JPS6128396Y2 - - Google Patents

Info

Publication number
JPS6128396Y2
JPS6128396Y2 JP1978101987U JP10198778U JPS6128396Y2 JP S6128396 Y2 JPS6128396 Y2 JP S6128396Y2 JP 1978101987 U JP1978101987 U JP 1978101987U JP 10198778 U JP10198778 U JP 10198778U JP S6128396 Y2 JPS6128396 Y2 JP S6128396Y2
Authority
JP
Japan
Prior art keywords
heat
wire
fusible
temperature detection
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1978101987U
Other languages
Japanese (ja)
Other versions
JPS5518753U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1978101987U priority Critical patent/JPS6128396Y2/ja
Publication of JPS5518753U publication Critical patent/JPS5518753U/ja
Application granted granted Critical
Publication of JPS6128396Y2 publication Critical patent/JPS6128396Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Carpets (AREA)
  • Surface Heating Bodies (AREA)
  • Central Heating Systems (AREA)
  • Laminated Bodies (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

産業上の利用分野 本考案は電気カーペツト、電気マツト等の面状
採暖器具に関するものである。 従来の技術 従来この種の面状採暖器具は第6図に示すよう
に、予め熱プレスにより蛇行状に形成した溝2を
有する硬い高密度の断熱マツト1と、この溝2の
中に粘着テープ5の粘着着固定により埋設された
最外かくに塩化ビニルを被覆してなるコード状の
発熱線3aおよんび温度検知線4aと、これらの
上方表面に熱融着性膜6を介して載置された表面
材7aとからなり、これらの積層構成物を熱圧着
により熱融着性膜6を溶融させて断熱マツト1と
表面材7aとを一体接合することで発熱線3aお
よび温度検知線4aを溝2の中に埋設したもので
あつた。 考案が解決しようとする問題点 上述のような構成からなる面状採暖器具は以下
に列記する欠点があり、その改善が望まれてい
た。 (1) 溝2に埋設されている発熱線3aおよび温度
検知線4aの外周囲は溝2との間に空隙を有し
ていることから、表面材7aの表面側への熱伝
導が悪く発熱線3aが局部過熱を起し易い。 (2) 発熱線3aと温度検知線4aを1個所の溝2
に埋設すると、埋設作業時にお互いがクロスし
その後の熱圧着の一体化工程において断線故障
が発生する為、それぞれの溝2は別個に突かつ
離さざるを得ず、さらに断熱性の良い断熱マツ
ト1の中で発熱線3aから発生した熱を温度検
知線4aが検知するのに時間がかかりかつ検知
能力が劣る。 (3) 断熱マツト1は綿、麻、ウール、ポリエステ
ル、ポリアミド、アクリル、ポリプロピレン等
の繊維をニードルパンチ加工後アクリル、酢酸
ビニル等を樹脂含浸して高密度高硬度に仕上げ
熱プレスにより溝2を形成してなるものである
ことから、面状採暖器具として折りたたみがで
きず例えば大面積の電気カーペツトでは持運び
や収納に不便さがあつた。 また面状採暖器具の製造工程における熱圧着
や長期間使用した場合、発熱線3aや温度検知
線4aが熱収縮するが、断熱マツト1は高密度
で樹脂含浸処理してある為熱収縮しにくく、そ
の結果表面材7aに凹凸状のシワが発生したり
あるいは発熱線3a及び温度検知線4aにスト
レスが加わつた状態になりり耐久寿命性能を低
下させる問題があつた。 更に製造工程中に発熱線3aや温度検知線4
aが溝2から飛び出し易く、その状態のまま表
面材7aと一体接合をするとつぶれや断線ある
いは表面材7aの表側が凹凸になるような不具
合があつた。 (4) 発熱線3a及び温度検知線4aを溝2に埋設
固定するのに固定テープ5を貼る作業工程は人
手により長時間かかり自動化もできないことか
ら、量産性がなく製造コストが高くなる問題を
有していた。 問題点を解決する為の手段 塩化ビニル被覆を施した発熱線及び温度検知線
の外周囲に押出コーテイングにより形成した熱融
着性被覆層を被覆せしめ、前記熱融着性被覆層を
熱融着性膜に一体に熱融着してヒータユニツトを
形成し、このヒータユニツトを上面を平面状に形
成した低密度の断熱マツトと表面材との間に介在
させて熱圧着により一体化したものであり、かつ
熱融着性被覆層の厚さtを熱融着性膜の厚みt1
上にしたものである。 作 用 発熱線及び温度検知線の最外かくに設けた熱融
着性被覆層と上表面を平面状にした低密度の断熱
マツトとを接合し、かつ熱融着性被覆層の厚さを
ヒータユニツト化しかつ表面材と断熱マツトとを
一体接合する為の熱融着性膜の厚さ以上とするこ
とにより以下の作用が期待できる。 (1) 発熱線及び温度検知線の外周囲の空隙を作ら
ない。 (2) 発熱線と温度検知線との配設間隔を小さくす
ることができる。 (3) 可撓性のある面状採暖器具にできる。 (4) 発熱線や温度検知線と断熱マツトの熱収縮率
を同程度にできる。 (5) 発熱線や温度検知線が製造工程中につぶれた
り断線することがない。 (6) 作業効率が向上する。 実施例 以下、本考案の一実施例を図面に従い詳述す
る。 第1図は本考案の面状採暖器具の一実施例を示
す要部断面図を示したものであり、3は発熱作用
をするコード状の発熱線、4は発熱線3から発生
した熱を検知するコード状の温度検知線、11は
発熱線3及び温度検知線4の最外かくに予め押出
コーテイングにより形成されたポリオレフイン系
例えばポリエチレン、酢酸ビニル等の熱融着性被
覆層、8は蛇行配設した発熱線3及び温度検知線
4を埋設しかつ断熱作用のある綿、麻、ウール、
ポリエステル、アクリル、ポリプロピレン等の繊
維あるいは雑毛をニードルパンチ加工により上面
が溝のない平面状に仕上げた低密度の断熱マツ
ト、7はポリエステル、アクリル、ナイロン等の
繊維をニードルパンチ加工により得た高密度の表
面材、10は表面材7と断熱マツト8とを一体接
合するポリオレフイン系例えばポリエチレン、酢
酸ビニル等の熱融着性膜であり、熱融着性被覆層
11はその厚さtが熱融着性膜10の厚さt1以上
でかつ断線マツト8及び熱融着性膜10と融着固
定して発熱線3及び温度検知線4を蛇行配設の状
態で断熱マツト8中に埋設固定する機能を有する
ものである。 第2図は第1図で示した発熱線3の詳細図であ
り、16は耐熱性の繊維例えばポリエステル、ガ
ラス等からなる芯糸、15は芯糸16の外周囲に
巻着した金属導体例えば銅、銅合金からなる発熱
素線、14は芯糸16及び発熱素線15の外周囲
に押出コーテイングにより成形加工したポリアミ
ド組成物であり異常温度状態の際にインピーダン
スが著しく低下したりあるいは融解する性質を有
した温度ヒユーズ層、13は温度ヒユーズ層14
の外周囲に巻着して異常温度状態を検知する金属
導体例えば銅、銅合金からなる検知線、12は温
度ヒユーズ層14及び検知線13の外周囲に押出
コーテイングにより成形加工した塩化ビニルから
なる絶縁外被、11は絶縁外被12の外周囲に押
出コーテイングにより0.2〜0.4mmに成形加工した
ポリオレフイン例えばポリエチレン、酢酸ビニル
等の単一物、複合物、重合物等からなる熱融着性
被覆層であり、この発熱線3は構造的に蛇行配設
し易く熱融着性被覆層11を設けたことにより蛇
行配設した後に固定できる。 第3図は第1図で示した温度検知線4の詳細図
であり、21は耐熱性繊維からなる芯糸、20は
芯糸21の外周囲に巻着した一次電極、19は芯
糸21及び一次電極20の外周囲に押出コーテイ
ングにより成形加工した負の温度係数を有する塩
化ビニル組成物例えば塩化ビニルに1〜5%の界
面活性剤を添加してなる感熱層、18は感熱層1
9の外周囲に巻着した二次電極、17は二次電極
の外周囲に設けた耐熱性フイルムからなり感熱層
19の塩化ビニル組成物中の添加剤の移行を防止
する遮閉層、12は遮閉層17の外周囲に押出コ
ーテイングにより成形加工した塩化ビニルからな
る絶縁外被、11は絶縁外被12の外周囲に設け
た厚さ0.2〜0.4mmの熱融着性被覆層であり、この
温度検知線4は一次電極20と二次電極18との
間の感熱層19のインピーダンスを検知して発熱
線3の発熱素線15に流れる電流を制御する温度
制御回路(図示せず)に接続され、熱融着性被覆
層11を設けたことにより発熱線3と蛇行状に並
設固定できるものである。 第4図は第1図の面状採暖器具を構成する一体
化接合前のヒータユニツト9の断面図を示したも
のであり、3は発熱線、4は発熱線3と近接して
蛇行配設された温度検知線、10はポリオレフイ
ン系で0.1〜0.2mmの厚さを有する熱融着性膜、1
1は発熱線3及び温度検知線4の最外かくに予め
押出コーテイングにより成形加工してなる0.2〜
0.4mmの厚さのポリオレフイン系の熱融着性被覆
層であり、発熱線3及び温度検知線4は熱融着性
被覆層11と熱融着性膜10との接触部が熱圧着
により一体に熱融着して熱融着性膜10に面状に
蛇行状に固定できるものである。 第5図は第1図に示した表面材7と断熱マツト
8とを一体化接合している熱融着性膜10の厚み
t1を変えた際の接着強度特性を示したものであ
り、実用上の強着強度は約0.1mm以上の厚さであ
ればよいが、0.2mm以上は飽和していることか
ら、材料の経済を考慮するとt1の最適値は0.1〜
0.2mmである。 次に上記構成における作用を詳述する。 発熱線3及び温度検知線4の絶縁外被12が塩
化ビニルであることにより気温に大きく左右され
ず可撓性を発揮する作用をし成形加工性も良好か
つ材料が安価である。押出コーテイングにより熱
融着性被覆層11を設けた発熱線3及び温度検知
線4を上面が平面状に形成した低密度の断熱マツ
ト8中に埋設したことにより、発熱線3及び温度
検知線4の外周囲に空隙を発生させず蛇行配設固
定できる。 また発熱線3と温度検知線4は並設間隔が接触
する位近接してもヒータユニツトの製作上問題な
くかつ断熱マツト8中に埋設できる。 また熱融着性被覆層11の厚さtを熱融着性膜
10の厚みt1以上にする理由は以下による。 (1) 熱融着性膜10は表面材7と断熱マツト8と
を一体接合して長期間の使用で剥離がないよう
な性能を有していなければならない。第5図の
結果からも明らかなように、t1<0.1mmでは接
着強度が弱く長期間の使用に耐えない。一方t1
>0.2mmになると接着強度はほぼ飽和している
こと、厚くなると硬くなりかつ剛性が出て面状
採暖器具の折たたみ性が低下すること、表面材
7と断熱マツト8とを一体接合する際に体積が
増えたことにより熱圧着を長い時間を必要とし
その結果として発熱線3及び温度検知線4の絶
縁外被12,12が熱により変形してしまうこ
と、更には材料コストが高くなること等から好
ましくない。 以上の理由から熱融着性膜10の厚さt1
0.1〜0.2mmが実用性能上最適といえる。 (2) 熱融着性被覆層11の厚さtを変えた際の特
性を調べた結果が表−1である。以下表−1に
ついて説明する。
Industrial Application Field The present invention relates to planar heating appliances such as electric carpets and electric mats. BACKGROUND TECHNIQUE Conventionally, this type of planar heating device, as shown in FIG. The cord-shaped heating wire 3a and temperature sensing wire 4a, each of which is covered with vinyl chloride, are buried by adhesive fixing in step 5, and placed on the upper surface of these with a heat-fusible film 6 interposed therebetween. The heat-sealing mat 1 and the surface material 7a are integrally joined by thermocompression bonding to melt the heat-fusible film 6 of these laminated structures, thereby forming the heating wire 3a and the temperature detection wire 4a. was buried in trench 2. Problems to be Solved by the Invention The planar heating device configured as described above has the following drawbacks, and improvement thereof has been desired. (1) Since there is a gap between the outer periphery of the heating wire 3a and the temperature detection wire 4a buried in the groove 2 and the groove 2, heat conduction to the surface side of the surface material 7a is poor and heat generation occurs. The wire 3a is likely to cause local overheating. (2) Connect the heating wire 3a and the temperature detection wire 4a to one groove 2.
If the grooves 2 are buried, they will cross each other during the burying process and breakage will occur during the subsequent heat-compression bonding process. It takes time for the temperature detection line 4a to detect the heat generated from the heat generation line 3a in the temperature detection line 3a, and the detection ability is poor. (3) Insulating mat 1 is made of fibers such as cotton, hemp, wool, polyester, polyamide, acrylic, polypropylene, etc., which are needle punched and then impregnated with resin such as acrylic, vinyl acetate, etc. to make them dense and hard. Grooves 2 are formed by heat pressing. Because it is a shaped device, it cannot be folded as a planar heating device, making it inconvenient to carry or store, for example, on a large-area electric carpet. In addition, when the heating wire 3a and the temperature detection wire 4a are thermally bonded in the manufacturing process of planar heating equipment or used for a long period of time, the heat-generating wire 3a and the temperature detection wire 4a shrink due to heat, but the heat-insulating mat 1 is highly dense and impregnated with resin, so it is difficult to shrink due to heat. As a result, uneven wrinkles were generated on the surface material 7a, or stress was applied to the heating wire 3a and the temperature detection wire 4a, resulting in a problem of deterioration of durability and life performance. Furthermore, during the manufacturing process, the heating wire 3a and the temperature detection wire 4
a tends to jump out of the groove 2, and if it is integrally joined with the surface material 7a in that state, there are problems such as crushing, disconnection, or unevenness on the front side of the surface material 7a. (4) The work process of applying the fixing tape 5 to bury and fix the heating wire 3a and the temperature detection wire 4a in the groove 2 takes a long time by hand and cannot be automated, so there is a problem that it is not suitable for mass production and increases manufacturing costs. had. Means for solving the problem A heat-fusible coating layer formed by extrusion coating is coated on the outer periphery of the heating wire and temperature detection wire coated with vinyl chloride, and the heat-fusible coating layer is heat-fused. A heater unit is formed by integrally heat-sealing the heat-sealing membrane, and this heater unit is interposed between a low-density insulating mat with a flat top surface and the surface material, and is integrated by thermocompression bonding. and the thickness t of the heat-fusible coating layer is greater than or equal to the thickness t 1 of the heat-fusible film. Function The heat-fusible coating layer provided on the outermost part of the heating wire and the temperature detection wire is joined to a low-density heat-insulating mat whose upper surface is flat, and the thickness of the heat-fusible coating layer is The following effects can be expected by forming a heater unit and making it thicker than the heat-fusible film for integrally joining the surface material and the heat insulating mat. (1) Do not create air gaps around the heat generating wires and temperature detection wires. (2) The spacing between the heating wire and the temperature detection wire can be reduced. (3) Can be made into a flexible planar heating device. (4) The heat shrinkage rate of the heating wire or temperature detection wire and the insulation mat can be made to be the same. (5) The heating wire and temperature detection wire will not be crushed or broken during the manufacturing process. (6) Work efficiency improves. Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. Figure 1 shows a cross-sectional view of the main parts of an embodiment of the planar heating device of the present invention, in which 3 is a cord-shaped heating wire that generates heat, and 4 is a cord-shaped heating wire that generates heat from the heating wire 3. A cord-shaped temperature detection line to be detected; 11 is a heat-fusible coating layer made of polyolefin, such as polyethylene or vinyl acetate, formed in advance by extrusion coating on the outermost part of the heating wire 3 and the temperature detection line 4; 8 is a meandering Cotton, linen, wool, etc. are used to bury the heat generation wire 3 and temperature detection wire 4 and have a heat insulating effect.
Low-density insulating mat made of fibers such as polyester, acrylic, polypropylene, etc. or miscellaneous hair finished by needle punching to have a flat top surface with no grooves. The density surface material 10 is a heat-fusible film made of polyolefin, such as polyethylene or vinyl acetate, which integrally joins the surface material 7 and the heat insulating mat 8, and the heat-fusible coating layer 11 has a thickness t of The thickness of the fusible film 10 is t 1 or more, and the heating wire 3 and the temperature detection wire 4 are embedded in the heat insulating mat 8 in a meandering manner by being fused and fixed to the disconnection mat 8 and the heat fusible film 10. It has the function of fixing. FIG. 2 is a detailed view of the heating wire 3 shown in FIG. 1, where 16 is a core thread made of heat-resistant fiber, such as polyester, glass, etc., and 15 is a metal conductor, for example, wrapped around the outer circumference of the core thread 16. The heating element wire 14 made of copper or copper alloy is a polyamide composition formed by extrusion coating around the outer periphery of the core yarn 16 and the heating element wire 15, and the impedance decreases significantly or melts in abnormal temperature conditions. 13 is a temperature fuse layer 14 having a characteristic of
12 is made of vinyl chloride formed by extrusion coating around the outer periphery of the temperature fuse layer 14 and the detection wire 13. Insulating jacket 11 is a heat-fusible coating made of polyolefin, such as polyethylene, vinyl acetate, etc., which is formed into a 0.2 to 0.4 mm material by extrusion coating around the outer periphery of insulating jacket 12, a composite material, a polymer material, etc. This heating wire 3 is structurally easy to be arranged in a meandering manner, and by providing the heat-fusible coating layer 11, it can be fixed after being arranged in a meandering manner. FIG. 3 is a detailed view of the temperature detection line 4 shown in FIG. 1, in which 21 is a core yarn made of heat-resistant fiber, 20 is a primary electrode wound around the outer circumference of the core yarn 21, and 19 is a core yarn 21 and a heat-sensitive layer 18 formed by adding 1 to 5% of a surfactant to a vinyl chloride composition having a negative temperature coefficient, such as vinyl chloride, molded around the outer periphery of the primary electrode 20 by extrusion coating.
9 is a secondary electrode wrapped around the outer periphery of the secondary electrode; 17 is a shielding layer made of a heat-resistant film provided around the outer periphery of the secondary electrode to prevent migration of additives in the vinyl chloride composition of the heat-sensitive layer 19; 11 is an insulating jacket made of vinyl chloride molded by extrusion coating around the outer periphery of the shielding layer 17, and 11 is a heat-fusible coating layer with a thickness of 0.2 to 0.4 mm provided around the outer periphery of the insulating jacket 12. This temperature detection line 4 is connected to a temperature control circuit (not shown) that detects the impedance of the heat-sensitive layer 19 between the primary electrode 20 and the secondary electrode 18 and controls the current flowing through the heating element wire 15 of the heating line 3. By providing the heat-fusible coating layer 11, the heating wire 3 can be installed and fixed in a meandering manner in parallel with the heating wire 3. FIG. 4 shows a cross-sectional view of the heater unit 9 constituting the planar heating device shown in FIG. 1 before being integrated and joined. 3 is a heating wire, and 4 is a meandering arrangement in close proximity to the heating wire 3. 10 is a polyolefin-based heat-fusible film having a thickness of 0.1 to 0.2 mm, 1
1 is a 0.2~
It is a heat-fusible coating layer made of polyolefin with a thickness of 0.4 mm, and the heating wire 3 and the temperature detection wire 4 are integrated by thermocompression bonding at the contact portion between the heat-fusible coating layer 11 and the heat-fusible film 10. It can be fixed to the heat-fusible film 10 in a planar meandering shape by heat-sealing it to the heat-fusible film 10. FIG. 5 shows the thickness of the heat-fusible film 10 that integrally joins the surface material 7 and the heat insulating mat 8 shown in FIG.
This shows the adhesive strength characteristics when changing t 1. Practical adhesive strength is good if the thickness is about 0.1 mm or more, but since it is saturated at 0.2 mm or more, Considering economy, the optimal value of t1 is 0.1 ~
It is 0.2mm. Next, the operation of the above configuration will be explained in detail. Since the insulating jacket 12 of the heating wire 3 and the temperature sensing wire 4 is made of vinyl chloride, it exhibits flexibility without being greatly affected by temperature, has good moldability, and is made of inexpensive material. By embedding the heat-generating wire 3 and the temperature-sensing wire 4, which are provided with a heat-fusible coating layer 11 by extrusion coating, in a low-density heat-insulating mat 8 whose upper surface is flat, the heat-generating wire 3 and the temperature-sensing wire 4 are It can be arranged and fixed in a meandering manner without creating any gaps around the outer periphery. Furthermore, even if the heating wire 3 and the temperature sensing wire 4 are so close that their parallel spacings touch, there will be no problem in manufacturing the heater unit, and the wires can be buried in the heat insulating mat 8. The reason why the thickness t of the heat-fusible coating layer 11 is set to be greater than or equal to the thickness t 1 of the heat-fusible film 10 is as follows. (1) The heat-adhesive film 10 must have the ability to integrally bond the surface material 7 and the heat insulating mat 8 without peeling during long-term use. As is clear from the results in FIG. 5, when t 1 <0.1 mm, the adhesive strength is weak and cannot withstand long-term use. while t 1
> 0.2 mm, the adhesive strength is almost saturated; as the thickness increases, the adhesive becomes hard and rigid, reducing the foldability of the planar heating device. Due to the increased volume, thermocompression bonding takes a long time, and as a result, the insulation jackets 12, 12 of the heating wire 3 and the temperature detection wire 4 are deformed by heat, and furthermore, the material cost increases. It is not preferable because of such things. For the above reasons, the thickness t 1 of the heat-fusible film 10 is
0.1 to 0.2 mm can be said to be optimal in terms of practical performance. (2) Table 1 shows the results of investigating the characteristics when the thickness t of the heat-fusible coating layer 11 was changed. Table 1 will be explained below.

【表】 表中において、均一皮膜性とは発熱線3及び温
度検知線4の最外かくに押出コーテイングにより
熱融着性被覆層11を形成加工した際の皮膜特性
であり、0.2mmより薄い場合は皮覆厚みが不均一
になり成形加工性が劣る。 蛇行配設性とは発熱線3及び温度検知線4を蛇
行状に配設してヒータユニツト9を得る際の作業
性であり、tが0.4mmより厚くなるとコード状物
の剛性が出てしまい蛇行状に曲げにくくなること
から好ましくない。 熱融着性膜との接着性とは、ヒータユニツトを
形成する熱圧着において、tが0.2mmより薄い場
合は塩化ビニルの絶縁外被12を熱変形させて絶
縁性を低下させたり、あるいは熱融着性膜10と
熱融着性被覆層11との接着強度が十分得られな
いので表面材7と断熱マツト8との間にヒータユ
ニツト9を介在させて熱圧着により一体接合する
までに発熱線3あるいは温度検知線4が熱融着性
膜10からはずれてしまいお互がクロスして熱圧
着時につぶれたり表面材7の表面に凹凸を発生さ
せることから性能上、外観商品上から好ましくな
い。 断熱マツトとの接着性とは、発熱線3及び温度
検知線4が熱圧着時に断熱マツト8の中に埋設し
ていくが、そのままではニードルパンチ加工した
断熱マツト8は複元するので熱融着性被覆層11
が断熱マツト8の繊維を固めておく作用をしてい
るその接着強度である。tが0.2mmより薄い場合
は熱融着性被覆層11が断熱マツト8の繊維を十
分固定できない為、面状採暖器具として折りたた
みや機械的なストレスが加わつた際に剥離して発
熱線3と温度検知線4とがクロスする恐れが出て
くる。 従つてt≧0.2mmの条件を満足していれば面状
採暖器具の耐久寿命を確保することができる。 熱伝導性とは表面材7の表面奪の温度が発熱線
3に電流を流してから飽和するまの初期速熱性を
調べた結果であり、t1<0.1mmでは発熱線3が埋
設された際に断熱マツトとの境界付近が低密度で
ありt≧0.5mmでは低密度でない代りに熱融着性
被覆層11の断熱効果が生じるので、0.2〜0.4mm
の厚さが好ましい。このように表−1の結果から
熱融着性被覆層の厚みtは0.2〜0.4mmが実用性能
上適している。 従つて、第5図及び表−1の詳述した内容から
も明らかな如く、熱融着性被覆層11の厚さtは
0.2〜0.4mmに対し、熱融着性膜10の厚さt1は0.1
〜0.2mmが好ましいことからt≧t1の関係を満し
た構成であれば発熱線3及び温度検知線4と断熱
マツト8との間に空隙を作らず、発熱線3と温度
検知線4との間を小さくして並設蛇行でき、製造
工程中に発熱線3や温度検知線4をつぶしたり表
面材7の表面に凹凸状の不具合の発生を防止でき
る。 また面状採暖器具の最終製品において、熱融着
性被覆層11及び熱融着性膜10は熱圧着による
一体接合工程において、それぞれ熱溶融して断熱
マツト8や表面材7の繊維中に融け込んで物理的
な接合を行うが、繊維も熱により全体的に軟化す
るので熱融着性被覆層11及び熱融着性膜10の
厚さの関係t≧t1はくずれず、接着耐久性、熱伝
導性等の特性は確保される。断熱マツト8は低密
度で発熱線3や温度検知線4が埋設し易い硬さで
あり3者の熱膨張率は同程度に設計できる他に可
撓性の優れた面状採暖器具が得られる。 また予め蛇行配設固定したヒータユニツト9は
自動的に製造することが可能であり、このヒータ
ユニツト9を表面材7と断熱マツト8との間に介
在させて3者を熱圧着して得られる構成であるこ
とから、作業性の点で優れたものである。 考案の効果 以上詳述した如く、本考案の面状採暖器具の構
成とその作用により、以下に示す効果がありその
産業上の利用価値は大なるものがある。 (1) 表面材への熱伝導が優れ局部過熱を起すこと
がない。 (2) 温度検知性能が改善できる。 (3) 折りたたみができ持運びや収納性に優れる。 (4) 発熱線や温度検知線のつぶれや断線の心配が
なく、表面材の凹凸等の外観不具合が解消でき
る。 (5) 自動化ができ量産性に富むので低コストの面
状採暖器具が得られる。
[Table] In the table, uniform film property is the film property when the heat-fusible coating layer 11 is formed by extrusion coating on the outermost part of the heating wire 3 and temperature detection wire 4, and is thinner than 0.2 mm. In this case, the coating thickness becomes uneven and the moldability is poor. Meandering arrangement refers to the workability of arranging the heating wire 3 and the temperature detection wire 4 in a meandering manner to obtain the heater unit 9. If t is thicker than 0.4 mm, the rigidity of the cord-like object will increase. This is not preferable because it becomes difficult to bend into a meandering shape. Adhesion with the heat-adhesive film means that in thermocompression bonding to form the heater unit, if t is thinner than 0.2 mm, the vinyl chloride insulating jacket 12 may be thermally deformed and its insulation properties may be reduced, or heat may be applied. Since sufficient adhesion strength between the fusible film 10 and the heat-fusible coating layer 11 cannot be obtained, a heater unit 9 is interposed between the surface material 7 and the heat insulating mat 8, and heat generation occurs before they are integrally joined by thermocompression bonding. The wires 3 or the temperature detection wires 4 may come off from the heat-fusible film 10 and cross each other, resulting in crushing during thermocompression bonding or creating unevenness on the surface of the surface material 7, which is undesirable from the viewpoint of performance and appearance of the product. . The adhesion with the heat insulating mat means that the heat generating wire 3 and the temperature detection wire 4 are buried in the heat insulating mat 8 during thermo-compression bonding, but the needle-punched heat insulating mat 8 becomes multiple, so it must be heat fused. sexual coating layer 11
is the adhesive strength that acts to harden the fibers of the heat insulating mat 8. If t is thinner than 0.2 mm, the heat-adhesive covering layer 11 cannot sufficiently fix the fibers of the heat-insulating mat 8, and when folded or mechanical stress is applied to the sheet heating device, it will peel off and become the heating wire 3. There is a possibility that the temperature detection line 4 may cross. Therefore, if the condition of t≧0.2 mm is satisfied, the durable life of the planar heating device can be ensured. Thermal conductivity is the result of examining the initial rapid heating property of the surface material 7 from when a current is applied to the heating wire 3 until it reaches saturation, and when t 1 <0.1 mm, the heating wire 3 is buried. In this case, the density is low near the boundary with the heat-insulating mat, and when t≧0.5 mm, the heat-sealing effect of the heat-adhesive coating layer 11 is produced instead of low density, so 0.2 to 0.4 mm
A thickness of . Thus, from the results shown in Table 1, the thickness t of the heat-fusible coating layer is preferably 0.2 to 0.4 mm in terms of practical performance. Therefore, as is clear from the detailed contents of FIG. 5 and Table 1, the thickness t of the heat-fusible coating layer 11 is
The thickness t 1 of the heat-fusible film 10 is 0.1 to 0.2 to 0.4 mm.
~0.2 mm is preferable, so if the configuration satisfies the relationship t≧ t1 , there will be no gap between the heat generating wire 3 and the temperature detection wire 4 and the heat insulating mat 8, and the distance between the heat generating wire 3 and the temperature detection wire 4 will be They can be arranged side by side in a meandering manner with a small space between them, and can prevent crushing of the heating wire 3 and temperature detection wire 4 and occurrence of irregularities on the surface of the surface material 7 during the manufacturing process. In the final product of the planar heating device, the heat-fusible coating layer 11 and the heat-fusible film 10 are heat-fused and melted into the fibers of the heat-insulating mat 8 and the surface material 7, respectively, during the integral bonding process by thermocompression bonding. However, since the fibers are also softened as a whole by heat, the relationship t≧ t1 between the thicknesses of the heat-fusible coating layer 11 and the heat-fusible film 10 does not collapse, and the bonding durability is maintained. , properties such as thermal conductivity are ensured. The heat insulating mat 8 has a low density and a hardness that allows the heating wire 3 and the temperature detection wire 4 to be buried easily, and the coefficient of thermal expansion of the three can be designed to be the same, and a planar heating device with excellent flexibility can be obtained. . Furthermore, the heater unit 9, which has been arranged and fixed in a meandering manner in advance, can be automatically manufactured, and can be obtained by interposing the heater unit 9 between the surface material 7 and the heat insulating mat 8 and bonding the three by thermocompression. Because of this structure, it is excellent in terms of workability. Effects of the Invention As detailed above, the configuration and operation of the planar heating device of the present invention has the following effects and has great industrial utility value. (1) Excellent heat conduction to the surface material and no local overheating. (2) Temperature detection performance can be improved. (3) It can be folded, making it easy to carry and store. (4) There is no need to worry about crushing or breaking the heating wire or temperature detection wire, and appearance defects such as unevenness of the surface material can be eliminated. (5) Since it can be automated and mass-produced, a low-cost planar heating device can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案の面状採暖器具の一実施例を示
す要部断面図、第2図及び第3図は本考案に使用
される発熱線及び温度検知線の構造図、第4図は
本考案に使用されるヒータユニツトの要部断面
図、第5図は熱融着性膜の厚さと接着強度の特性
図、第6図は従来の面状採暖器具の要部断面図を
示す。 3……発熱線、4……温度検知線、7……表面
材、8……断熱マツト、9……ヒータユニツト、
10……熱融着性膜、11……熱融着性被覆層。
Fig. 1 is a cross-sectional view of the main part showing one embodiment of the planar heating device of the present invention, Figs. 2 and 3 are structural diagrams of the heating wire and temperature detection wire used in the present invention, and Fig. 4 is FIG. 5 is a sectional view of the main part of the heater unit used in the present invention, FIG. 5 is a characteristic diagram of the thickness and adhesive strength of the heat-adhesive film, and FIG. 6 is a sectional view of the main part of a conventional planar heating device. 3... Heat generating wire, 4... Temperature detection wire, 7... Surface material, 8... Insulating mat, 9... Heater unit,
10... Heat-fusible film, 11... Heat-fusible coating layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 塩化ビニル被覆を施した発熱線3及び温度検知
線4の外周囲に押出コーテイングにより形成した
熱融着性被覆層11を被覆せしめ、該熱融着性被
覆層11を熱融着性膜10に一体に熱融着してヒ
ータユニツト9を形成し、該ヒータユニツト9を
上面を平面状に形成した低密度の断熱マツト8と
表面材7との間に介在させて熱圧着により一体化
した面状採暖器具において、該発熱線3及び温度
検知線4を被覆している該熱融着性被覆層11の
厚さtを熱融着性膜10の厚みt1以上にしたこと
を特徴とする面状採暖器具。
A heat-fusible coating layer 11 formed by extrusion coating is applied to the outer periphery of the vinyl chloride-coated heating wire 3 and temperature detection wire 4, and the heat-fusible coating layer 11 is applied to the heat-fusible film 10. A heater unit 9 is formed by heat-sealing the heater unit 9, and the heater unit 9 is interposed between a low-density heat insulating mat 8 whose upper surface is flat and the surface material 7, and the heater unit 9 is integrated by thermocompression bonding. This heating device is characterized in that the thickness t of the heat-fusible coating layer 11 covering the heating wire 3 and the temperature detection wire 4 is greater than or equal to the thickness t 1 of the heat-fusible film 10. Planar heating device.
JP1978101987U 1978-07-25 1978-07-25 Expired JPS6128396Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1978101987U JPS6128396Y2 (en) 1978-07-25 1978-07-25

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1978101987U JPS6128396Y2 (en) 1978-07-25 1978-07-25

Publications (2)

Publication Number Publication Date
JPS5518753U JPS5518753U (en) 1980-02-06
JPS6128396Y2 true JPS6128396Y2 (en) 1986-08-22

Family

ID=29041137

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1978101987U Expired JPS6128396Y2 (en) 1978-07-25 1978-07-25

Country Status (1)

Country Link
JP (1) JPS6128396Y2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5878383A (en) * 1981-11-04 1983-05-11 松下電器産業株式会社 Panel heating implement and method of producing same
JPH0720502Y2 (en) * 1988-10-28 1995-05-15 三洋電機株式会社 Air conditioner
JP5244944B2 (en) * 2011-06-20 2013-07-24 株式会社ジェイ・エム・エス Contact heating device
JP5982638B2 (en) * 2012-04-06 2016-08-31 パナソニックIpマネジメント株式会社 Surface heating device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328943B2 (en) * 1973-07-06 1978-08-17

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518946Y2 (en) * 1976-08-19 1980-05-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5328943B2 (en) * 1973-07-06 1978-08-17

Also Published As

Publication number Publication date
JPS5518753U (en) 1980-02-06

Similar Documents

Publication Publication Date Title
JPS6128396Y2 (en)
JP6119552B2 (en) Wire harness and protective member
JP2649230B2 (en) Planar heating element
JPS5833667Y2 (en) Planar heating device
KR200288143Y1 (en) Electric mat
JP2005011651A (en) Planar heating element, heating device using the same, and method for manufacturing the same
JPH0668964A (en) Surface heating element
JP2015232419A (en) Planar heater and manufacturing method of the same
JPS6230310Y2 (en)
JPH08152147A (en) Panel for floor heating
JPS593513Y2 (en) heat sensitive wire
JPS6293885A (en) Heater unit
JPS61285688A (en) Heater unit
JPH06140134A (en) Film heater structure
JPS6035194Y2 (en) electric carpet
JPS63148033A (en) Manufacture of electric space heater
JPH0422552Y2 (en)
WO2020203252A1 (en) Wiring member
JPS61248386A (en) Heater unit
JPS6345785A (en) Panel heater
JPS6247184Y2 (en)
JPS6057660B2 (en) surface heater
JPS6345784A (en) Panel heater
JPH0262426B2 (en)
JPS6294735A (en) Method of manufacturing electric heater