JPS61283882A - Locator for section struck by thunderbolt of aerial power transmission line - Google Patents

Locator for section struck by thunderbolt of aerial power transmission line

Info

Publication number
JPS61283882A
JPS61283882A JP12502085A JP12502085A JPS61283882A JP S61283882 A JPS61283882 A JP S61283882A JP 12502085 A JP12502085 A JP 12502085A JP 12502085 A JP12502085 A JP 12502085A JP S61283882 A JPS61283882 A JP S61283882A
Authority
JP
Japan
Prior art keywords
lightning
lightning current
circuit
power transmission
transmission line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12502085A
Other languages
Japanese (ja)
Other versions
JPH0583875B2 (en
Inventor
Kimiharu Kanamaru
金丸 公春
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP12502085A priority Critical patent/JPS61283882A/en
Publication of JPS61283882A publication Critical patent/JPS61283882A/en
Publication of JPH0583875B2 publication Critical patent/JPH0583875B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Locating Faults (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To enable accurate detection of a section struck by a thunderbolt in a power transmission line regardless of the magnitude and direction of a lightning current, by specifying one lightning current detector which the lightning current will reaches first among a plurality of lightning current detectors. CONSTITUTION:A plurality of lightning current detectors 3 are arranged separately along an overhead ground wire 2 of an aerial power transmission line 1. In these detectors 3, a lightning current signal obtained is connected to a decision circuit 4 through an optical fiber 6 to prevent malfunction caused by an electromagnetic induction noise. The decision circuit 4 is made up of a converter section for converting light signals fetched from the detectors 3 into electrical logic signals, a preference circuit for outputting a decision signal and an AND circuit. Then, as soon as any detector 3 detects a lightning current in case the power transmission line 1 is struck by a thunderbolt, detection information is sent to the decision circuit 4 through the optical fiber 6. The decision circuit 4 identifies one detector 3 which the lightning current reaches first among the detectors 3. Thus, it is possible to learn that the power transmission line 1 is struck by a thunderbolt at the point near the detector 3 thus identified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は送電系統遮断を生じる閃落事故を誘発する落雷
自体を検知する架空送電線路の落雷区間標定装置に係り
、特に正確に落雷位置を判定するようにしたものに関す
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a lightning strike area locating device for an overhead power transmission line that detects the lightning strike itself that induces a flash accident that interrupts the power transmission system. Regarding what is being judged.

[従来の技術] 架空送電線あるいは配電線は、今日、送電業務上必要不
可欠な設備であり、この設備事故は高度に電化された現
代社会に極めて重大な影響を及ぼし、場合によっては、
あらゆる方面での社会機能が麻痺することもありうる。
[Prior Art] Overhead power transmission lines or distribution lines are indispensable equipment for power transmission operations today, and accidents with these equipment can have a very serious impact on today's highly electrified society, and in some cases,
Social functions in all areas may be paralyzed.

このため、落雷事故から架空送電線等を保護するため、
架空地線が布設され、また落雷による閃落事故を防止す
べく極めて信頼性の高い絶縁支持方法が採用されている
が、猶、落雷事故や閃落事故を全く無くするまでには至
っていない。
Therefore, in order to protect overhead power lines etc. from lightning strikes,
Although overhead ground wires have been installed and highly reliable insulated support methods have been adopted to prevent lightning strikes and flash strikes, this has not yet completely eliminated lightning strikes and flash strikes.

そこで、万一これらの事故が架空送電線等に発生した場
合、その発生位置を速やかに確定することが次善の課題
となっている。
Therefore, in the event that such an accident occurs on an overhead power transmission line or the like, the next best challenge is to quickly determine the location where the accident occurred.

従来、閃落事故の発生位置検出方式として主に次の3つ
が知られている。即ち、■事故発生直後に高周波パルス
を送出し、事故点での反射波を受信するまでの時間から
距離を標定するパルスレーダ方式、■事故サージの測定
点までの到達時間差から距離を標定するサージ受信方式
、■事故時の電圧、電流から事故点位置を標定するイン
ピーダンス方式であり、これらのいわゆるフォールトロ
ケータが使用されており、共に測定点から事故点までの
線路長を求めて事故発生位置を知るようになっている。
Conventionally, the following three methods are mainly known as methods for detecting the location of a flash accident. In other words, ■Pulse radar method that sends out a high-frequency pulse immediately after an accident occurs and determines distance from the time it takes to receive the reflected wave at the accident point; ■Surge method that determines distance from the difference in arrival time of the accident surge to the measurement point. The reception method is an impedance method that locates the fault point from the voltage and current at the time of the fault. These so-called fault locators are used, and both of these methods determine the line length from the measurement point to the fault point and locate the fault location. I'm getting to know.

これら従来のフォールトロケータは、送電系統遮断を生
じる閃落事故を対象とした検知システムひあり、この事
故を誘発する落雷自体を検知するものではない。
These conventional fault locators are detection systems that target flash accidents that cause grid interruptions, and do not detect the lightning strikes themselves that cause these accidents.

ところが、実際に送電系統遮断に至らないまでも落雷に
よって送電線路に重大な損傷を与え、以後の信頼性に大
きな影響を及ぼす危険がある。従って、落雷箇所を逸早
く検知し、綿密な点検を実施することによって今後の重
大事故を未然に防止する策を講することが重要となる。
However, even if the power transmission system does not actually shut down, there is a risk that a lightning strike will cause serious damage to the power transmission line, which will have a significant impact on future reliability. Therefore, it is important to take measures to prevent future serious accidents by quickly detecting lightning strikes and conducting thorough inspections.

そこで、従来、このような策を講じた落雷点を検知する
方法が考えられた。即ち、架空地線あるいは鉄塔に流れ
る雷電流を検出し、その雷電流の大きさから判定するも
の(例えば、特開昭59−142479号公報)、ある
いは雷電流の流れる方向性から判定するもの(例えば特
開[?55−93067号公報)、そして大きさと方向
の両方から判定するものく例えば特開昭54−1077
80号公報)がある。
Therefore, conventional methods of detecting lightning strike points have been devised using such measures. That is, methods that detect lightning current flowing through overhead ground wires or steel towers and make judgments based on the magnitude of the lightning current (for example, Japanese Patent Application Laid-open No. 142479/1982), or methods that make judgments based on the direction in which the lightning current flows ( For example, Japanese Patent Application Publication No. 55-93067), and one that makes judgment based on both size and direction, for example, Japanese Patent Application Laid-Open No. 54-1077.
No. 80).

[発明が解決しようとする問題点] ところが、雷電流の大きさからでは、線路定数によって
は明確な落雷位置が判定できず、また雷電流の方向性か
らでも送電線各部の反射往復波の重畳による影響が避け
られず、正確に落雷位置の判定ができないという問題が
あった。
[Problems to be solved by the invention] However, depending on the line constant, it is not possible to clearly determine the location of a lightning strike based on the magnitude of the lightning current, and even from the direction of the lightning current, it is possible to determine the superposition of reflected back and forth waves from various parts of the transmission line. There was a problem that the lightning strike position could not be accurately determined due to the unavoidable influence of lightning.

[発明の目的] 本発明の目的は、上記従来の問題点を解消して、雷電流
の大小や方向性に関係なく送電線路における落雷区間を
的確に検知し得る架空送電線路の落雷区間標定装置を提
供することである。
[Object of the Invention] An object of the present invention is to provide a lightning strike section locating device for an overhead power transmission line that can accurately detect a lightning strike section of a power transmission line regardless of the magnitude or direction of lightning current by solving the above-mentioned conventional problems. The goal is to provide the following.

[発明の概要] 上記目的に沿う本発明の構成は、実施例に対応する第1
図に示す如く、架空送電線路1の架空地線2に沿って雷
電流検出器3が互いに離間されて複数個配設しである。
[Summary of the Invention] The configuration of the present invention in accordance with the above object is as follows.
As shown in the figure, a plurality of lightning current detectors 3 are arranged along an overhead ground wire 2 of an overhead power transmission line 1 and spaced apart from each other.

そして、これらの雷電流検出器3から得られる雷電流到
達情報から相隣合う雷電流検出器のいずれに雷電流が先
行して到達したかを判定する判定回路4を設ける。
A determination circuit 4 is provided which determines which of the adjacent lightning current detectors the lightning current has reached first from the lightning current arrival information obtained from these lightning current detectors 3.

これにより、落雷による雷電流が逸早く到達した雷電流
検出器を特定して、この特定された雷電流検出器の近傍
の送電線路に落雷があったことを知ることができるよう
にしたものである。
This makes it possible to identify the lightning current detector where the lightning current from a lightning strike quickly reached, and to know that there was a lightning strike on the power transmission line near the identified lightning current detector. .

[実施例] 本発明の実施例を第1図〜第3図に基づいて説明すれば
以下の通りである。
[Example] An example of the present invention will be described below based on FIGS. 1 to 3.

第1図は本発明の架空送電線路の落雷区間標定装置を示
す。1は架空送電線路、5は送電線鉄塔、2は架空地線
であり、この架空地線2には雷電流検出器3が設けられ
ている。雷電流検出器3は、各鉄塔寄りに、架空地線2
に沿って複数個(本実施例では3個)配設されている。
FIG. 1 shows a lightning strike area locating device for an overhead power transmission line according to the present invention. 1 is an overhead power transmission line, 5 is a transmission line tower, and 2 is an overhead ground wire, and this overhead ground wire 2 is provided with a lightning current detector 3. The lightning current detector 3 is connected to the overhead ground wire 2 near each tower.
A plurality of (three in this embodiment) are arranged along the line.

これらの雷電流検出器3は、電磁誘導ノイズによる誤動
作を防止すべく、得られる雷電流信号を光ファイバ6を
介して判定回路4に連結されている。この判定回路4は
相隣合う雷電流検出器3のいずれに雷電流が先行して到
達したかを判定する機能を有する。
These lightning current detectors 3 are connected to a determination circuit 4 via an optical fiber 6 to transmit the obtained lightning current signal in order to prevent malfunctions due to electromagnetic induction noise. This determination circuit 4 has a function of determining which of the adjacent lightning current detectors 3 the lightning current has reached first.

ここに、中央の鉄塔5を自鉄塔S、両隣りの鉄塔を隣接
鉄塔R,Lと称し、自鉄塔寄りに設けた雷?Ii流検出
器3からの信号を51左右に設けた雷電流検出器3.3
からの信号をそれぞれr、flとする。
Here, the central steel tower 5 is called the steel tower S, and the steel towers on both sides are called the adjacent steel towers R and L, and the lightning is installed near the steel tower. Lightning current detector 3.3 with signals from Ii current detector 3 provided on the left and right sides of 51
Let the signals from R and fl be respectively r and fl.

第2図は雷電流検出器3の回路構成を示したもので、7
は雷電流検出コイルであり、これにより検出した架空地
線2に流れる雷電流情報は、ツェナーダイオード8によ
り電圧制限された後、ダイオード9によって構成された
全波整流回路10を通して発光ダイオード11に導かれ
、これより光信号を取り出すようになっている。
Figure 2 shows the circuit configuration of the lightning current detector 3.
is a lightning current detection coil, and information on the lightning current flowing through the overhead ground wire 2 detected by this coil is voltage-limited by a Zener diode 8 and then guided to a light emitting diode 11 through a full-wave rectifier circuit 10 constituted by a diode 9. It is designed to extract optical signals from this.

したがって、雷電流情報は、ツェナーダイオード8によ
り適正値に電圧制限されるため、雷電流の大小に関わら
ず正確に伝送され、また、全波整流回路10により全波
整流されるため、雷電流の方向に関わらず伝送される。
Therefore, lightning current information is voltage-limited to an appropriate value by the Zener diode 8, so it is accurately transmitted regardless of the size of the lightning current, and is full-wave rectified by the full-wave rectifier circuit 10, so the lightning current information is Transmitted regardless of direction.

しかも、その伝送エネルギーとして雷電流のエネルギー
を使用するため、雷電流検出器は外部電源を必要としな
い。
Moreover, since the lightning current energy is used as the transmission energy, the lightning current detector does not require an external power source.

第3図は光ファイバ6を通して光伝送されて来た各雷電
流検出器3からの雷電流到達情報を判定する判定回路4
の回路構成を示したものである。
FIG. 3 shows a determination circuit 4 that determines lightning current arrival information from each lightning current detector 3 that has been optically transmitted through an optical fiber 6.
This figure shows the circuit configuration of .

判定回路4は変換部12.第1.第2の優先回路13,
14.AND回路15から構成される。
The determination circuit 4 includes a converter 12. 1st. second priority circuit 13,
14. It is composed of an AND circuit 15.

変換部12は順次配設された3つの雷電流検出器からそ
れぞれ取り出した光信号s、r、j!をそれぞれ電気的
論理信号(N電気信号)に光電変換する3つの光電変換
器16から成る。
The converter 12 receives optical signals s, r, j! extracted from three lightning current detectors arranged in sequence. It is comprised of three photoelectric converters 16 that photoelectrically convert each signal into an electrical logic signal (N electrical signal).

第1の優先回路13は、光電変換部出力の1つである雷
電気信号rと、NOT回路17で反転した第2のラッチ
出力とのANDをAND回路18でとり、そのAND出
力を第1のラッチ回路19に導いて雷電気信号rに対応
する判定信号Rを出力すると共に、この判定信号RをN
OT回路17で反転した反転出力と、遅延回路20によ
り遅らした光電変換部の2番目出力である雷電気信号S
とのANDをAND回路18でとり、そのAND出力を
上記第2のラッチ出力を出す第2のラッチ回路21に導
いて雷電気信号Sに対応する判定信号の1つ$1を出力
するようになっている。
The first priority circuit 13 uses an AND circuit 18 to AND the lightning electric signal r, which is one of the outputs of the photoelectric conversion section, and the second latch output inverted by the NOT circuit 17, and outputs the AND output to the first priority circuit 13. The latch circuit 19 outputs a judgment signal R corresponding to the lightning electric signal r, and this judgment signal R is connected to the latch circuit 19 of
The inverted output inverted by the OT circuit 17 and the lightning electric signal S which is the second output of the photoelectric conversion section delayed by the delay circuit 20
The AND circuit 18 performs an AND operation, and the AND output is led to the second latch circuit 21 which outputs the second latch output, and outputs one of the judgment signals $1 corresponding to the lightning electric signal S. It has become.

なお、上記した遅延回路20は、後述する遅延回路20
と同じく、m電流到達情報の判定回路4に達するのに要
する隣接鉄塔R,Lからの光伝送遅れ時間分だけ自鉄塔
情報を遅れさせ、その後の処理に同時性を付与して検出
精度を上げるためのものである。
Note that the delay circuit 20 described above is similar to the delay circuit 20 described later.
Similarly, the own tower information is delayed by the optical transmission delay time from the adjacent towers R and L required for m current arrival information to reach the judgment circuit 4, and the subsequent processing is given simultaneity to improve detection accuracy. It is for.

また、第2の優先回路14は、同様に遅延回路20によ
り遅らした雷電気信号Sと、NOT回路17で反転した
第4のラッチ出力とのANDをAND回路18でとり、
そのAND出力を第3のラッチ回路22に導いて雷電気
信号Sに対応する判定信号の他の1つS2を出力すると
共に、この出力S2をNOT回路17で反転した反転出
力と、光電変換部12の3番目の出力である雷電気信号
1とのANDをAND回路18でとり、そのAND出力
を上述した第4のラッチ出力を出す第4のラッチ回路2
3に導いて雪電気信号lに対応する判定信号りを出力す
るようになっている。
Further, the second priority circuit 14 uses an AND circuit 18 to AND the lightning electric signal S delayed by the delay circuit 20 and the fourth latch output inverted by the NOT circuit 17.
The AND output is led to the third latch circuit 22 to output another judgment signal S2 corresponding to the lightning electric signal S, and an inverted output obtained by inverting this output S2 by the NOT circuit 17 and a photoelectric conversion section. A fourth latch circuit 2 which outputs the fourth latch output by AND circuit 18 with the lightning electric signal 1 which is the third output of 12.
3 to output a judgment signal corresponding to the snow electricity signal l.

そして、第1及び第2の優先回路13.14から取り出
した2つの自鉄塔判定信号S1及びS2のAND出力を
取り出すAND回路24が接続されて、判定回路4は構
成されている。
The determination circuit 4 is configured by connecting an AND circuit 24 that outputs the AND output of the two tower determination signals S1 and S2 taken out from the first and second priority circuits 13 and 14.

さて、上記のような構成において、送電線路1に落雷が
あって雷電流検出器3がM電流を検出す    □ると
、その検出情報は光ファイバ6を通って判定回路4に到
達する。判定回路4に到達した雷電流到達情報S、r、
j!は各々光電変換部12で電気的論理信号に変換され
た後、AND回路18を通してラッチ回路を“H”レベ
ルとするが、このラッチ出力がNOT回路17によって
反転して隣接する他のAND回路18に入っているので
、優先回路内の隣接するラッチ回路の一方が先に″“H
IIレベルになると、他方のラッチ回路への入力が禁止
されるため、他より遅れて雷電気信号が入ってもそのラ
ッチ回路は“H”レベルにはならない。
Now, in the above configuration, when there is a lightning strike on the power transmission line 1 and the lightning current detector 3 detects M current, the detection information reaches the determination circuit 4 through the optical fiber 6. Lightning current arrival information S, r, which has reached the judgment circuit 4
j! After each is converted into an electrical logic signal by the photoelectric converter 12, the latch circuit is set to "H" level through the AND circuit 18, but this latch output is inverted by the NOT circuit 17 and sent to another adjacent AND circuit 18. , one of the adjacent latch circuits in the priority circuit goes to "H" first.
When it reaches the II level, input to the other latch circuit is prohibited, so even if a lightning electric signal is input later than the other latch circuit, that latch circuit will not go to the "H" level.

即ち、優先回路では時間的に遅れて到達する雷電流情報
は阻止される。
That is, the priority circuit blocks lightning current information that arrives with a time delay.

したがって、相隣合う雷電流検出器3がらの信号のうち
、時間的に先行して到達した側の優先回路の出力のみが
“H″レベルして得られる。この場合において、次表か
らも分かるように、S−R区間の隣接右鉄塔R寄り、又
はL−8区間の隣接左鉄塔り寄りに落雷があったときに
は、優先回路13.14のいずれにも“H”レベルが出
てしまうため、判定信号S1及びS2をAND回路24
に入力してANDをとって出力の1本化を図るとともに
、必ず1つの出力端子のみが“H”レベルになるように
しである。特に、ANC)回路24出力が“H”レベル
になると、自鉄塔部近傍に落雷があったか否かが判定で
きる。
Therefore, among the signals from the adjacent lightning current detectors 3, only the output of the priority circuit which arrived earlier in time is obtained at the "H" level. In this case, as can be seen from the table below, if lightning strikes near the adjacent right steel tower R in the S-R section or near the adjacent left steel tower in the L-8 section, neither of the priority circuits 13 and 14 will be struck. Since the “H” level is output, the judgment signals S1 and S2 are sent to the AND circuit 24.
are input and ANDed to unify the output, and ensure that only one output terminal is at the "H" level. In particular, when the output of the ANC circuit 24 becomes "H" level, it can be determined whether or not there has been a lightning strike near the steel tower.

く表〉判定回路の論理表 但し、■、■、■は信号到達順序を 意味する。Table〉Logic table of judgment circuit However, ■, ■, ■ indicate the order in which the signals arrive. means.

なお、上記表において、■■■とか、■■■の組合せは
物理的に存在しないので除いである。送電線路1に落雪
があると、その落雷地点に最も近い所にある雷電流検出
器3が他に先行して雷電流を検出し、この雷電流検出器
3から遠Kかるにつれてその検出時間は遅くなる。従っ
て、順次配設された雷電流検出器3から雷電流を検出す
る場合、例えば1番目の近傍に落雷があったとき、1番
目に次いで検出されるのは2番目であり、2番目を飛び
越して3番目に検出されることはないからである。
In the above table, combinations such as ■■■ and ■■■ are excluded because they do not physically exist. When snow falls on the power transmission line 1, the lightning current detector 3 closest to the lightning strike point detects the lightning current before the others, and the detection time increases as the distance from the lightning current detector 3 increases. Become slow. Therefore, when detecting lightning current from the lightning current detectors 3 arranged sequentially, for example, when there is a lightning strike in the vicinity of the first one, the second one is detected after the first one, and the second one is skipped. This is because it will not be detected third.

上記表から明らかなように、判定回路4の3つの出力R
,S、Lのレベルを調べることにより、どの区間に落雷
があったか、更にはその区間のいずれの鉄塔寄りに落雷
があったかを標定できる。
As is clear from the table above, the three outputs R of the determination circuit 4
, S, and L, it is possible to determine in which section the lightning struck, and furthermore, which steel tower in that section the lightning struck.

このように、本実施例によれば、雷電流の大きさや流れ
る方向性から判定するのではなく、相隣合う雷電流のい
ずれにM電流が先行して到達したかを判定するので、線
路定数によって明確な落雷位置が判定できなかったり、
あるいは送電線路各部の反射往復波の重畳の影響により
判定ができなくなるということがない。
In this way, according to this embodiment, the determination is not based on the magnitude of the lightning current or the direction of flow, but rather on which of the adjacent lightning currents the M current has reached first, so the line constant It may not be possible to determine the exact location of the lightning strike, or
In addition, there is no possibility that the determination cannot be made due to the superposition of reflected round waves from various parts of the power transmission line.

なお、上記実施例では、雷電流検出器3の情報を光ファ
イバ6で送るようにしたが、この光ファイバ6に架空i
i!!112と一体化された複合架空地線(OPGW)
を利用してもよい。
In the above embodiment, the information of the lightning current detector 3 is sent through the optical fiber 6, but the optical fiber 6 is
i! ! Combined overhead ground wire (OPGW) integrated with 112
You may also use

また、架空地線2の3箇所に雷電流検出器3を設置した
場合を示しているが、更に多数設置して検出区間を延長
することも可能である。
Furthermore, although the case is shown in which lightning current detectors 3 are installed at three locations on the overhead ground wire 2, it is also possible to install more lightning current detectors 3 to extend the detection section.

更に、第3図に示す判定回路4は、この回路構成に限定
されるものではなく、要するに相隣合う雷電流検出器3
のいずれの側に先行して雷電流が到達したかを検知し、
この検知情報によりどこに落雷があったかを判定できれ
ば良く、このような判定ができる回路であればどんな回
路でもよい。
Furthermore, the determination circuit 4 shown in FIG. 3 is not limited to this circuit configuration, and in short, the determination circuit 4 shown in FIG.
Detects which side of the lightning current has arrived first,
It is only necessary to be able to determine where the lightning has struck based on this detection information, and any circuit that can make such a determination may be used.

[発明の効果] 以上要するに本発明によれば、複数の雷電流検出器の中
から雷電流が逸早く到達した1つの雷電流検出器を特定
し、この特定した雷電流検出器の近傍の送’il!I回
路に落雷があったことを知ることができるので、雷電流
の大小や方向性に関係なく、送電線路における落雷区間
を的確に検知することができる。したがって、送電線路
の重大事故を未然に防止できるという優れた効果を発揮
する。
[Effects of the Invention] In short, according to the present invention, one lightning current detector to which a lightning current has quickly arrived is identified from among a plurality of lightning current detectors, and the transmission near the identified lightning current detector is Il! Since it is possible to know that the I circuit has been struck by lightning, it is possible to accurately detect the section of the power transmission line struck by lightning, regardless of the magnitude or directionality of the lightning current. Therefore, it exhibits an excellent effect of preventing serious accidents on power transmission lines.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る架空送電線路の落雷区間標定装置
の好適一実施例を示す全体構成図、第2因は第1図に示
す雷電流検出器の詳細を示した回路図、第3図は同じく
判定回路の詳細を示した回路図である。 図中、1は架空送電線路、2は架空地線、3は雷電流検
出器、4は判定回路である。
FIG. 1 is an overall configuration diagram showing a preferred embodiment of the lightning strike area locating device for an overhead power transmission line according to the present invention; the second reason is a circuit diagram showing details of the lightning current detector shown in FIG. 1; The same figure is a circuit diagram showing details of the determination circuit. In the figure, 1 is an overhead power transmission line, 2 is an overhead ground wire, 3 is a lightning current detector, and 4 is a determination circuit.

Claims (4)

【特許請求の範囲】[Claims] (1)架空送電線路の架空地線に沿って互いに離間させ
て複数個配設した雷電流検出器と、相隣合う雷電流検出
器のいずれに雷電流が先行して到達したかを判定する判
定回路とを備えたことを特徴とする架空送電線路の落雷
区間標定装置。
(1) Determine which of the multiple lightning current detectors installed apart from each other along the overhead ground wire of the overhead power transmission line or adjacent lightning current detectors the lightning current reaches first. 1. A lightning strike area locating device for an overhead power transmission line, comprising: a determination circuit.
(2)上記雷電流検出器と判定回路間を光ファイバによ
って連結したことを特徴とする特許請求の範囲第1項記
載の架空送電線路の落雷区間標定装置。
(2) A lightning strike area locating device for an overhead power transmission line as set forth in claim 1, wherein the lightning current detector and the determination circuit are connected by an optical fiber.
(3)上記雷電流検出器が、架空地線に流れる雷電流を
検出する電流検出コイルと、該コイルの検出電流を全波
整流する整流回路と、該整流回路の整流出力を光信号に
変換する発光ダイオードとから構成されていることを特
徴とする特許請求の範囲第2項記載の架空送電線路の落
雷区間標定装置。
(3) The lightning current detector includes a current detection coil that detects lightning current flowing through an overhead ground wire, a rectifier circuit that full-wave rectifies the current detected by the coil, and converts the rectified output of the rectifier circuit into an optical signal. 3. A lightning strike area locating device for an overhead power transmission line according to claim 2, characterized in that the device comprises a light emitting diode.
(4)上記判定回路が、順次配設された3つの雷電流検
出器からそれぞれ取り出した光信号を第1、第2、第3
の雷電気信号に変換する変換部と、第1及び第2の雷電
気信号の入力端子に対応する第1及び第2の出力端子を
有し、上記2つの雷電気信号を比較してこれらのうちの
先行して到達した入力端子に対応する出力端子に判定信
号を出力する第1の優先回路と、第2及び第3の雷電気
信号の入力端子に対応する第2及び第3の出力端子を有
し、上記2つの雷電気信号を比較してこれらのうちの先
行して到達した入力端子に対応する出力端子に判定信号
を出力する第2の優先回路と、上記第1及び第2の優先
回路の第2の出力端子から共に取り出した判定信号のA
ND出力を取り出すAND回路とを備えていることを特
徴とする特許請求の範囲第3項記載の架空送電線路の落
雷区間標定装置。
(4) The above-mentioned judgment circuit outputs the optical signals extracted from the three lightning current detectors arranged in sequence to the first, second, and third lightning current detectors.
a converter for converting into a lightning electrical signal, and first and second output terminals corresponding to the input terminals of the first and second lightning electrical signals, and a converter that compares the two lightning electrical signals and converts them. A first priority circuit that outputs a determination signal to an output terminal corresponding to the input terminal that arrived earlier, and second and third output terminals that correspond to the input terminals of the second and third lightning electric signals. a second priority circuit that compares the two lightning electrical signals and outputs a determination signal to an output terminal corresponding to the input terminal that reached earlier among them; A of the judgment signals taken out together from the second output terminal of the priority circuit
4. The lightning strike area locating device for an overhead power transmission line according to claim 3, further comprising an AND circuit for taking out an ND output.
JP12502085A 1985-06-11 1985-06-11 Locator for section struck by thunderbolt of aerial power transmission line Granted JPS61283882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12502085A JPS61283882A (en) 1985-06-11 1985-06-11 Locator for section struck by thunderbolt of aerial power transmission line

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12502085A JPS61283882A (en) 1985-06-11 1985-06-11 Locator for section struck by thunderbolt of aerial power transmission line

Publications (2)

Publication Number Publication Date
JPS61283882A true JPS61283882A (en) 1986-12-13
JPH0583875B2 JPH0583875B2 (en) 1993-11-29

Family

ID=14899868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12502085A Granted JPS61283882A (en) 1985-06-11 1985-06-11 Locator for section struck by thunderbolt of aerial power transmission line

Country Status (1)

Country Link
JP (1) JPS61283882A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131180A (en) * 1983-01-17 1984-07-27 Mitsubishi Electric Corp Detector for fault position of power-transmission line
JPS59217172A (en) * 1983-05-26 1984-12-07 Sumitomo Electric Ind Ltd Apparatus for discriminating lightning flashover steel tower

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59131180A (en) * 1983-01-17 1984-07-27 Mitsubishi Electric Corp Detector for fault position of power-transmission line
JPS59217172A (en) * 1983-05-26 1984-12-07 Sumitomo Electric Ind Ltd Apparatus for discriminating lightning flashover steel tower

Also Published As

Publication number Publication date
JPH0583875B2 (en) 1993-11-29

Similar Documents

Publication Publication Date Title
CN100583590C (en) Integrated failure positioning protection system for transfer line
CN102265169A (en) Method for detecting an electric arc in photovoltaic equipment
JP6624165B2 (en) Distribution line fault location system
CN111065932A (en) Traveling wave identification using distortion for power system protection
JPS61283882A (en) Locator for section struck by thunderbolt of aerial power transmission line
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
RU2658673C1 (en) Method of automatic reclosure of overhead transmission line
Brown et al. A wireless differential protection system for air-core inductors
JPS60214273A (en) Detecting method of lightning stroke
JPH09236629A (en) Method and device for detecting earth steel tower of power transmission line
CN112363011A (en) Transmission line fault detection device
JPH0341002B2 (en)
JPS6215473A (en) Locating method for fault point of transmission line
JPH0363711B2 (en)
JP2866172B2 (en) Transmission line fault direction locating method
JPH07333287A (en) Magnetic field sensor and equipment and method for locating point of failure of aerial transmission line
JPH06273470A (en) Accident section plotting device of overhead transmission line
JPH0541420Y2 (en)
JPH01320481A (en) Thunderbolt detecting system for electricity transmission line
KULIKOV et al. Methods for the implementation of automatic reclosing on combined overhead and underground cable power lines 110-500 kV.
JPH0228105B2 (en) HIKARIFUAIBAFUKUGOKAKUCHISENRYOJIKOTETSUTOSHIKIBETSUHOSHIKI
JPH047835B2 (en)
JP2722789B2 (en) Overhead transmission line fault location system
JPS61170224A (en) Method and device for detecting trouble point of aerial transmission line
JPS58139079A (en) Fault point detector for transmission wire