JPS6128294B2 - - Google Patents

Info

Publication number
JPS6128294B2
JPS6128294B2 JP15858078A JP15858078A JPS6128294B2 JP S6128294 B2 JPS6128294 B2 JP S6128294B2 JP 15858078 A JP15858078 A JP 15858078A JP 15858078 A JP15858078 A JP 15858078A JP S6128294 B2 JPS6128294 B2 JP S6128294B2
Authority
JP
Japan
Prior art keywords
reaction
value
reaction rate
difference
test sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15858078A
Other languages
Japanese (ja)
Other versions
JPS5587030A (en
Inventor
Yoshio Matsuoka
Toshuki Sagusa
Takashi Kida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15858078A priority Critical patent/JPS5587030A/en
Publication of JPS5587030A publication Critical patent/JPS5587030A/en
Publication of JPS6128294B2 publication Critical patent/JPS6128294B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/272Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)

Description

【発明の詳細な説明】 本発明は被検試料に試薬を添加し、次第に吸光
度が減少する反応を生ぜしめてその反応の時間的
変化を光学的に測定して上記被検試料中の分析す
べき項目を定量分析する反応速度定方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention involves adding a reagent to a test sample to cause a reaction in which the absorbance gradually decreases, and optically measuring the temporal change in the reaction to analyze the test sample. Concerning methods for determining reaction rates for quantitative analysis of items.

従来の反応速度測定装置においては、反応速度
測定開始点及び測定終了点の吸光度を求めるのに
光透過率100%の基準用セルと試料用セルを用い
ており、基準用セルを光を透過したときの透過光
量と試料用セルを光が透過したときの透過光量と
をそれぞれ求め、反応速度測定開始点及び測定終
了点の吸光度を求めていた。
In conventional reaction rate measurement devices, a reference cell and a sample cell with 100% light transmittance are used to determine the absorbance at the reaction rate measurement start point and measurement end point. The amount of transmitted light at that time and the amount of transmitted light when light transmitted through the sample cell were determined, respectively, and the absorbance at the reaction rate measurement start point and measurement end point was determined.

従来の方法によれば、透過率100%を基準にし
ていたため、時間とともに吸光度が低下する反応
では吸光度の絶対値が大きい場合の小さな変化を
測定することになるから、デイジタルマイクロコ
ンピユータを導入した分析装置で通常の低分解能
のアナログ・デイジタル(AD)変換器を用いる
と、測定誤差が大きくなるという欠点があつた。
According to the conventional method, the transmittance was 100% as the standard, so in a reaction where the absorbance decreases over time, small changes in the absolute value of the absorbance are measured, so analysis using a digital microcomputer is necessary. Using an ordinary low-resolution analog-to-digital (AD) converter in the device had the drawback of increasing measurement errors.

本発明の目的は、分析項目濃度が低い場合であ
つても高精度分析がある反応速度測定方法を提供
することにある。
An object of the present invention is to provide a reaction rate measurement method that allows highly accurate analysis even when the concentration of an analytical item is low.

本発明の特徴は、吸光度が減少する反応の反応
速度から分析項目を定量する方法において、試薬
ブランク液が光度計のフローセルに導入されたと
きに得られる透過光測定値を基準値として記憶
し、被検試料を試薬との反応液がフローセルに導
入されている間に得られる透過光に基づく測定値
と記憶されていた基準値との差を所定時間内に複
数回求め、この基準値と測定値との差の変化に基
づいて反応速度を求めるようにしたことにある。
A feature of the present invention is that in a method for quantifying an analysis item from the reaction rate of a reaction in which absorbance decreases, a transmitted light measurement value obtained when a reagent blank solution is introduced into a flow cell of a photometer is memorized as a reference value, The difference between the measured value based on the transmitted light obtained while the reaction solution of the test sample and the reagent is introduced into the flow cell and the memorized reference value is determined multiple times within a predetermined time, and the difference between this reference value and the measurement value is determined multiple times within a predetermined time. The reason is that the reaction rate is calculated based on the change in the difference between the two values.

従来の方法と本発明に基づく方法を比較するた
めに、第1図および第2図を参照して説明する。
In order to compare the conventional method and the method based on the present invention, a description will be made with reference to FIGS. 1 and 2.

まず、従来は、被検試料を測定するにあたり、
フローセルに水を導入し、このときの透過光測定
値を透過率100%(T100)であるとして基準値にし
ていた。これが第1図の吸光度ゼロに相当する値
X0である。そして測定開始点ではX0と反応液の
測定値A1との差X1を求める。すなわち、 X1=A1−X0 次に、測定終了点では、X0と反応液測定値A2
との差X2を求める。すなわち、 X2=A2−X0 この試料の反応速度は時間間隔(t2−t1)におけ
るX1とX2の差ΔXから求める。ところが実際の
分析操作では、分析装置の処理能率を高める必要
があるため、時間間隔(t2―t1)をそれほど大きく
とれないから、X1とX2の差ΔXは、X1あるいは
X2の値に比べて非常に小さい。つまり従来は大
きな値に対する微小変化を測定することになる。
透過率100%(T100)の大きさは測定値A1に対応
する透過率の大きさの数十倍にもなるので、よほ
ど分解能の高いAD変換器の高いAD変換器を用い
なければ高精度測定ができない。
First, conventionally, when measuring a test sample,
Water was introduced into the flow cell, and the measured value of transmitted light at this time was assumed to be 100% transmittance (T 100 ) and used as a reference value. This value corresponds to zero absorbance in Figure 1.
X is 0 . Then, at the measurement starting point, the difference X 1 between X 0 and the measured value A 1 of the reaction solution is determined. That is, X 1 = A 1 − X 0 Next, at the measurement end point, X 0 and the measured value of the reaction solution A 2
Find the difference X 2 . That is, X 2 =A 2 -X 0The reaction rate of this sample is determined from the difference ΔX between X 1 and X 2 in the time interval (t 2 -t 1 ). However, in actual analysis operations, it is necessary to increase the processing efficiency of the analyzer, so the time interval (t 2 - t 1 ) cannot be made that large, so the difference ΔX between X 1 and X 2 is equal to X 1 or
Very small compared to the value of X 2 . In other words, conventional methods measure minute changes relative to large values.
The transmittance of 100% (T 100 ) is several tens of times larger than the transmittance corresponding to the measured value A 1 , so unless an AD converter with a very high resolution is used, Accuracy cannot be measured.

一方、本発明に基づく方法では、被検試料を測
定するにあたり、光度計のフローセルに試薬ブラ
ンク液を導入する。このときの透過光測定値が第
2図の試薬プランク測定値XBである。このXB
被検試料測定時の基準となる。測定開始点ではX
Bと反応液の測定値A3との差X3を求める。すなわ
ち、 X3=XB−A3 その後の測定終了点では、XBと反応液測定値
A4との差X4を求める。すなわち、 X4=XB−A4 この試料の反応速度は時間間隔(t2―t1)におけ
るX4とX3の差ΔXから求める。この場合、X4
X3の差ΔXは、X4あるいはX3の値に比べると大
きさの違いが小さい。だから、AD変換器で取扱
う吸光度の範囲は狭くて済むので、通常の低分解
能のAD変換器を用いても、高精度測定ができ
る。
On the other hand, in the method based on the present invention, a reagent blank solution is introduced into a flow cell of a photometer when measuring a test sample. The transmitted light measurement value at this time is the reagent Planck measurement value X B shown in FIG. This X B becomes the reference when measuring the test sample. X at the measurement starting point
Find the difference X 3 between B and the measured value A 3 of the reaction solution. That is, X 3 = X B − A 3 At the subsequent measurement end point, X B and the measured value of the reaction solution
Find the difference X 4 from A 4 . That is, X 4 =X B −A 4The reaction rate of this sample is determined from the difference ΔX between X 4 and X 3 in the time interval (t 2 −t 1 ). In this case, X 4 and
The difference in size ΔX between X 3 is smaller than the value of X 4 or X 3 . Therefore, the range of absorbance that can be handled by the AD converter is narrow, so high-precision measurements can be made even with an ordinary low-resolution AD converter.

次に本発明の一実施例を第3図乃至第5図を参
照しながら説明する。第3図は全体構成図、第4
図は第3図におけるセル付近の説明図、第5図は
信号処理系の説明図である。
Next, one embodiment of the present invention will be described with reference to FIGS. 3 to 5. Figure 3 is the overall configuration diagram, Figure 4
This figure is an explanatory diagram of the cell vicinity in FIG. 3, and FIG. 5 is an explanatory diagram of the signal processing system.

サンプラー1で移送されるサンプルカツプ2内
に収容されている被検試料液例えば血精は、ピペ
ツタ3の吸排チユーブ10内に吸入保持され、反
応ライン18上の空の反応カツプ20内に吐出さ
れる。反応カツプ20には続いて試薬液4が注入
される。反応カツプ20は恒温槽21中を反応ラ
イン送り機構19によつて移送される。一定時間
後にデイスペンサ5により別の試薬7が注入され
る。このときから化学反応がはじまる(第1〜2
図のt0に相当する)。続いてカツプ20中の被測
定液はシツパ8によりセル9中に導かれる。セル
9中においても化学反応は進行しておりこの反応
の単位時間当りの変化量が求められる。次にラン
プ11からの光はセル9を透過して光度計12に
入り、この光度計中にある回析格子13で分光さ
れて検知器14に至る。検知器14の出力はプリ
アンプ15を経てデジタル演算処理部(マイクロ
コンピユータ)16に導かれる。デイジタル演算
処理部16で求められた被試料の単位時間当りの
吸光度の変化がプリンタ17により印字される。
23は遮熱フイルタである。
A test sample liquid, such as blood semen, contained in a sample cup 2 transferred by a sampler 1 is sucked and held in a suction/discharge tube 10 of a pipettor 3, and is discharged into an empty reaction cup 20 on a reaction line 18. The reaction cup 20 is then filled with a reagent solution 4. The reaction cup 20 is transferred through a constant temperature bath 21 by a reaction line feed mechanism 19. After a certain period of time, another reagent 7 is injected by the dispenser 5. At this point, the chemical reaction begins (1st to 2nd
(corresponds to t 0 in the figure). Subsequently, the liquid to be measured in the cup 20 is guided into the cell 9 by the sipper 8. A chemical reaction is also progressing in the cell 9, and the amount of change in this reaction per unit time is determined. Next, the light from the lamp 11 passes through the cell 9 and enters the photometer 12, where it is separated by a diffraction grating 13 and reaches a detector 14. The output of the detector 14 is led to a digital processing section (microcomputer) 16 via a preamplifier 15. The change in absorbance of the sample per unit time determined by the digital processing section 16 is printed by the printer 17.
23 is a heat shield filter.

第4図の恒温素子24を備えたセルブロツク2
6にはフローセル9が装着されている。反応ライ
ン18上には試薬ブランク液と試料液とが交互に
並んでいる。
Cell block 2 equipped with constant temperature element 24 shown in Fig. 4
6 is equipped with a flow cell 9. On the reaction line 18, reagent blank solutions and sample solutions are arranged alternately.

ここで第5図により信号処理系について説明す
る。まず測定の開始にあたつては試薬プランク液
がセル9に導かれる。この試薬プランクには前述
の説明のように、反応ラインにより送られる過程
で、試薬が添加されている。ところが試薬ブラン
ク液は試薬のみが存在するだけで化学反応はおき
ていない。このためセル9中の試薬ブランク値を
測定することにより途中で添加された試薬のみの
吸光度を測定することが可能となる。セル9中に
導かれた試薬ブランク液に基づく透過光量はラン
プ11から出た光を検知器14で受けることによ
り測定される。すなわち、検出器14で光信号か
ら電気信号に変換された測定信号に変換された測
定信号はプリアンプ15で増幅されAD変換器2
5に導かれ、デイジタル信号に変換された後、デ
イジタル演算処理部16の中央処理装置27へ取
込まれる。そして中央処理装置27は取り込んだ
試薬ブランクの値を記憶装置28に格納する。
Here, the signal processing system will be explained with reference to FIG. First, at the start of measurement, a reagent Planck's solution is introduced into the cell 9. As explained above, reagents are added to this reagent plank during the process of being sent through the reaction line. However, in a reagent blank solution, only the reagent is present and no chemical reaction occurs. Therefore, by measuring the reagent blank value in the cell 9, it is possible to measure the absorbance of only the reagent added midway. The amount of transmitted light based on the reagent blank liquid introduced into the cell 9 is measured by receiving the light emitted from the lamp 11 with the detector 14. That is, the measurement signal converted from an optical signal to an electrical signal by the detector 14 is amplified by the preamplifier 15 and sent to the AD converter 2.
5, converted into a digital signal, and then taken into the central processing unit 27 of the digital arithmetic processing section 16. The central processing unit 27 then stores the retrieved reagent blank value in the storage device 28.

続いてセル9には被検試料が導かれるが、上述
の試薬プランクと同様にして測定値が中央処理装
置27に取込まれる。ここで先に取り込まれた試
薬ブランク液の透過光量値をXB、後で取込まれ
た被検試料の透過光量値をX3とすると、前述し
た式により試薬ブランク液に対する被検試料の吸
光度を求めることができる。
Subsequently, a test sample is introduced into the cell 9, and the measured value is taken into the central processing unit 27 in the same manner as in the reagent plank described above. Here, if the amount of transmitted light of the reagent blank solution taken first is X B and the amount of transmitted light of the test sample taken later is X 3 , then the absorbance of the test sample with respect to the reagent blank solution is calculated from the above formula. can be found.

また第5図の印字装置17と印字制御装置29
は中央処理装置27で求めた標準試料の吸光度や
標準試料により作成した検量線により求めた未知
試料の濃度を印字するためのものである。更に機
構制御装置30はセルブロツク26を移動させ、
ランプ11の光が検知器14へ入らないようにす
るためのものであり、プリアンプ15及びAD変
換器25といつた純電気系のもつ固有値(いわゆ
るゲタ分)を測定し信号処理の精度を上げるもの
である。第4図および第5図ではセルを1個のみ
示してあるが、このセルは複数個でもよく、これ
らセルを移動することにより上述の説明と同様に
吸光度が測定できる。この場合はセルに被検試料
が注入されてからの時間が長くとれるので試料が
安定するまで待つことができ、より精度の高い測
定ができる。
Also, the printing device 17 and printing control device 29 in FIG.
is for printing the absorbance of the standard sample determined by the central processing unit 27 and the concentration of the unknown sample determined from the calibration curve prepared using the standard sample. Furthermore, the mechanism control device 30 moves the cell block 26,
This is to prevent the light from the lamp 11 from entering the detector 14, and improves the accuracy of signal processing by measuring the eigenvalues (so-called getaways) of pure electrical systems such as the preamplifier 15 and AD converter 25. It is something. Although only one cell is shown in FIGS. 4 and 5, a plurality of cells may be used, and absorbance can be measured in the same manner as described above by moving these cells. In this case, it is possible to take a longer time after the test sample is injected into the cell, so it is possible to wait until the sample is stabilized, and more accurate measurements can be made.

以上説明したように本発明によれば、試料の反
状態が確実にまた容易に判定されるので、信頼性
の高い反応速度測定方法が提供される。
As explained above, according to the present invention, the reverse state of the sample can be determined reliably and easily, so that a highly reliable reaction rate measuring method is provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法の説明図、第2図は本発明
に基づく方法の説明図、第3図は本発明の一実施
例の全体構成を示す図、第4図は第3図実施例の
セル付近の説明図、第5図は第3図の実施例の信
号処理系の説明図である。 9…セル、12…光度計、14…検知器、16
…デイジタル演算処理部、18…反応ライン、2
0…反応カツプ、26…セルブロツク、27……
中央処理装置、28…記憶装置。
Fig. 1 is an explanatory diagram of a conventional method, Fig. 2 is an explanatory diagram of a method based on the present invention, Fig. 3 is a diagram showing the overall configuration of an embodiment of the present invention, and Fig. 4 is an illustration of the embodiment shown in Fig. 3. FIG. 5 is an explanatory diagram of the signal processing system of the embodiment of FIG. 3. 9... Cell, 12... Photometer, 14... Detector, 16
...Digital arithmetic processing unit, 18...Reaction line, 2
0... Reaction cup, 26... Cell block, 27...
central processing unit, 28...storage device;

Claims (1)

【特許請求の範囲】[Claims] 1 被検試料に試薬を添加してこれらが混合され
た反応液の吸光度が時間とともに減少する反応を
生ぜしめ、所定時間内の反応液の吸光量の変化か
ら反応速度を求め、上記被検試料について分析項
目を定量分析する反応速度測定方法において、試
薬ブランク液が光度計のフローセルに導入された
ときに得られる透過光測を基準値として反応速度
測定装置の記憶部に記憶し、被検試料と試薬との
反応液が上記フローセルに導入されている間に得
られる透過光に基づく測定値と記憶されていた上
記基準値との差を所定時間内に複数回求め、上記
基準値と上記測定値との差の変化に基づいて反応
速度を求めることを特徴とする反応速度測定方
法。
1 Add reagents to the test sample to cause a reaction in which the absorbance of the reaction solution in which they are mixed decreases over time, determine the reaction rate from the change in the amount of absorbance of the reaction solution within a predetermined time, and calculate the reaction rate of the test sample. In a reaction rate measurement method for quantitatively analyzing analysis items for a test sample, the transmitted light measurement obtained when a reagent blank solution is introduced into the flow cell of a photometer is stored as a reference value in the memory of the reaction rate measurement device, and The difference between the measured value based on the transmitted light obtained while the reaction solution of and the reagent is introduced into the flow cell and the stored reference value is determined multiple times within a predetermined time, and the difference between the reference value and the measurement value is calculated multiple times within a predetermined time. A reaction rate measurement method characterized by determining the reaction rate based on a change in the difference between the value and the value.
JP15858078A 1978-12-25 1978-12-25 Reaction rate measuring instrument Granted JPS5587030A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15858078A JPS5587030A (en) 1978-12-25 1978-12-25 Reaction rate measuring instrument

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15858078A JPS5587030A (en) 1978-12-25 1978-12-25 Reaction rate measuring instrument

Publications (2)

Publication Number Publication Date
JPS5587030A JPS5587030A (en) 1980-07-01
JPS6128294B2 true JPS6128294B2 (en) 1986-06-30

Family

ID=15674785

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15858078A Granted JPS5587030A (en) 1978-12-25 1978-12-25 Reaction rate measuring instrument

Country Status (1)

Country Link
JP (1) JPS5587030A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5772047A (en) * 1980-10-24 1982-05-06 Olympus Optical Co Ltd Component analyzing method
JP7278513B1 (en) * 2023-01-18 2023-05-19 愛心 福永 Method for quantifying amino acids using ninhydrin kinetics

Also Published As

Publication number Publication date
JPS5587030A (en) 1980-07-01

Similar Documents

Publication Publication Date Title
US5230863A (en) Method of calibrating an automatic chemical analyzer
US4549809A (en) Method for photometric measurement of light absorption of liquid samples in cuvettes
US5061639A (en) Liquid dispenser accuracy verification method
CN102216784B (en) Automatic analysis device
JPH0134337B2 (en)
JPH0224337B2 (en)
EP0628157A1 (en) Pipette calibration system
US11353470B2 (en) Spectral-potentiometric-thermometric multi-dimensional titration analysis instrument and use method thereof
EP0087466A1 (en) Method and apparatus for detecting sample fluid.
EP1826571B1 (en) Determining useful life of a fluid using inventory information
JP5835924B2 (en) Automatic analyzer verification method
JPH0433386B2 (en)
JPS6128294B2 (en)
Crouch et al. Automated stopped-flow systems for fast reaction-rate methods
EP2103923B1 (en) Automatic analyzer and analysis system using photomultiplier tube
US4255788A (en) Phasing detector for continuous flow systems
JPH0134335B2 (en)
JPH04204378A (en) Immune reaction automatic analyzer
Zhirkov et al. A microplasma analyzer for the determination of alkali and alkaline-earth metals in small volumes of samples of complex phase composition
JPH01284758A (en) Automatic chemical analysis apparatus
JPS62226059A (en) Automatic chemical analyzer
JPS6140569A (en) Automatic analyzer
JPS59107223A (en) Spectrochemical analyzer
JPS55106360A (en) Automatic chemical analyzer
JPS62226038A (en) Photometer