JPS61282214A - Vibrating type parts feeder - Google Patents
Vibrating type parts feederInfo
- Publication number
- JPS61282214A JPS61282214A JP14374486A JP14374486A JPS61282214A JP S61282214 A JPS61282214 A JP S61282214A JP 14374486 A JP14374486 A JP 14374486A JP 14374486 A JP14374486 A JP 14374486A JP S61282214 A JPS61282214 A JP S61282214A
- Authority
- JP
- Japan
- Prior art keywords
- vibration
- troughs
- spring
- base
- parts
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Jigging Conveyors (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は振動によ少部品を移送し後続の工程に供給する
振動部品供給装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a vibrating parts supply device that transports small parts by vibration and supplies them to a subsequent process.
最近、↓、エアパーツフィーダと呼ばれるl々の振動部
品供給装置が開発されている。この代表的な装置の原理
を示せば第1図のようになるが、図において部品返還用
トラフ(1)は直線的に延び、矢印で示す方向に部品を
移送させるよりに振動する。Recently, a number of vibrating parts feeding devices called air parts feeders have been developed. The principle of this typical device is shown in FIG. 1, in which a parts return trough (1) extends linearly and vibrates rather than transporting parts in the direction indicated by the arrow.
また供給トラフ(2)は返還トラフ(1)とわずかな隙
間をおいて直線的に延び、矢印で示すように部品全返還
トラフ(1)とは逆方向に移送させるように振動する。Further, the supply trough (2) extends linearly with a slight gap from the return trough (1), and vibrates so as to transport the parts in the opposite direction to the return trough (1) as shown by the arrow.
供給トラフ(2)の部品は返還トラフ(1)に移行する
が、この返還トラフ(1)に一体的に設けられた部品整
送部(3)により所望の姿勢に矯正され、排出部(4)
よ)−個宛、後続の工程に供給される。矯正されなかっ
た部品及びオーバ7 o −した部品は返還トラフ(1
)から再び供給トラフ(2)に戻される。このようにし
て部品は所望の姿勢に矯正されるまで供給トラフ(2)
及び返還トラフ(1)全循環するのであるが、従来、こ
のような装置を設置する台への防振に問題があった。The parts in the supply trough (2) are transferred to the return trough (1), where they are corrected to a desired posture by the parts rearranging section (3) provided integrally with this return trough (1), and then transferred to the discharge section (4). )
y) - is supplied to the subsequent process. Parts that have not been corrected and parts that have exceeded 7 o - are returned to the return trough (1
) and returned to the supply trough (2) again. In this way the parts are placed in the supply trough (2) until they are corrected to the desired position.
and the return trough (1).However, conventionally, there has been a problem in providing vibration isolation to the platform on which such equipment is installed.
第2図に第1図の装置の側面図であるが、返還トラフ(
1)及び供給トラフ(2)はそれぞれ前後一対の板ばね
(6)及び(7)により、駆動ばね支持部(8)と結合
されている。板ばね(6)及び(7)は図示するように
相反する方向に傾斜しておシ、図示しない電磁石駆動部
により逆位相の加振力を受け、供給トラフ(2ンは矢印
aで示す方向に、返還トラフ(1)は矢印すで示す方向
に振動する。この振動力はばね(6) (7) を介し
てばね支持部(8)に反力として矢印C及びdで示すよ
うに伝達される。もし、返還トラフ(1)と供給トップ
(2)の振巾が同一であれば、ばね(6)により加えら
れる反力Cと、ばね(7)により加えられる反力dとに
水平成分において打ち消し合うが、垂直成分は相互に加
算されることになる。従って、第2図に示すようにばね
支持部(8)上載置させている設置台(9)にはこの垂
直成分反力が亘接加わシ、周囲に種々の厄介な問題を引
き起す。例えば、このようなリニアパーツフィーダは数
台もしくは数十台を狭い間隔で並列に同じ設置台(9)
に配置することが多いが、以上のような反力が大きいと
相互に隣のリニアパーツフィーダに振動力として伝達さ
れ、特に返還トラフ(1)と一体的な部品整送部(3)
における部品の流れに乱れが生ずることにな少部品整送
効率を低下させることになる。FIG. 2 is a side view of the device shown in FIG.
1) and the supply trough (2) are connected to a drive spring support part (8) by a pair of front and rear leaf springs (6) and (7), respectively. The leaf springs (6) and (7) are tilted in opposite directions as shown in the figure, and are subjected to an excitation force of opposite phase by an electromagnetic drive unit (not shown), and the supply trough (2) is tilted in the direction indicated by arrow a. , the return trough (1) vibrates in the direction shown by the arrow.This vibration force is transmitted as a reaction force to the spring support (8) via the springs (6) and (7) as shown by arrows C and d. If the amplitudes of the return trough (1) and the supply top (2) are the same, then the reaction force C applied by the spring (6) and the reaction force d applied by the spring (7) are horizontal. The components cancel each other out, but the vertical components add up to each other.Therefore, as shown in Figure 2, this vertical component reaction force is applied to the installation stand (9) placed on the spring support (8). If the parts are joined together, it causes various troublesome problems for the surrounding area.For example, several or even dozens of such linear parts feeders are placed in parallel at close intervals on the same installation stand (9).
However, if the reaction force as described above is large, it will be transmitted as vibration force to the adjacent linear parts feeders, especially the return trough (1) and the integrated parts feeding section (3).
Disturbances occur in the flow of parts in the process, which reduces the efficiency of sorting small parts.
以上のような問題を解決するために、従来に第3図に示
すような防振構造が取られている。なお、第1図及び第
2図に対応する部分についてに同一の符号を付すものと
する。すなわち、駆動ばね支持部(8)に更にウェイ)
(10が固定され、装置全体は防振用コイルスプリン
グ(6)で設置台(9)上に支持される。このような構
造によって確かに防振効果は得られるが、装置全体の高
さが大きくなるという難点がある。防振理論から明らか
なように、防振効果、すなわち設置台(9)への上述の
反力の伝達率を小さくするためにはウェイト(2)の質
量金できるだけ大きくするか、コイルスプリングOηの
ばね常数をできるだけ小さくする必要がある。ウェイト
(2)の質量を大きくするためには、その高さを増すか
わシに平面的に見た面積を大きくすることも考えられる
が、一般に設置台(9)の設置面′!Rは限られている
ので好ましくない。他方、コイルスプリング甚のばね常
数を小さくするためには、その高さを大きくしなければ
ならず、また余夛その高さを大きくすることは装置の支
持の安定性゛から好ましくない。In order to solve the above problems, a vibration isolation structure as shown in FIG. 3 has conventionally been adopted. Note that parts corresponding to FIGS. 1 and 2 are given the same reference numerals. In other words, the drive spring support part (8) is further
(10 is fixed, and the entire device is supported on the installation stand (9) by a vibration-isolating coil spring (6). Although such a structure certainly provides a vibration-proofing effect, the height of the entire device is As is clear from the vibration isolation theory, in order to reduce the vibration isolation effect, that is, the transmission rate of the above-mentioned reaction force to the installation base (9), the mass of the weight (2) must be as large as possible. Or, it is necessary to make the spring constant of the coil spring Oη as small as possible.In order to increase the mass of the weight (2), it is also possible to increase its area when viewed from above in addition to increasing its height. However, the installation surface '!R of the installation stand (9) is generally limited, which is undesirable.On the other hand, in order to reduce the spring constant of the coil spring, its height must be increased. Furthermore, increasing the height is not preferable from the standpoint of supporting stability of the device.
結局、第3図に示す従来の防振構造では装置全体の高さ
が大きくなって、全体として不安定であるばか9か1部
品供給口、すなわち排出部(4)の排出端の高さが大き
くなって、後続工程に種々の制約を刀りえることになる
。In the end, with the conventional vibration-proof structure shown in Fig. 3, the height of the entire device increases and the height of the part supply port, that is, the discharge end of the discharge section (4), becomes unstable. As the size increases, various restrictions can be imposed on subsequent processes.
本発明は上述の点に鑑みてなされ、装置全体の、高さを
殆んど増すことなく充分な防振効果を発揮することので
きる振動部品供給装置を提供することを目的とする。The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a vibrating component supply device that can exhibit a sufficient vibration damping effect without substantially increasing the height of the entire device.
この目的は本発明によれば、少なくとも2つのトラフ;
これら2つのトラフt−逆位相で加振する加振部;駆動
ばね支持部;前記2つのトラフ全それぞれ前記駆動ばね
支持部に、前記2つのトラフが前記カロ振部の加振力ヲ
受は部品全相互に逆方向に移送するように結合する駆動
ばね:を備えた振動部品供給装置において、前記駆動ば
ね支持部を基台と板ばねにより結合し次ことを特徴とす
る振動部品供給装置、によって達成される。This purpose is achieved according to the invention by at least two troughs;
These two troughs t - an excitation part that vibrates in opposite phase; a drive spring support part; all of the two troughs are connected to the drive spring support part respectively; A vibrating component supply device comprising: a drive spring coupled to mutually transfer all components in opposite directions, the drive spring support portion being coupled to a base by a plate spring; achieved by.
以下、本発明の実施例による循環式の振動部品供給装置
もしくはリニアパーツフィーダについて □図面を
参照して説明する。Hereinafter, a circulating vibrating parts supply device or a linear parts feeder according to an embodiment of the present invention will be described with reference to the drawings.
第4図及び第5図は本発明の第1実施例全示し、図にお
いて振動部品供給装置は全体として四で示され、返還ト
ラフCa1l及び供給トラフ(221μわずかな距離を
おいて並列しておシ、返還トラフQυにU 一体的に部
品整送部@が形成されている。この部品整送部(23に
は部品排出部c241が連設している。4 and 5 completely show the first embodiment of the present invention. In the figures, the vibrating component supply device is indicated as a whole by 4, and the return trough Ca1l and the supply trough (221μ) are arranged in parallel with a slight distance apart. A parts sorting section @ is integrally formed in the return trough Qυ.A parts discharging section c241 is connected to this parts sorting section (23).
返還トラフQυ及び供給ドラ7[221の底部にはそれ
ぞれ第5図に示すように板ばね取付板OGのが固定され
、これらはそれぞれ前後一対の駆動用板ばね(13C3
υにより共通の板ばね支持部時に結合される。As shown in FIG. 5, a leaf spring mounting plate OG is fixed to the bottom of the return trough Qυ and the supply drum 7 [221, respectively, as shown in FIG.
They are connected to a common leaf spring support by υ.
板ばねC311c+aは相反する方向に傾斜して配設さ
れ、両端部がボルトにより板ばね取付板(ハ)■及び板
ばね支持部時゛に固定されている。The leaf springs C311c+a are arranged so as to be inclined in opposite directions, and both ends are fixed to the leaf spring mounting plate (c) and the leaf spring support portion with bolts.
一方の板ばね取付板(2)にはボルトにより可動コア図
が固定され、同様に他方の板ばね取付板■にもボルトに
より可動コア(至)が固定されている。そしてこれら可
動コア(ロ)(至)の間に位置して電磁石コア(至)が
取付部材8I金介して板ばね支持部時に固定されている
。電磁石コア(至)の両側に形成されたヨーク部には互
いに独立したコイル67)(至)が巻装され図示せずと
もそれぞれ独立した制御手段、例えば可変抵抗を介して
同一の交流電源で励磁される。A movable core figure is fixed to one leaf spring mounting plate (2) with bolts, and similarly a movable core (to) is fixed to the other leaf spring mounting plate (2) with bolts. An electromagnetic core (end) is located between these movable cores (b) and (end) and is fixed to the plate spring support portion through a mounting member 8I. Mutually independent coils 67) are wound around the yoke portions formed on both sides of the electromagnet core, and are excited by the same AC power source through independent control means (not shown), such as variable resistors. be done.
従って可動コア時報に対する交流吸引力の方向に相反す
る方向にある。本実施例による加振部は以上のように電
磁石コア(至)、コイル@(至)及び可動コア(ロ)(
至)によって構成され、このような加振部及び図示する
ように配設された板ばね6υ国により、両トラフCI!
21G!υは逆位相の、かつ矢印A及びBで示すように
互いに相反する方向に傾斜した振動を行なう。Therefore, the direction is opposite to the direction of the AC attraction force for the movable core time signal. As described above, the vibrating section according to this embodiment includes the electromagnetic core (to), the coil @ (to), and the movable core (b) (
), both troughs CI!
21G! υ performs vibrations having opposite phases and tilting in directions opposite to each other as shown by arrows A and B.
本実施例では、部品整送部のと排出部(241’を含む
返還トラフQ11側可動部と供給トラフの何回動部とに
は一同質量であって、ばね支持部(至)の質量は、はゾ
これらの和に等しく構成されている。また板ばね6υ国
のばね常数も相等しい。従ってコイル6?)(至)の通
電量が同一であれば、理論的には、返還トップcIυ及
び供給トラフ1221はそれぞれ矢印B及びAの方向に
四−の振巾で振動°するはずであるが、実際には板ばね
6υ□□□を取付部@(至)及び支持部時に固定させる
ためのボルトの締めっけ力によっても供給トラフ@と返
還トラフ側とで共振周波数に差が生じ、特に共振周波数
の近くの周波数で駆動する場合には、トラフ(2υとの
とでに大tな振巾差が生ずることになる。また実際に両
トップ側重量を同一に構成することは難しい。更に両ト
ラフC111123に対する負荷を同一にすることも難
しい。然しながら本実施例によれば、コイル37)C3
81にそれぞれ接続されている制御手段全調節すること
によって、両トラフQllのの振巾は正確に一致させる
ことができる。このような振巾を受けて、供給トラフの
内の部品mは矢印に示す方向に移送され、傾斜した移送
面金上昇して平面部(ハ)に至る。こ\でガイド部(至
)のガイド作用全党けて、返還トラフclll側に移行
する。返還トラフQυの移送面は水平で、供給トラフの
の図において左側端部と同一レベルにあシ、返還トラフ
Qυに一体的に固定された部品整送部@の移送面に供給
トラフnの平面部器とはゾ同一のレベルにあるが、返還
トラフQυ側に向って若干下向きに傾斜している。従っ
て、部品整送部■上では、部品rrLはその側壁部(2
3a)に図示するように片寄って矢印で示す方向に移送
される。実際には部品整送部のには更に整送手段が付加
されている−が、本発明には特に関係がないので省略す
る。部品整送部@で姿勢を矯正された部品m1lI1.
排出部(至)から−個宛排出される。姿勢を矯正されな
かった部品又にオーパフo −した部品は返還トラフ(
21)内又は供給トラフの内に落下し、更に返還トラフ
Qυ及び供給トラフ 123 k循環する。In this embodiment, the movable part on the return trough Q11 side including the part sorting part and the discharge part (241') and the rotating part of the supply trough all have the same mass, and the mass of the spring support part (to) is the same. , is configured to be equal to the sum of these.Also, the spring constants of leaf springs 6υ are also equal.Therefore, if the amount of current in coil 6?) (to) is the same, theoretically, the return top cIυ and the supply trough 1221 are supposed to vibrate in the directions of arrows B and A with an amplitude of 4°, but in reality, the plate spring 6υ□□□ is fixed at the mounting part @ (to) and the support part. The tightening force of the bolts causes a difference in the resonance frequency between the supply trough @ and the return trough side, and especially when driving at a frequency close to the resonance frequency, there is a large difference between the trough (2υ) and the resonant frequency. A difference in swing width will occur.Also, it is difficult to actually configure both top side weights to be the same.Furthermore, it is difficult to make the loads on both troughs C111123 the same.However, according to this embodiment, the coil 37) C3
By fully adjusting the control means respectively connected to 81, the amplitudes of both troughs Qll can be exactly matched. In response to such shaking, the parts m in the supply trough are transferred in the direction shown by the arrow, ascending the inclined transfer face and reaching the flat part (c). At this point, the entire guide action of the guide part (to) is shifted to the return trough clll side. The transfer surface of the return trough Qυ is horizontal and is at the same level as the left end of the supply trough in the figure, and the plane of the supply trough n is on the transfer surface of the parts sorting unit @ which is integrally fixed to the return trough Qυ. Although it is on the same level as the equipment, it is tilted slightly downward toward the return trough Qυ side. Therefore, on the parts sorting section
As shown in 3a), it is shifted in the direction indicated by the arrow. Actually, a sorting means is additionally added to the parts sorting section, but it is not particularly relevant to the present invention and will therefore be omitted. Parts m1lI1 whose posture has been corrected in the parts sorting department @.
- pieces are discharged from the discharge section (to). Parts whose posture has not been corrected or parts whose posture has not been corrected are returned to the return trough (
21) falls into or into the supply trough and circulates further through the return trough Qυ and the supply trough 123 k.
本発明によれば、更に上述のばね支持部(至)が、その
下方に配設され友基台(40に防振用板ばねt4:l
t44)により結合される。板ばねい3(財)は両端部
でそれぞれボルト+451 f461 t4η(48に
よりばね支持部時及び基台冊に固定されている。基台(
4(Jは設置台(9)に単に載置されるか、又はボルト
によりこれに固定してもよい。基台t4Gの両端部には
貫通孔犠υ(44が形成され、防振用板ばねt43(4
41−ばね支持部時にボルト(ハ)囮よシ固定する際に
利用される。According to the present invention, the above-mentioned spring support part (to) is further arranged below the spring support part (40), and the vibration isolating plate spring t4:
t44). The leaf spring 3 (Foundation) is fixed to the spring support part and the base plate by bolts +451 f461 t4η (48) at both ends.The base (
4 (J may be simply placed on the installation stand (9) or fixed thereto with bolts. Through holes υ (44) are formed at both ends of the base t4G, and vibration isolating plates Spring t43 (4
41-Used when fixing the bolt (c) to the spring support part.
電磁石コイル6?)(至)を励磁すると供給トラフt2
21及び返還トラフ12υは上述のように振動するので
あるが、これらの反力が駆動用板ばねC1υC33t−
介してばね支持部(至)に加えられる。然るに供給トラ
フの及び返還トラフt211の振巾は同一であるが、振
動が逆位相であるので、水平成分は打ち消し合い、垂直
成分は相方日算される。防振用板ばね旧(財)はこのよ
うな垂直成分反力により、ポルH4Hηによる固定端部
を支点として曲げ運動を行なうが、この曲げ方向のばね
常数はその長さ、すなわち図において、左右方向の長さ
を大きくすることによって、いくらでも小さくすること
ができる。従って、装置全体四の高さを増加することな
く、防振用板ばね(43圓の曲げばね常数を小さくする
ことができる。すなわち、反力を受けるばね支持部間の
質量を増加せずとも装置全体四の質量と防振用板ばね(
43mの曲げばね常数によって定まる共振周波数は加振
部曽〜關の加振周波数よ〕充分に低くすることがてきる
。従りて、基台t4Qへの反力伝達率は充分に小さくす
ることができる。すなわち、充分な防振効果が得られる
。また本実施例によれば、コイル6?)儲の通電量を異
ならせて、防振効果は多少減小するが、最適の整送作用
を得るように両トラフc+utnの振巾を変えることが
できる。一般的に整送部分では余り移送速度を高くする
こと繻好ましくないが、この部分には供給トラフから充
分に部品を供給することが、供給効率を向上させる上で
必要とされる。Electromagnetic coil 6? ) (to), the supply trough t2
21 and the return trough 12υ vibrate as described above, and their reaction force causes the driving leaf spring C1υC33t-
It is added to the spring support part (to) through the spring support part. However, although the amplitudes of the supply trough and the return trough t211 are the same, since the vibrations are in opposite phases, the horizontal components cancel each other out, and the vertical components are calculated by each other. Due to this vertical component reaction force, the anti-vibration leaf spring (former foundation) performs a bending motion using the fixed end of Pol H4Hη as a fulcrum, but the spring constant in this bending direction is its length, that is, the left and right in the figure. It can be made as small as desired by increasing the length in the direction. Therefore, the bending spring constant of the vibration isolating leaf spring (43 mm) can be reduced without increasing the height of the entire device. In other words, without increasing the mass between the spring support parts that receive the reaction force. The mass of the whole device and the vibration-proof leaf spring (
The resonant frequency determined by the bending spring constant of 43 m can be made sufficiently lower than the excitation frequency of the vibrating section. Therefore, the reaction force transmission rate to the base t4Q can be made sufficiently small. That is, a sufficient vibration damping effect can be obtained. Further, according to this embodiment, the coil 6? ) By varying the amount of current applied to the troughs, the vibration-proofing effect is somewhat reduced, but the amplitudes of both troughs c+utn can be changed to obtain the optimum shuffling action. Generally, it is not desirable to increase the transfer speed too much in the sorting section, but it is necessary to sufficiently supply parts from the supply trough to this section in order to improve the supply efficiency.
第6図及び第7図は本発明の第2実施例による循環式振
動部品供給機もしくは+7 ニアパーツフィーダを示す
が、図において第1実施例と対応する部分については同
一の符号?付し、それらの詳細な説明は省略する。すな
わち本実施例は第1案施例とに加振部の構成が異なる他
は全く同一の構成を有する。本実施例の加振部において
は、−個のコイルを巻装した電磁石コア6Iが板ばね取
付板(ハ)を介して供給トラフのに固定され、これと対
向するように可動コア6υが板ばね取付板■を介して返
還トラフf2υに取付部材(53により固定されている
。6 and 7 show a circulating type vibrating parts feeder or +7 near parts feeder according to a second embodiment of the present invention, but in the figures, do parts corresponding to those in the first embodiment have the same reference numerals? The detailed explanation thereof will be omitted. That is, this embodiment has exactly the same configuration as the first embodiment except for the configuration of the vibrating section. In the excitation section of this embodiment, an electromagnetic core 6I wound with - coils is fixed to the supply trough via a plate spring mounting plate (c), and a movable core 6υ is mounted on the plate opposite to this. It is fixed to the return trough f2υ by a mounting member (53) via a spring mounting plate (■).
可動コア1511は板ばね取付板のにある空隙をおいて
横方向に延びて電磁石コア団と対向している。このよう
な加振部によりても返還トラフC!υ及び供給トラフ■
は第1実施例と全く同様な振動を行ない、防振用板ばね
43(財)の存在によって基台(4G、すなわち設置台
(9)には殆んど振動が伝わらない。The movable core 1511 extends laterally with a gap between the leaf spring mounting plates and faces the electromagnet core group. Even with such a vibrating part, the return trough C! υ and supply trough■
vibrates in exactly the same way as in the first embodiment, and due to the presence of the vibration isolating plate spring 43, almost no vibration is transmitted to the base (4G, that is, the installation base (9)).
以上、本発明の各実施例について説明し九が、勿論1本
発明はこれらに限定されることなく本発明の技術的思想
に基づいて、種々の変形が可能である。Although nine embodiments of the present invention have been described above, the present invention is of course not limited to these and can be modified in various ways based on the technical idea of the present invention.
例えば以上の実施例では一つのばね支持部間により板ば
ね311 C13k介して2つのトラフ3υtnt−支
持するようにしたが、更にもう一つのトラフを板ばねを
介してばね支持部に結合するようにしてもよい。この場
合にμ一つのトラフの振巾が他の2つのトラフの振巾の
2倍で、逆位相で振動すれば上述の実施例と全く同一の
効果が得られる。更に4つのトラフが一つのばね支持部
間にそれぞれ板ばねを介して結合するようにしてもよい
。この場合にはこのうちの2つが上述の返還トラフ飢と
同じ運動全行ない、他の2つが供給トラフC23と同じ
運動を行なえば上述の実施例と同じ効果が得られる。For example, in the above embodiment, two troughs 3υtnt- are supported between one spring support part via the leaf spring 311C13k, but another trough is also connected to the spring support part through a leaf spring. It's okay. In this case, if the amplitude of one trough μ is twice the amplitude of the other two troughs and they vibrate in opposite phases, exactly the same effect as in the above embodiment can be obtained. Furthermore, four troughs may each be connected between one spring support via a leaf spring. In this case, if two of them perform the same movements as the return trough C23 and the other two perform the same movements as the supply trough C23, the same effect as in the above embodiment can be obtained.
トラフが5つ以上についても上述と同じ考えが適用され
る。The same considerations as above apply for five or more troughs.
また以上の実施例では両トラフG!11の全近接させて
配置し循環式とし次が、相離反させて独立の移、送作用
勿行なうよりにしてもよい。また第1実施例ではコイル
Oη關全巻装させている固定コア部分は一体化されてい
るが、これら部分は分離していてもよい。Moreover, in the above embodiment, both troughs G! All of the 11 parts may be placed close to each other in a circulating type, and then separated from each other to perform independent transfer and feeding operations. Further, in the first embodiment, the fixed core portion around which the coil Oη is entirely wound is integrated, but these portions may be separated.
また以上の実施例では基台t40 t−装置の設置台(
9)に載置するか、ボルトにより固定するものとしたが
、基台自体を設置台とすることも可能である。In addition, in the above embodiment, the base t40 t-device installation stand (
9) or fixed with bolts, but it is also possible to use the base itself as an installation base.
以上述べtように本発明の振動部品供給機は、少なくと
も2つのトラフ;これら2つのトラフを逆位相で加振す
る加撮部;駆動ばね支持部;前記2つのトラフtそれぞ
れ前記駆動ばね支持部に、前記2つのトラフが前記加振
部の加振力全党けて部品を相互に逆方向に移送するよう
に結合する駆動ばね;を備え、前記駆動ばね支持部を基
台と板ばねにより結合し九ので、きわめて簡単な構造で
、かつ装置全体の高さをそれほど大きくすることなく基
台もしくはこれを載置する設置台にに殆んど振動全仏え
ることがない。As described above, the vibrating component feeder of the present invention includes at least two troughs; an imaging section that vibrates these two troughs in opposite phases; a drive spring support section; and a drive spring support section for each of the two troughs. a drive spring that connects the two troughs so that the entire excitation force of the vibrating section transfers the parts in opposite directions; Since they are connected together, the structure is extremely simple, and the height of the entire device does not increase significantly, and almost no vibration is generated on the base or the installation stand on which it is placed.
第1図は従来例の循環式リニアパーツフィーダの原理を
示す概略平面図、第2図はPl概略側面図第3図は他従
来例の循環式リニアパーツフィーダの概略側面図、第4
図は本発明の第1実施例による循環式リニアパーツフィ
ーダの平面図、第5図は同側面図、第6図は本発明の第
2実施例による循環式リニアパーツフィーダの側面図、
及び第7図は第6図における■−■線方線方向部分図面
図る。
なお因において、Fig. 1 is a schematic plan view showing the principle of a conventional circulating linear parts feeder, Fig. 2 is a schematic side view of Pl, Fig. 3 is a schematic side view of another conventional circulating linear parts feeder, and Fig. 4 is a schematic side view of another conventional circulating linear parts feeder.
The figure is a plan view of a circulating linear parts feeder according to a first embodiment of the present invention, FIG. 5 is a side view of the same, and FIG. 6 is a side view of a circulating linear parts feeder according to a second embodiment of the present invention.
and FIG. 7 is a partial drawing in the direction of the line ■-■ in FIG. 6. Incidentally,
Claims (2)
逆位相で加振する加振部;駆動ばね支持部;前記2つの
トラフをそれぞれ前記駆動ばね支持部に前記2つのトラ
フが前記加振部の加振力を受けて部品を相互に逆方向に
移送するように結合する駆動ばね;を備えた振動部品供
給装置において、前記駆動ばね支持部を基台と板ばねに
より結合したことを特徴とする振動部品供給装置。(1) At least two troughs; an excitation unit that excites these two troughs in opposite phases; a drive spring support unit; A vibrating component supply device comprising: a drive spring coupled to transfer components in opposite directions upon receiving an excitation force, characterized in that the drive spring support portion is coupled to a base by a plate spring. Vibrating parts supply device.
磁石固定コア、この電磁石固定コアの相反する方向に延
びるヨーク部にそれぞれ巻装されたコイル、前記ヨーク
部に対向し前記両トラフにそれぞれ固定された可動コア
から成り、前記両コイルの通電量はそれぞれ共通の交流
電源に接続された独立した制御手段により個々に制御さ
れることを特徴とする前記第1項に記載の振動部品供給
装置。(2) The vibrating section includes an electromagnet fixed core fixed to the drive spring support, coils respectively wound around yoke sections extending in opposite directions of the electromagnet fixed core, and both troughs facing the yoke section. The vibrating component according to item 1, characterized in that the vibrating component comprises a movable core fixed to a movable core, and the amount of current flowing through both coils is individually controlled by independent control means connected to a common AC power source. Feeding device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14374486A JPS61282214A (en) | 1986-06-18 | 1986-06-18 | Vibrating type parts feeder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14374486A JPS61282214A (en) | 1986-06-18 | 1986-06-18 | Vibrating type parts feeder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61282214A true JPS61282214A (en) | 1986-12-12 |
Family
ID=15346004
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14374486A Pending JPS61282214A (en) | 1986-06-18 | 1986-06-18 | Vibrating type parts feeder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61282214A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008260590A (en) * | 2007-04-10 | 2008-10-30 | Ntn Corp | Oscillating type part feeding device |
KR101634591B1 (en) * | 2015-03-26 | 2016-06-29 | 주식회사 화닉슨 | A component supply unit having vibration-compensated electric drive coil |
-
1986
- 1986-06-18 JP JP14374486A patent/JPS61282214A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008260590A (en) * | 2007-04-10 | 2008-10-30 | Ntn Corp | Oscillating type part feeding device |
KR101634591B1 (en) * | 2015-03-26 | 2016-06-29 | 주식회사 화닉슨 | A component supply unit having vibration-compensated electric drive coil |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6753640B2 (en) | Piezoelectric driven type vibratory feeder | |
US5285890A (en) | Vibratory feeder | |
JP4977934B2 (en) | Elliptical vibratory feeder | |
JPS61282214A (en) | Vibrating type parts feeder | |
US4880106A (en) | Electromagnetic vibratory feeder | |
JPH02204210A (en) | Straight line vibration feeder | |
JPH11199026A (en) | Vibrating equipment | |
JPS6242803B2 (en) | ||
JPS62171814A (en) | Vibration part feeding device | |
JP2006256863A (en) | Vibration reduction method in vibratory conveyor and vibration reduction device used for the method | |
JPS58144010A (en) | Vibrating parts-feeder | |
JPH0520473Y2 (en) | ||
JP2002274632A (en) | Linear feeder | |
JPH03264416A (en) | Vibration type carrying device | |
JP3096803B2 (en) | Piezo-driven low-profile parts feeder | |
JPS6139115B2 (en) | ||
JP2011201665A (en) | Vibrating feeder | |
JPS59143809A (en) | Circulating vibration part feeder | |
JP2771621B2 (en) | Linear drive for vibrating conveyor | |
JPH0398904A (en) | Rectilinear vibration feeder | |
JP2594004Y2 (en) | Feeder for combination weigher | |
JP2526957B2 (en) | Multiple part feeder | |
JPS58157630A (en) | Vibratory parts supply device | |
JP2012131616A (en) | Vibration type conveying device | |
JPH0324488Y2 (en) |