipless separation of individual rings from tubular workpieces
JPS6128410B2 (en)
US3688540A (en) Tube rolling mill employing a tapered mandrel and a cluster of rolls that each have specially designed tube contacting grooves
US3611775A (en) Tube rolling mill with a tapered mandrel
US4094178A (en) Methods for continuous extrusion
Jia et al. Experimental study on wrinkle suppressing in multi-pass drawing spinning of 304 stainless steel cylinder
JP2728965B2 (en) Continuous drawing equipment for metal wire or metal tube
JPH11221644A (en) Method for cold plastic deforming hollow work and its device
JPS6128409B2 (en)
EP0677339A2 (en) Hollow die and an apparatus for continuous extrusion forming of hollow articles
CN1076387A (en) Make the method and apparatus of horizontal rolling with the planet roll
US20050229759A1 (en) Method for grooving the bore of a tube and grooving tool-holder
US2807971A (en) Cold-working process for articles
RU2414981C1 (en) Method of circular spinning by ring tool
RU2413586C1 (en) Method of hollow article rotary drawing
RU2411100C1 (en) Embracing spinning ring-shaped tool
JP2794547B2 (en) High production speed swaging machine and swaging processing method
JPS5939416A (en) Continuous extrusion device of steel material
CN220635919U (en) Three-roller rounding machine
KR102251900B1 (en) Core for spring forming machine
JP2677408B2 (en) Continuous processing machine for metal bars
JPS6234444B2 (en)
RU2413587C1 (en) Device for rotational extrusion of hollow articles
JP2721004B2 (en) Continuous drawing equipment for metal wire or metal tube
WO1989001369A1 (en) Continuous extrusion apparatus