JPS6128334B2 - - Google Patents

Info

Publication number
JPS6128334B2
JPS6128334B2 JP53158205A JP15820578A JPS6128334B2 JP S6128334 B2 JPS6128334 B2 JP S6128334B2 JP 53158205 A JP53158205 A JP 53158205A JP 15820578 A JP15820578 A JP 15820578A JP S6128334 B2 JPS6128334 B2 JP S6128334B2
Authority
JP
Japan
Prior art keywords
light
circuit
transistor
light emitting
emitting diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53158205A
Other languages
Japanese (ja)
Other versions
JPS5584146A (en
Inventor
Fumio Kitagawa
Hiroshi Hagiwara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP15820578A priority Critical patent/JPS5584146A/en
Publication of JPS5584146A publication Critical patent/JPS5584146A/en
Publication of JPS6128334B2 publication Critical patent/JPS6128334B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は光電脈波検出回路、詳しくは動脈を含
む生体組織に光を当て、動脈の拍動にもとづく反
射(透過)光量の変化により動脈の拍動を検出す
る回路に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a photoplethysmogram detection circuit, more specifically, a circuit that shines light on biological tissues including arteries and detects arterial pulsation by changing the amount of reflected (transmitted) light based on the arterial pulsation. Regarding.

第1図は従来の光電脈波検出回路を示したもの
で、この従来例においては発光回路1′よりの光
を動脈を含む生体組織(例えば指)3′に当て、
動脈の拍動にもとづく反射(透過)光量の変化を
受光回路2′により検出するようにしていた。
FIG. 1 shows a conventional photoplethysmogram detection circuit. In this conventional example, light from a light emitting circuit 1' is applied to a biological tissue (for example, a finger) 3' including an artery,
The light receiving circuit 2' detects changes in the amount of reflected (transmitted) light based on the pulsation of the artery.

しかしながら、この従来例においては、発光回
路1′の光源から発光され生体組織3′で反射(透
過)して受光回路2′に入力される光量が、生体
組織3′の固体差および検出器の生体組織3′に対
する押し付け圧によつて変化してしまうため、受
光回路2′の受光素子(例えば光電導セル)の動
作点を変動させてしまい、そのため安定した脈波
出力が得られないという欠点があつた。
However, in this conventional example, the amount of light emitted from the light source of the light emitting circuit 1', reflected (transmitted) by the living tissue 3', and input to the light receiving circuit 2' depends on the individual differences in the living tissue 3' and the amount of light emitted by the detector. The disadvantage is that the operating point of the light-receiving element (for example, a photoconductive cell) of the light-receiving circuit 2' changes because it changes depending on the pressing pressure against the living tissue 3', and therefore a stable pulse wave output cannot be obtained. It was hot.

本発明は上記の欠点を改善するために提案され
たものであり、以下、図面に沿つて詳細に説明す
る。
The present invention has been proposed to improve the above-mentioned drawbacks, and will be described in detail below with reference to the drawings.

第2図は本発明の基本的回路構成を示すブロツ
クダイヤグラムである。図において、1は発光駆
動回路、2は受光検出回路であり、発光駆動回路
1における電力増幅器の出力には発光素子(フイ
ラメントランプまたは発光ダイオードなど)が接
続され発光し、発光した光量4が動脈を含む生体
組織5に当たると、動脈の拍動にもとづいて、反
射(透過)光量の変化としてあらわれ、この変化
光量6が受光検出回路2に入力する。そして、受
光検出回路2で変化光量6が受光素子(光電導セ
ルまたは光起電セルなど)により検出され、測定
増幅器で増幅され脈波を端子7より出力する。ま
た、3は帰還制御回路であり、その機能,動作は
次のようになる。
FIG. 2 is a block diagram showing the basic circuit configuration of the present invention. In the figure, 1 is a light emission drive circuit, 2 is a light reception detection circuit, and a light emitting element (such as a filament lamp or a light emitting diode) is connected to the output of the power amplifier in the light emission drive circuit 1 and emits light, and the amount of emitted light 4 is transmitted to the arteries. When the light hits the living tissue 5 containing the light, it appears as a change in the amount of reflected (transmitted) light based on the pulsation of the artery, and this changing amount of light 6 is input to the light reception detection circuit 2. Then, in the light receiving detection circuit 2, the changing light amount 6 is detected by a light receiving element (such as a photoconductive cell or a photovoltaic cell), amplified by a measurement amplifier, and a pulse wave is outputted from a terminal 7. Further, 3 is a feedback control circuit, and its function and operation are as follows.

いま、動脈の拍動にもとづいて反射(透過)光
量の変化を検出するとき、生体組織5の個体差お
よび発光素子と受光素子とで構成される検出器の
生体組織5に対する押し付け圧によつて受光検出
回路2の動作点が設定値よりも変動した場合、発
光駆動回路1と受光検出回路2との間に挿入され
た帰還制御回路3により、変動レベルの検出が行
われ、その補正が行われる。変動レベルの検出方
法として、受光検出回路2の出力を帰還制御回路
3において脈波信号の基本周波数よりも低い周波
数の低域フイルターに通すと、脈波信号の平均的
な強度に相当する動作点の変動レベルの検出がで
きる。検出された変動レベルは帰還制御回路3の
制御増幅器で増幅され、発光駆動回路1の電力増
幅器に入力され、発光出力(光量)の制御を行う
ことにより受光検出回路2の動作点を設定値に近
づけるように働く。すなわち、生体組織5の固体
差もしくは検出器の押し付け圧により反射(透
過)光量の平均レベルが小さくなつたときは発光
出力を大に、逆に大きくなつたときは小にするよ
うに制御が行われる。
Now, when detecting a change in the amount of reflected (transmitted) light based on the pulsation of an artery, it is possible to When the operating point of the light reception detection circuit 2 fluctuates more than the set value, the feedback control circuit 3 inserted between the light emission drive circuit 1 and the light reception detection circuit 2 detects the fluctuation level and corrects it. be exposed. As a method of detecting the fluctuation level, when the output of the light reception detection circuit 2 is passed through a low-pass filter with a frequency lower than the fundamental frequency of the pulse wave signal in the feedback control circuit 3, an operating point corresponding to the average intensity of the pulse wave signal is detected. It is possible to detect the fluctuation level of The detected fluctuation level is amplified by the control amplifier of the feedback control circuit 3, inputted to the power amplifier of the light emission drive circuit 1, and the operating point of the light reception detection circuit 2 is set to the set value by controlling the light emission output (light amount). Work to bring it closer. In other words, when the average level of the amount of reflected (transmitted) light decreases due to individual differences in the living tissue 5 or the pressing pressure of the detector, control is performed to increase the light emission output, and conversely, when it increases, control is performed to decrease it. be exposed.

第3図は本発明の具体的実施回路を示すもの
で、発光駆動回路1は駆動用のトランジスタTr1
と発光ダイオードDとからなり、この発光ダイオ
ードDの陰極は接地され、陽極は駆動用のトラン
ジスタTr1のエミツタに接続され、このトランジ
スタTr1のコレクタは電源端子に接続され、ベー
スは帰還制御回路3を構成する制御用のトランジ
スタTr2のコレクタに接続され、該コレクタは抵
抗r1を介して接地され、トランジスタTr2のエミ
ツタには電源が与えられる。また、トランジスタ
Tr2のベースは抵抗r2を介して抵抗r3およびコン
デンサCよりなる低域フイルターに接続され、該
低域フイルターは受光検出回路2を構成する演算
増幅器OPの出力端子に接続され、該演算増幅器
OPの非反転入力端子は接地され、太陽電弛の如
き受光素子Sの陰極側は演算増幅器OPの反転入
力端子に接続され、受光素子Sの陽極側は接地さ
れている。また、演算増幅器OPの反転入力端子
と出力端子との間には外乱雑音を防止するための
コンデンサと帰還用の抵抗との並列回路が接続さ
れている。
FIG. 3 shows a concrete implementation circuit of the present invention, in which the light emitting drive circuit 1 includes a driving transistor Tr 1
The cathode of this light emitting diode D is grounded, the anode is connected to the emitter of the driving transistor Tr 1, the collector of this transistor Tr 1 is connected to the power supply terminal, and the base is connected to the feedback control circuit. The transistor Tr 2 is connected to the collector of the control transistor Tr 2 constituting the transistor Tr 3 , the collector is grounded via the resistor r 1 , and the emitter of the transistor Tr 2 is supplied with power. Also, transistor
The base of Tr 2 is connected via a resistor r 2 to a low-pass filter consisting of a resistor r 3 and a capacitor C, and the low-pass filter is connected to the output terminal of an operational amplifier OP constituting the light reception detection circuit 2. amplifier
The non-inverting input terminal of the OP is grounded, the cathode side of the photodetector S such as a solar cell is connected to the inverting input terminal of the operational amplifier OP, and the anode side of the photodetector S is grounded. Further, a parallel circuit including a capacitor and a feedback resistor is connected between the inverting input terminal and the output terminal of the operational amplifier OP to prevent disturbance noise.

次に本発明の動作を更に詳細に説明する。 Next, the operation of the present invention will be explained in more detail.

発光駆動回路1は駆動用のトランジスタTr1
エミツタに発光ダイオードDを接続することによ
りなり、エミツタに入つた発光ダイオードDの電
圧降下により駆動用のトランジスタTr1に電圧負
帰還がかかり、電源電圧が変動しても発光ダイオ
ードDの光量はほとんど変化しない。また、発光
ダイオードDに印加される電圧はトランジスタ
Tr1のベース電位よりベース・エミツタ間電圧だ
け低い電圧に保たれ、よつてトランジスタTr1
ベースに印加される電圧により発光出力(光量)
の制御が行われる。なお、動作開始時においては
各部の電圧関係が特定できないため発光ダイオー
ドDの光量も特定できないが、安定状態における
光量よりも大きい場合には小さくなるように、逆
に安定状態における光量よりも小さい場合には大
きくなるように移行していく。すなわち、発光ダ
イオードDの光量が小さい場合は受光素子Sに発
生する光電流が小さいため演算増幅器OPの出力
端子にあらわれる電圧の平均値は低くなり、抵抗
r3,コンデンサCによる低域フイルターを通して
低レベルの電圧がトランジスタTr2のベースに加
えられるのでトランジスタTr2のコレクタ電流が
増大し、トランジスタTr1のベース電位を高めて
発光量を大きくするように働く。また、逆に発光
ダイオードDの光量が大きい場合は受光素子Sに
発生する光電流が大きいため演算増幅器OPの出
力端子にあらわれる電圧の平均値は高くなり、抵
抗r3,コンデンサCによる低域フイルターを通し
て高レベルの電圧がトランジスタTr2のベースに
加えられるのでトランジスタTr2のコレクタ電流
が減少し、トランジスタTr1のベース電位を下げ
て発光量を小さくするように働く。
The light emitting drive circuit 1 is constructed by connecting a light emitting diode D to the emitter of a driving transistor Tr 1 , and a negative voltage feedback is applied to the driving transistor Tr 1 due to the voltage drop of the light emitting diode D entering the emitter, and the power supply voltage is reduced. Even if the value changes, the amount of light from the light emitting diode D hardly changes. In addition, the voltage applied to the light emitting diode D is
The voltage applied to the base of transistor Tr 1 is kept at a voltage lower than the base potential of transistor Tr 1 by the base-emitter voltage, so the light emission output (light amount)
control is performed. Note that at the start of operation, the voltage relationship of each part cannot be determined, so the amount of light from the light emitting diode D cannot be determined either, but if it is larger than the amount of light in a stable state, it will be smaller, and conversely, if it is smaller than the amount of light in a stable state, it will be smaller. It will move to become larger. In other words, when the light intensity of the light emitting diode D is small, the photocurrent generated in the light receiving element S is small, so the average value of the voltage appearing at the output terminal of the operational amplifier OP becomes low, and the resistance
r 3 , a low-level voltage is applied to the base of transistor Tr 2 through the low-pass filter by capacitor C, so the collector current of transistor Tr 2 increases, increasing the base potential of transistor Tr 1 and increasing the amount of light emitted. work. Conversely, when the light intensity of the light emitting diode D is large, the photocurrent generated in the light receiving element S is large, so the average value of the voltage appearing at the output terminal of the operational amplifier OP becomes high, and the low-pass filter by the resistor r 3 and the capacitor C Since a high level voltage is applied to the base of the transistor Tr 2 through the transistor Tr 2 , the collector current of the transistor Tr 2 decreases, which lowers the base potential of the transistor Tr 1 and reduces the amount of light emitted.

さて、発光駆動回路1より発光された光量は動
脈を含む生体組織5に当たると、動脈の拍動にも
とづいて反射(透過)光量の変化として受光検出
回路2に入力する。受光検出回路2は前述のよう
に演算増幅器OPを基本として、受光素子Sおよ
び帰還用の抵抗を有する電圧増幅器からなつてい
る。第5図は受光検出回路2における各部の信号
波形を示したものであり、イは受光素子Sに生じ
た光電流(演算増幅器OPの反転入力端子側から
接地側へ流れる。)、ロは演算増幅器OPの出力電
圧である。しかして、受光素子Sには入力した光
によつてpn接合に逆電流が生じ、これが演算増
幅器OPによつて電圧に変換される。すなわち、
演算増幅器OPの両入力端子間は負帰還によるイ
マジナルシヨートにより同電位であり、また入力
インピーダンスは実用上は無限大と考えられるの
で、受光素子Sに流れる電流はすべて演算増幅器
OPの出力端子から帰還用抵抗を介して流れ、そ
の電圧降下が出力電圧としてあらわれる。なお、
演算増幅器OPの反転入力端子と出力端子との間
の帰還用抵抗と並列接続されたコンデンサにより
周波数の高いノイズ成分が除去され、出力信号に
はあらわれない。
Now, when the amount of light emitted from the light emission driving circuit 1 hits the living tissue 5 including the artery, it is input to the light reception detection circuit 2 as a change in the amount of reflected (transmitted) light based on the pulsation of the artery. As described above, the light receiving detection circuit 2 is based on the operational amplifier OP, and is composed of a voltage amplifier having a light receiving element S and a feedback resistor. FIG. 5 shows the signal waveforms of each part in the light receiving detection circuit 2, where A shows the photocurrent generated in the light receiving element S (flows from the inverting input terminal side of the operational amplifier OP to the ground side), and B shows the calculation is the output voltage of amplifier OP. The input light causes a reverse current in the pn junction of the light receiving element S, and this is converted into a voltage by the operational amplifier OP. That is,
Both input terminals of the operational amplifier OP are at the same potential due to an imaginary short caused by negative feedback, and the input impedance is considered to be infinite in practical terms, so all the current flowing to the photodetector S is transferred to the operational amplifier.
The voltage flows from the output terminal of the OP via the feedback resistor, and the voltage drop appears as the output voltage. In addition,
A feedback resistor and a capacitor connected in parallel between the inverting input terminal and output terminal of the operational amplifier OP remove high frequency noise components and do not appear in the output signal.

一方、動脈の拍動にもとづく反射(透過)光量
の変化を検出するとき、生体組織5の固体差およ
び発光ダイオードDと受光素子Sからなる検出器
の生体組織5に対する押し付け圧によつて、演算
増幅器OPの動作点が設定値よりも変動しようと
するが、この変動レベルは帰還制御回路3の低域
フイルターで検出される。低域フイルターは抵抗
r3,コンデンサCからなり、脈波信号の基本周波
数より低い遮断周波数を有することにより、脈波
の平均的な強度を示す信号を検出することができ
る。すなわち、演算増幅器OPの出力により抵抗
r3を介してコンデンサCが充電され、抵抗r2,r3
を介して適度な速度で放電されることから、低い
周波数の信号ほどよく通過させる低域フイルター
として働き、この低域フイルターの出力は第5図
ロにおける破線の如く脈波の平均レベルに相当す
る信号となる。そして、低域フイルターで検出さ
れた変動レベルは制御用トランジスタTr2で増幅
され、駆動用のトランジスタTr2のベース電位を
制御することにより発光ダイオードDの発光出力
(光量)を加減し、受光検出回路2の動作点を所
定の設定値に近づける。すなわち、個体差や検出
器への押し付け圧によつて脈波の平均レベルが低
下すると、抵抗r3,コンデンサCによる低域フイ
ルターの出力レベルが低下し、トランジスタTr2
のベース電位が引き下げられ、ベース電流が増大
してコレクタ電流が増加し、抵抗r1の端子電圧つ
まり発光駆動回路1のトランジスタTr1のベース
電位が上昇し、発光ダイオードDに印加される電
圧が増加して光量の増加が行われる。また、逆に
脈波の平均レベルが上昇すると、抵抗r3,コンデ
ンサCによる低域フイルターの出力レベルが上昇
し、トランジスタTr2のベース電位が引き上げら
れ、ベース電流が減少してコレクタ電流が減少
し、抵抗r1の端子電圧つまり発光駆動回路1のト
ランジスタTr1のベース電位が低下し、発光ダイ
オードDに印加される電圧が減少して光量の抑制
が行われる。
On the other hand, when detecting changes in the amount of reflected (transmitted) light based on the pulsation of arteries, calculations are performed based on the individual differences in the living tissue 5 and the pressing pressure of the detector consisting of the light emitting diode D and the light receiving element S against the living tissue 5. Although the operating point of the amplifier OP tends to fluctuate beyond the set value, the level of this fluctuation is detected by the low-pass filter of the feedback control circuit 3. Low-pass filter is a resistor
r 3 and a capacitor C, and has a cut-off frequency lower than the fundamental frequency of the pulse wave signal, so that a signal indicating the average intensity of the pulse wave can be detected. In other words, the output of the operational amplifier OP
Capacitor C is charged through r 3 and resistors r 2 , r 3
Since it is discharged at a moderate speed through the , it acts as a low-pass filter that allows lower frequency signals to pass through more easily, and the output of this low-pass filter corresponds to the average level of the pulse wave, as shown by the broken line in Figure 5 (b). It becomes a signal. Then, the fluctuation level detected by the low-pass filter is amplified by the control transistor Tr 2 , and by controlling the base potential of the driving transistor Tr 2 , the light emitting output (light amount) of the light emitting diode D is adjusted. Bring the operating point of circuit 2 close to a predetermined set value. In other words, when the average level of the pulse wave decreases due to individual differences or pressure applied to the detector, the output level of the low-pass filter formed by resistor r 3 and capacitor C decreases, and transistor Tr 2
The base potential of the light emitting diode D is lowered, the base current increases, the collector current increases, the terminal voltage of the resistor r1 , that is, the base potential of the transistor Tr1 of the light emitting drive circuit 1 increases, and the voltage applied to the light emitting diode D increases. The amount of light is increased by increasing the amount of light. Conversely, when the average level of the pulse wave increases, the output level of the low-pass filter formed by resistor r 3 and capacitor C increases, the base potential of transistor Tr 2 is raised, the base current decreases, and the collector current decreases. However, the terminal voltage of the resistor r1 , that is, the base potential of the transistor Tr1 of the light emitting drive circuit 1 decreases, the voltage applied to the light emitting diode D decreases, and the amount of light is suppressed.

第4図は本発明の他の実施例を示したものであ
る。この回路が第3図の回路と異なる点は、発光
駆動回路1であつて、駆動用のトランジスタTr1
のコレクタが発光ダイオードDを介して電源に接
続されている点にあり、その他の受光検出回路2
および帰還制御回路3は第3図と同様である。す
なわち、この実施例では発光駆動回路1は駆動用
のトランジスタTr1のコレクタと電源端子間に発
光ダイオードDを接続してなり、駆動用のトラン
ジスタTr1のコレクタの定電流特性により、発光
ダイオードDは電源電圧の変動によらずトランジ
スタTr1のベース電流のみに依存して駆動され
る。従つて電源電圧が何らかの影響により変動し
た場合、発光ダイオードDの光量はほとんど変化
しない。そして、発光ダイオードDに供給される
電流トランジスタTr1のベース電流に電流増幅率
をかけたものとなり、トランジスタTr1のベース
に印加される電圧により発光出力(光量)の制御
が行われる。
FIG. 4 shows another embodiment of the invention. This circuit differs from the circuit shown in FIG. 3 in the light emission drive circuit 1, in which the drive transistor Tr
The collector of is connected to the power supply via the light emitting diode D, and the other light receiving detection circuit 2
The feedback control circuit 3 is the same as that shown in FIG. That is, in this embodiment, the light emitting drive circuit 1 includes a light emitting diode D connected between the collector of the driving transistor Tr 1 and the power supply terminal. is driven depending only on the base current of transistor Tr1 , regardless of fluctuations in the power supply voltage. Therefore, even if the power supply voltage changes due to some influence, the amount of light from the light emitting diode D hardly changes. The base current of the current transistor Tr 1 supplied to the light emitting diode D is multiplied by a current amplification factor, and the light emission output (light amount) is controlled by the voltage applied to the base of the transistor Tr 1 .

本発明は叙上のように受光検出回路の出力の一
部を取り出し、低域フイルターおよび増幅器より
なる帰還制御回路によつてこれを発光駆動回路に
与えるようにしたので、検出信号が生体の個体差
および検出器への押し付け圧によつて変動して
も、その変動を除去し得る効果を有する。
As described above, the present invention extracts a part of the output of the light reception detection circuit and supplies it to the light emission drive circuit by means of a feedback control circuit consisting of a low-pass filter and an amplifier. Even if the variation occurs due to the difference and the pressure applied to the detector, it has the effect of eliminating the variation.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の光電脈波検出回路、第2図は本
発明の光電脈波検出回路、第3図および第4図は
具体的実施回路、第5図は信号波形を示す。 1……発光駆動回路、2……受光検出回路、3
……帰還制御回路、4……光量、5……生体組
織、6……変化光量、7……出力端子、Tr1
Tr2……トランジスタ、D……発光ダイオード、
S……受光素子、OP……演算増幅器、r1〜r3
…抵抗、C……コンデンサ。
FIG. 1 shows a conventional photoplethysmogram detection circuit, FIG. 2 shows a photoplethysmogram detection circuit of the present invention, FIGS. 3 and 4 show specific implementation circuits, and FIG. 5 shows signal waveforms. 1...Light emission drive circuit, 2...Light reception detection circuit, 3
...Feedback control circuit, 4...Light amount, 5...Biological tissue, 6...Change light amount, 7...Output terminal, Tr 1 ,
Tr 2 ...transistor, D...light emitting diode,
S...Photodetector, OP...Operation amplifier, r1 to r3 ...
...Resistance, C...Capacitor.

Claims (1)

【特許請求の範囲】[Claims] 1 エミツタと接地間または電源端子とコレクタ
間に発光ダイオードが挿入されたNPNトランジ
スタを有する発光駆動回路と、非反転入力端子が
接地されると共に反転入力端子が前記発光ダイオ
ードよりの光を受光する受光素子を介して接地さ
れ、かつ前記反転入力端子と出力端子との間にコ
ンデンサと帰還用抵抗との並列回路が接続された
演算増幅器を有する受光検出回路と、前記受光検
出回路の出力端子に低域フイルターを介してベー
スが接続されると共にエミツタが電源端子に接続
され、かつコレクタが前記発光駆動回路のNPN
トランジスタのベースに接続されたPNPトランジ
スタを有する帰還制御回路とを備え、前記受光検
出回路の出力端子より脈波を得ると共に、前記帰
還制御回路を介して前記発光駆動回路の発光出力
を制御することを特徴とした光電脈波検出回路。
1. A light emitting drive circuit including an NPN transistor in which a light emitting diode is inserted between an emitter and ground or between a power supply terminal and a collector, and a light receiving circuit in which a non-inverting input terminal is grounded and an inverting input terminal receives light from the light emitting diode. A light receiving detection circuit includes an operational amplifier that is grounded through an element, and a parallel circuit of a capacitor and a feedback resistor is connected between the inverting input terminal and the output terminal; The base is connected through a range filter, the emitter is connected to the power supply terminal, and the collector is connected to the NPN of the light emission drive circuit.
and a feedback control circuit having a PNP transistor connected to the base of the transistor, and obtaining a pulse wave from the output terminal of the light reception detection circuit and controlling the light emission output of the light emission drive circuit via the feedback control circuit. A photoplethysmogram detection circuit featuring:
JP15820578A 1978-12-21 1978-12-21 Photoelectric pulseewave detecting circuit Granted JPS5584146A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15820578A JPS5584146A (en) 1978-12-21 1978-12-21 Photoelectric pulseewave detecting circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15820578A JPS5584146A (en) 1978-12-21 1978-12-21 Photoelectric pulseewave detecting circuit

Publications (2)

Publication Number Publication Date
JPS5584146A JPS5584146A (en) 1980-06-25
JPS6128334B2 true JPS6128334B2 (en) 1986-06-30

Family

ID=15666572

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15820578A Granted JPS5584146A (en) 1978-12-21 1978-12-21 Photoelectric pulseewave detecting circuit

Country Status (1)

Country Link
JP (1) JPS5584146A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61154639A (en) * 1984-12-28 1986-07-14 カシオ計算機株式会社 Cardiac pulse detection circuit
JPS61196708U (en) * 1985-05-29 1986-12-08
JPH0616752B2 (en) * 1986-02-20 1994-03-09 シャープ株式会社 Blood pressure measurement device
JPS63311930A (en) * 1987-06-12 1988-12-20 Omron Tateisi Electronics Co Digital electronic hemomanometer
JP2020137937A (en) * 2019-03-01 2020-09-03 ソニー株式会社 Blood flow measurement device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53113650U (en) * 1977-02-16 1978-09-09

Also Published As

Publication number Publication date
JPS5584146A (en) 1980-06-25

Similar Documents

Publication Publication Date Title
JPS6128334B2 (en)
JP3192295B2 (en) Optical receiver
JPS61194784A (en) Optical body detecting circuit
JP3992338B2 (en) Proximity detector
JP2841743B2 (en) Light emitting and receiving circuit for optical sensor
JPH026696Y2 (en)
JPH087693Y2 (en) APD bias voltage control circuit
JPS6129728B2 (en)
JP2503421Y2 (en) Photoelectric smoke detector
SU1052216A1 (en) Optronic differential amplifier of electrocardiosignal
JPH0514096A (en) Light receiving amplifier circuit for photoelectric sensor
JPS60230038A (en) Photodetecting circuit of photoelectric analog smoke detector
JPS5912836Y2 (en) Broadband signal output circuit for photodetector
CN113075673A (en) Distance measuring sensor and distance measuring method
JPS6262621A (en) Photoelectric switch
JPH058888B2 (en)
JPH01305326A (en) Circuit for photodetector
SU1509618A1 (en) Optical sensor
JPH0533846B2 (en)
JPH0411394Y2 (en)
JPS5928076B2 (en) Laser diode bias circuit
JPS584265Y2 (en) AM/tuning indicator lighting circuit
JPH0728182B2 (en) Preamplifier
JPH0766638A (en) Initial stage amplifier circuit of amplification detection ic module for photodetecting signal
JPS61193092A (en) Optical detecting circuit