JPS6128289B2 - - Google Patents

Info

Publication number
JPS6128289B2
JPS6128289B2 JP54168858A JP16885879A JPS6128289B2 JP S6128289 B2 JPS6128289 B2 JP S6128289B2 JP 54168858 A JP54168858 A JP 54168858A JP 16885879 A JP16885879 A JP 16885879A JP S6128289 B2 JPS6128289 B2 JP S6128289B2
Authority
JP
Japan
Prior art keywords
optical fiber
temperature
light
ferroelectric material
detection device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54168858A
Other languages
Japanese (ja)
Other versions
JPS5690227A (en
Inventor
Takashi Tsutsuizumi
Takeshige Ichida
Katsuyuki Fujito
Koji Nitsuta
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16885879A priority Critical patent/JPS5690227A/en
Publication of JPS5690227A publication Critical patent/JPS5690227A/en
Publication of JPS6128289B2 publication Critical patent/JPS6128289B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【発明の詳細な説明】 本発明は光フアイバによつて遠隔地における温
度を検出する装置に関し、特に温度の被測定点に
おいて電源をはじめあらゆる電気的要素及び発光
源を導入することなく測定情報を光学的に報知せ
しめる手段を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a device for detecting temperature at a remote location using an optical fiber, and in particular, to a device for detecting temperature at a remote location by using an optical fiber, and in particular, it is capable of detecting measurement information without introducing a power source or any other electric elements or light source at a temperature measurement point. This provides a means for optically reporting.

例えば、各種電気器具をはじめ各種装置の温度
や、建築物の屋内の各室の温度を電気又は光のア
クテイブ素子を用いることなく検出し、遠隔地に
絶縁性情報媒体としての光フアイバにより検出し
た状態を伝達する場合等に有効な光フアイバ温度
検出装置を提供するものである。
For example, the temperature of various devices such as electrical appliances and the temperature of each indoor room of a building can be detected without using electrical or optical active elements, and can be detected remotely using optical fiber as an insulating information medium. The present invention provides an optical fiber temperature detection device that is effective when transmitting status.

遠隔地の温度検出する手段として、まず温度検
出素子として被測定点にサーミスタや、バイメタ
ルなど温度変化により電気抵抗の変化する素子や
機械的状態の変化する部品を用いたり、信号伝達
手段として、これらの素子の特性・状態変化を電
流あるいは電圧変化として伝達する電気導体線を
用いていた。このような手段によれば、被測定部
が爆発の危険性の大なる材料があるとか、電源の
得にくい場所であることによる不都合さや、さら
に信号伝送用の電線の他の電気線との絶縁性、誘
導障害などに対する安全策を必要とするなど各種
難点があつた。そこでこれらの課題を解決するた
めに液晶とそれに印加する電池を真空に気密封じ
したカプセルからなる感温ヘツドと内部の液晶に
光フアイバの一方の端面を取付けこのフアイバの
他の面から光を送り、液晶での反射光を検出して
温度を測定する手段が考えられている。
As a means of detecting temperature at a remote location, first, a thermistor or an element whose electrical resistance changes depending on temperature changes, such as a bimetal, or a component whose mechanical state changes depending on temperature changes is used as a temperature detection element at the point to be measured, or as a means of signal transmission. Electrical conductor wires were used to transmit changes in the characteristics and state of elements as current or voltage changes. With such methods, there are inconveniences due to the fact that the part to be measured contains materials with a high risk of explosion or is located in a place where it is difficult to obtain a power source, and there are also problems with the insulation of the signal transmission wire from other electric wires. There were various drawbacks, such as the need for safety measures against problems such as safety and induction hazards. In order to solve these problems, we installed a temperature-sensitive head consisting of a capsule in which a liquid crystal and a battery to apply voltage to it are hermetically sealed in a vacuum, and attached one end of an optical fiber to the internal liquid crystal, sending light from the other side of the fiber. , Means for measuring temperature by detecting light reflected by liquid crystals has been considered.

しかし液晶を用いたものでは通常は高温には制
限がありせいぜい60℃程度、また低温では0℃近
辺までであり温度検出範囲が狭いという難点があ
る。かかる点から検出する温度範囲が広くかつそ
れを実現するために光量を効率よく結合でき、し
かも簡単な構成の装置が望まれていた。本発明は
かかる従来の課題を解決したものである。以下に
図面にもとづいて本発明の実施例を説明する。
However, devices using liquid crystals usually have a high temperature limit of around 60 degrees Celsius at most, and a low temperature limit of around 0 degrees Celsius, which has the disadvantage of a narrow temperature detection range. From this point of view, there has been a desire for a device that can detect a wide temperature range, can efficiently combine the amount of light to achieve this, and has a simple configuration. The present invention solves these conventional problems. Embodiments of the present invention will be described below based on the drawings.

第1図は本発明の一実施例を示す構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

1は発光素子、2a,2bは光フアイバ、3は
光フアイバから出ていく光線、4はハーフミラ
ー、5は集束形レンズで光線の波長をλとする
と、1/4(2m+1)λの長さを有している。6は強 誘電体材料、7は光フアイバ2bを通して強誘電
体材料6における反射光がハーフミラー4で分岐
された光、8は受光素子である。
1 is a light emitting element, 2a and 2b are optical fibers, 3 is a ray of light coming out of the optical fiber, 4 is a half mirror, and 5 is a converging lens, which has a length of 1/4 (2 m + 1) λ, where the wavelength of the light ray is λ. It has a certain quality. Reference numeral 6 indicates a ferroelectric material, 7 indicates light that is reflected by the ferroelectric material 6 and is split by the half mirror 4 through the optical fiber 2b, and 8 indicates a light receiving element.

また第2図の実施例に用いる強誘電体材料の温
度Tと、反射率Rと関係の特性を第2図に示す。
Further, FIG. 2 shows the relationship between temperature T and reflectance R of the ferroelectric material used in the embodiment shown in FIG.

次に第1図と第2図にもとづいて動作を説明す
る。発光素子1から光フアイバ2aに入射した光
3はハーフミラー4、光フアイバ2b、集束形レ
ンズ5を経てここで光3が広げられ、略平行光線
となつて強誘電体材料6に到達する。強誘電体材
料6の部分の温度が第2図に示すT1より低い範
囲では、この到達した光が多く反射され、この光
は集束形レンズ5、フアイバ2bを経て、ハーフ
ミラー4で分岐された成分7が受光素子8に導か
れる。一方強誘電体材料6の部分の温度がT1
り大きくなると、強誘電体材料6での光の反射が
大巾に小さくなり、したがつてハーフミラー4で
分岐さる光7の成分、すなわち受光素子8へ導か
れる光量も大巾に少なくなる。したがつて反射量
の変移点温度T1を境にして、受光素子8に導か
れてくる光量の変化が大きく、T1の温度を検出
することができる。
Next, the operation will be explained based on FIGS. 1 and 2. The light 3 entering the optical fiber 2a from the light emitting element 1 passes through the half mirror 4, the optical fiber 2b, and the converging lens 5, where the light 3 is expanded and reaches the ferroelectric material 6 as substantially parallel light rays. In a range where the temperature of the ferroelectric material 6 is lower than T 1 shown in FIG. The component 7 is guided to the light receiving element 8. On the other hand, when the temperature of the ferroelectric material 6 becomes higher than T1 , the reflection of light on the ferroelectric material 6 becomes significantly smaller, and therefore the component of the light 7 split by the half mirror 4, that is, the received light The amount of light guided to the element 8 is also greatly reduced. Therefore, the amount of light guided to the light-receiving element 8 changes greatly after the transition point temperature T 1 of the amount of reflection, and the temperature at T 1 can be detected.

なおここに用いた強誘電体材料6としては、金
属酸化物で、例えばBa(1-x)Sr(x)TiO3であり、
xの値により120℃〜−80℃の範囲にわたりT1
温度を任意に変化させることができる。この強誘
電体材料はT1より低い温度範囲では誘電率が非
常に大きくT1ではさらに大きな値となつた後、
T1を超えると誘電率が極めて小さな値に急峻に
低下する特性を有する。この強誘電体材料の表面
反射率でいえば温度がT1より低い範囲ではほぼ
同じ値の高い反射率で、T1より高い範囲では逆
に低い反射率となる。前記第2図はこの特性をモ
デル的に示したものである。
The ferroelectric material 6 used here is a metal oxide, such as Ba (1-x) Sr (x) TiO 3 ,
The temperature of T 1 can be arbitrarily changed over the range of 120°C to -80°C depending on the value of x. This ferroelectric material has a very large dielectric constant in the temperature range below T 1 , and after reaching an even larger value at T 1 ,
It has the characteristic that when T 1 is exceeded, the dielectric constant drops sharply to an extremely small value. In terms of the surface reflectance of this ferroelectric material, in the range where the temperature is lower than T 1 , the reflectance is almost the same and high, and in the range where the temperature is higher than T 1 , the reflectance is low. The above-mentioned FIG. 2 shows this characteristic as a model.

第1図の構成では発光素子1や受光素子8から
離れた位置において、電気的な部品や、光源を用
いることなく、その位置での温度に感応し、しか
も受光素子側にその情報を伝達することができる
ので、伝送媒体として電気絶縁物である光フアイ
バを用いていることとあわせると温度感応部がパ
ツシブ素子で簡単になると共に、伝送路も含めて
電気絶縁の必要もなく電気誘導障害の発生もない
大きな利点を有している。
In the configuration shown in FIG. 1, at a position away from the light emitting element 1 and the light receiving element 8, the temperature at that position is sensed without using any electrical parts or light sources, and the information is transmitted to the light receiving element. Therefore, when combined with the use of optical fiber, which is an electrical insulator, as the transmission medium, the temperature sensitive part can be made simple with a passive element, and there is no need for electrical insulation including the transmission line, eliminating the possibility of electrical induction interference. It has the great advantage of no generation.

第3図は他の実施例を示す構成図である。この
実施例は3カ所の異なつた遠隔地201,20
2,203の温度を1カ所101で検出しようと
するものである。発光素子1は3つの光フアイバ
21a,22a,23aに共通に設けられてお
り、それぞれの光31,32,33がハーフミラ
ー41,42,43を介して光フアイバ21b,
22b,23bを通つて強誘電体材料61,6
2,63の設けられた集束形レンズ51,52,
53に導かれている。それぞれの強誘電体材料6
1,62,63からの反射光はハーフミラー4
1,42,43での分岐光71,72,73で受
光素子81,82,83にそれぞれ個別に導かれ
る。
FIG. 3 is a configuration diagram showing another embodiment. This example uses three different remote locations 201, 20.
2,203 temperatures are to be detected at one location 101. The light emitting element 1 is commonly provided to three optical fibers 21a, 22a, 23a, and the respective lights 31, 32, 33 are transmitted to the optical fibers 21b, 21b, 23a via half mirrors 41, 42, 43, respectively.
Ferroelectric materials 61, 6 pass through 22b, 23b
2,63 convergent lenses 51, 52,
Guided by 53. Each ferroelectric material 6
The reflected light from 1, 62, 63 is half mirror 4
The branched lights 71, 72, 73 at 1, 42, 43 are individually guided to light receiving elements 81, 82, 83, respectively.

この実施例では家屋とかビルなどの建物の内部
の各部屋、装置類の温度を遠方より集中的に検出
することができる。温度を測定する場所には第1
の実施例同様単に光フアイバ線を配線するのみで
よい。この構成によつて各部屋、装置類の火災等
の異常温度状態等も1カ所で検出することができ
る。
In this embodiment, the temperature of each room and devices inside a building such as a house or building can be centrally detected from a distance. The first place is where the temperature is measured.
As in the embodiment, it is sufficient to simply wire the optical fiber lines. With this configuration, abnormal temperature conditions such as fire in each room or equipment can be detected at one location.

第4図はさらに別の実施例の構成を示すもので
ある。本実施例は基本的には第1図に示した実施
例と同一であるが強誘電体材料6として反射率の
変化を生じる温度がT1,T2,T3とそれぞれ異な
る3つの強誘電体材料601,602,603か
らなつている。各温度T1,T2,T3に対するこの
複合強誘電体材料の総合的な反射率の特制は第5
図に示すように、例えば温度がT1より低い範囲
では強誘電体材料601,602,603の全て
が反射量の大きい状態になつている。一方例えば
温度がT2−T3の間の範囲になれば強誘電体材料
601,602での反射量が大巾に低下し強誘電
体材料603のみが大きな反射量を示す状態にな
つている。以下同様にして受光素子8で受ける反
射による光は温度の状態によつて異なる量となる
ので温度検出が可能となる。この実施例では、例
えば機器、装置の安全温度と高低の異常温度など
の複数の温度限界値を検出するのに用いることが
可能である。
FIG. 4 shows the configuration of yet another embodiment. This example is basically the same as the example shown in FIG . It is made up of body materials 601, 602, and 603. The specific characteristics of the overall reflectance of this composite ferroelectric material for each temperature T 1 , T 2 , and T 3 are as follows:
As shown in the figure, for example, in a temperature range lower than T1 , all of the ferroelectric materials 601, 602, and 603 are in a state where the amount of reflection is large. On the other hand, for example, when the temperature falls within the range between T 2 and T 3 , the amount of reflection from the ferroelectric materials 601 and 602 decreases significantly, and only the ferroelectric material 603 exhibits a large amount of reflection. . Similarly, since the amount of reflected light received by the light receiving element 8 varies depending on the temperature state, temperature detection is possible. This embodiment can be used to detect a plurality of temperature limit values, such as the safe temperature and high and low abnormal temperatures of equipment and equipment, for example.

さらに第4図の実施例で変移温度のそれぞれ異
なる強誘電体材料の数を増すことにより多く温度
値の検出あるいは連結段階的な温度検出が可能と
なる。また、第4図では強誘電体材料601,6
02,603の配列を中心軸を起点にして3分割
にしているが、同心円状に3分割してもよく、ま
た任意の形(四角形等)で分割してもよい。
Furthermore, by increasing the number of ferroelectric materials having different transition temperatures in the embodiment shown in FIG. 4, it becomes possible to detect a larger number of temperature values or to detect temperatures in a connected stepwise manner. In addition, in FIG. 4, ferroelectric materials 601, 6
Although the arrangement of 02 and 603 is divided into three with the central axis as the starting point, it may be divided into three concentrically or in any arbitrary shape (such as a rectangle).

なお強誘電体材料を集束形レンズ端面に配列す
る手段としては、強誘電体材料を蒸着法によつ
て、また強誘電体材料片をあらかじめ構成して集
束形レンズに接着等により接合してもよい。
Note that the ferroelectric material can be arranged on the end face of the focusing lens by vapor deposition, or by forming pieces of ferroelectric material in advance and bonding them to the focusing lens by adhesive or the like. good.

さらに集束形レンズを光フアイバ端面に設け、
その集束形レンズの端面に強誘電体材料を配置し
たもので説明したが、集束形レンズを用いずに、
光フアイバの端面に直接強誘電体材料を配置して
もよい。
Furthermore, a focusing lens is provided on the end face of the optical fiber,
The explanation was given by placing a ferroelectric material on the end face of the converging lens, but it is possible to
The ferroelectric material may be placed directly on the end face of the optical fiber.

上記実施例からも明らかなように、本発明によ
れば、温度の被測定点において光源とか電池など
の電気的部品を必要とせず、温度反応部が金属酸
化物の強誘電体を用いていることから範囲の広い
温度検出が可能となり、これらは光のパツシグ材
料でできており、真空気密封じなどを必要とせ
ず、簡単な構成で温度の情報を得るとともに、光
線の結合も集束形レンズを用いて効率よく行え、
さらに複数固の強誘電体材料を組み合せることに
より精密な温度検出ができ、遠隔地にこの情報を
伝達することが可能である。また、複数カ所の被
測定点に対して1カ所で集中的に温度検出がで
き、その伝送線の配線も簡単である。さらに情報
伝送媒体、温度反応する部分それぞれが光学材料
でできており電気絶縁、電気誘導障害の危険がな
く、また爆発性の材料を伴なつた場所でも安全に
使用できる等、非常に適用範囲が広く安全性に優
れた光フアイバ温度検出装置を提供できるもので
ある。
As is clear from the above embodiments, according to the present invention, there is no need for electrical components such as a light source or a battery at the temperature measurement point, and the temperature reaction section uses a ferroelectric material made of metal oxide. This makes it possible to detect temperature over a wide range.These devices are made of optical optical materials, do not require vacuum sealing, and can obtain temperature information with a simple configuration. It can be done efficiently using
Furthermore, by combining multiple solid ferroelectric materials, precise temperature detection can be achieved and this information can be transmitted to remote locations. Furthermore, temperature can be centrally detected at one location for a plurality of measurement points, and the wiring of the transmission line is simple. Furthermore, the information transmission medium and the temperature-sensitive parts are made of optical materials, so there is no risk of electrical insulation or electrical induction damage, and it can be used safely even in locations with explosive materials, making it extremely applicable. It is possible to provide an optical fiber temperature detection device that is widely used and has excellent safety.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す構成図、第2
図は同実施例に用いる強誘電体材料の温度−反射
率特性図、第3図は本発明の他の実施例を示す構
成図、第4図は本発明の更に他の実施例を示す構
成図、第5図は第4図の実施例に用いる強誘電体
材料の温度−反射率特性図である。 1……発光素子、2a,2b……光フアイバ、
4……ハーフミラー、5……集束形レンズ、6…
…強誘電体材料、8……受光素子。
FIG. 1 is a configuration diagram showing one embodiment of the present invention, and FIG.
The figure is a temperature-reflectance characteristic diagram of the ferroelectric material used in the same embodiment, FIG. 3 is a configuration diagram showing another embodiment of the present invention, and FIG. 4 is a configuration diagram showing still another embodiment of the present invention. 5 is a temperature-reflectance characteristic diagram of the ferroelectric material used in the embodiment of FIG. 4. 1... Light emitting element, 2a, 2b... Optical fiber,
4... Half mirror, 5... Converging lens, 6...
...Ferroelectric material, 8... Light receiving element.

Claims (1)

【特許請求の範囲】 1 光フアイバの一方の端面側に温度に依存して
反射率が変化する材料を設け、前記光フアイバの
他の端面から入射した光のうち、前記温度に依存
して反射率が変化する材料により反射された反射
光を、前記他の端面部で抽出する光フアイバ温度
検出手段において、前記光フアイバの一方の端面
に、該光フアイバより径が大きい集束形レンズを
同軸状に光結合せしめ、該集束形レンズの長さを
該レンズの光路周期の1/4(2m+1)倍〔m:整 数〕に選ぶとともに、該集束形レンズの前記の光
フアイバと光結合していない他の面に強誘電体材
料を配置したことを特徴とした光フアイバ温度検
出装置。 2 特許請求の範囲第1項に記載の光フアイバ温
度検出装置において、集束形レンズの光フアイバ
と結合していない他の面に、反射率の変化が生じ
る温度が異なる複数の強誘電体材料を配置したこ
とを特徴とした光フアイバ温度検出装置。 3 特許請求の範囲第1項に記載の光フアイバ温
度検出装置において、一方の端面に強誘電体材料
を配置した複数本の光フアイバをそれぞれ異なる
温度被測定場所に配置するとともに、該光フアイ
バ群の他端から共通の発光素子により光を入射せ
しめるとともに、該他端から前記強誘電体材料部
からの反射光を各々独立に抽出することを特徴と
した光フアイバ温度検出装置。
[Scope of Claims] 1. A material whose reflectance changes depending on the temperature is provided on one end face of the optical fiber, and the light incident from the other end face of the optical fiber is reflected depending on the temperature. In the optical fiber temperature detecting means for extracting the reflected light reflected by the material whose coefficient changes at the other end face portion, a converging lens having a diameter larger than that of the optical fiber is coaxially arranged on one end face of the optical fiber. The length of the converging lens is selected to be 1/4 (2 m + 1) times the optical path period of the lens [m: an integer], and the converging lens is not optically coupled to the optical fiber of the converging lens. An optical fiber temperature detection device characterized by having a ferroelectric material arranged on the other surface. 2. In the optical fiber temperature detection device according to claim 1, a plurality of ferroelectric materials having different temperatures at which changes in reflectance occur are applied to the other surface of the focusing lens that is not coupled to the optical fiber. An optical fiber temperature detection device characterized by the fact that: 3. In the optical fiber temperature detection device according to claim 1, a plurality of optical fibers each having a ferroelectric material arranged on one end face are arranged at different temperature measurement locations, and the optical fiber group An optical fiber temperature detection device characterized in that light is incident from the other end by a common light emitting element, and reflected light from the ferroelectric material portion is independently extracted from the other end.
JP16885879A 1979-12-24 1979-12-24 Optical fiber temperature detector Granted JPS5690227A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16885879A JPS5690227A (en) 1979-12-24 1979-12-24 Optical fiber temperature detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16885879A JPS5690227A (en) 1979-12-24 1979-12-24 Optical fiber temperature detector

Publications (2)

Publication Number Publication Date
JPS5690227A JPS5690227A (en) 1981-07-22
JPS6128289B2 true JPS6128289B2 (en) 1986-06-30

Family

ID=15875857

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16885879A Granted JPS5690227A (en) 1979-12-24 1979-12-24 Optical fiber temperature detector

Country Status (1)

Country Link
JP (1) JPS5690227A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332497U (en) * 1986-08-18 1988-03-02
JPH0878147A (en) * 1994-09-05 1996-03-22 Daihan:Kk Electromagnetic type cooker

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166132A (en) * 1984-09-10 1986-04-04 Agency Of Ind Science & Technol Temperature sensor using optical fiber
US4988212A (en) * 1985-10-25 1991-01-29 Luxtron Corporation Fiberoptic sensing of temperature and/or other physical parameters

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6332497U (en) * 1986-08-18 1988-03-02
JPH0878147A (en) * 1994-09-05 1996-03-22 Daihan:Kk Electromagnetic type cooker

Also Published As

Publication number Publication date
JPS5690227A (en) 1981-07-22

Similar Documents

Publication Publication Date Title
EP0693683B1 (en) Selective infrared detector
US4307607A (en) Temperature sensing arrangement and method
JPH09507299A (en) Non-contact active temperature sensor
JPH02234006A (en) Measuring apparatus having light waveguide-deflection sensor for monitoring bridge construction section
US4775211A (en) Detachable connection between a light-guide fiber and a laser
JPS61275627A (en) Measuring device for temperature of optical fiber
CN106989843A (en) A kind of distributed multi-channel fiber Raman ultralow temperature measuring system
JPS6128289B2 (en)
CN203480076U (en) MEMS Fabry-Perot cavity tunable filter
GB2110390A (en) Optical apparatus for interrogation of the status of a switch
CN106168511A (en) A kind of high tension cable connect-disconnect plug with temp sensing function
CN1971225A (en) High-capacity optical fiber grating temperature-measuring system
CN108088584A (en) Reflection-type optical fiber temperature sensor and preparation method thereof
CN207751606U (en) Reflection-type optical fiber temperature sensor
JPS5973812A (en) Power cable and its defect detector
US4540293A (en) Dielectric heat sensor
US6980708B2 (en) Device for fibre optic temperature measurement with an optical fibre
CN209310943U (en) Temperature jump fiber switch and Temperature jump fiber switch system
US6531699B1 (en) Heat detector with a limited angle of vision
JPS6277027A (en) Method and apparatus for remotely detecting and monitoring high voltage facility operating state without contact
KR102462081B1 (en) Temperature monitoring system for electrical equipment using temperature sensor of fiber optic probe type
JPS61213738A (en) Optical fiber temperature measuring sensor
CN214667293U (en) Thermopile chip, thermopile infrared sensor and temperature measurement gun
JPS6326607B2 (en)
CN211824802U (en) High-voltage-resistant anti-electromagnetic interference temperature sensor