JPS61280907A - Exothermic body of heating apparatus for high polymer plasticized material - Google Patents

Exothermic body of heating apparatus for high polymer plasticized material

Info

Publication number
JPS61280907A
JPS61280907A JP12257185A JP12257185A JPS61280907A JP S61280907 A JPS61280907 A JP S61280907A JP 12257185 A JP12257185 A JP 12257185A JP 12257185 A JP12257185 A JP 12257185A JP S61280907 A JPS61280907 A JP S61280907A
Authority
JP
Japan
Prior art keywords
heating element
heating
end surfaces
conical
hole diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12257185A
Other languages
Japanese (ja)
Inventor
Isago Miura
美浦 伊三五
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP12257185A priority Critical patent/JPS61280907A/en
Publication of JPS61280907A publication Critical patent/JPS61280907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PURPOSE:To average the output of heat of conical cylindrical exothermic bodies, by changing the thicknesses of the electrical resistance materials of the heating bodies continuously or stepwise from the end surfaces of larger hole diameter to the end surfaces of smaller hole diameter of the heating bodies. CONSTITUTION:The thicknesses of exothermic bodies 28, 29 become larger continuously or stepwise from the end surfaces 28a, 29a of larger hole diameter to the end surfaces 28b, 29b of smaller hole diameters. The electrical resistance is inversely proportional to the thickness, i.e. the cross-sectional area of the conductor and is proportional to the hole diameter. As the joule heat is propor tional to I<2>R, the calorific value becomes small with decrease in the hole diame ter. Overheat of the parts close to the end surfaces with the smaller hole diameters of exothermic bodies 28, 29 where overheating tends to occur can be thereby avoided and no shortage of the total summed calorific value occurs.

Description

【発明の詳細な説明】 この発明は、射出成形、移送成形、または押出成形等の
際、原料の高分子耳型化流動体を加熱する装置の発熱体
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating element for a device that heats a polymeric ear-shaped fluid as a raw material during injection molding, transfer molding, extrusion molding, or the like.

従来、射出成形、移送成形または押出成形等において、
ゴム類または合成樹脂等の原料耳型化流動体を、ダイの
直前で急速に加熱する装置として、原料通路の先端部に
形成された円錐状凸部と、同先端部に組み付けられるシ
リンダヘッドに形成された円錐状凹部との隙間の間隔管
調整自在となし、かつ、上記隙間を形成する上記円錐状
凸部、ならびに円錐状凹部のそれぞれの面に、電気絶縁
層を介して、いわゆるメガホン様の、円錐状筒形発熱体
を装着し、上記両発熱体の対向する隙間間隔を加熱通路
として、上記原料を通過させ、上記発熱体に発生させた
ジュール熱及び上記狭い隙間を通過することにより生ず
る摩擦熱等をもって原料を加熱昇温するようにしたもの
がある。
Conventionally, in injection molding, transfer molding, extrusion molding, etc.
As a device that rapidly heats raw material ear-shaped fluid such as rubber or synthetic resin just before the die, it is equipped with a conical protrusion formed at the tip of the raw material passage and a cylinder head assembled to the tip. The gap between the formed conical concave portion and the conical concave portion can be freely adjusted, and a so-called megaphone-like structure is provided on each surface of the conical convex portion forming the gap and the conical concave portion via an electrical insulating layer. By attaching a conical cylindrical heating element and passing the raw material through the opposing gap between the two heating elements as a heating passage, the Joule heat generated in the heating element and passing through the narrow gap. There is a method that uses the generated frictional heat to heat the raw material and raise its temperature.

上記のような従来の射出成形機における可塑化流動体の
加熱装置としては、第1図に示すようなものが掲げられ
、可塑化した原料はシリンダ1内の原料貯留室3内に貯
えられ、射出指示を受けて貯留室3から圧出され、円錐
状凸部15の鍔15aに開口している原料人口3aから
加熱通路3bに入る。加熱通路3bは、電気絶縁層19
を介して円錐状凸部15に固定されている薄肉の金属抵
抗材よりなる円錐状筒形発熱体20と、同じく電気絶縁
層21を介して円錐状凹部17に固定されている円錐状
筒形発熱体22との対向する間隙であるから、円錐状凹
部のねじ17a’iいずれかの方向へ回すことKよって
、円錐状凸部15と同一中心軸上で上記間隙を広げるこ
とも狭くすることも自在である。尚シリンダヘッド5の
スライド面5aは、円錐状凸部15並びに円錐状凹部1
7t−1常に正しく同心上に保つ。ダブルナツト18は
加熱通路3bの間隙を所望の位置で固定する。絶縁層2
3.24.25.26は電気絶縁性のバッキング材を用
いることが多いが、セラミックその他無機又は有機絶縁
物を例えば溶射、塗装等して用いてもよい。4 b、1
7 bはそれぞれ溶接、ロー付けなどにより両金属間を
電気的に接続した接点、27は電導板で電気の良導体を
用いる。さて、接続片11より供給された電流は、電導
板27より、ニクロム、ステンレスその他の板状の電気
抵抗材よりなる円錐状筒形発熱体20に通じてこれを熱
して後、接点4bより円錐状凸部15に入り、ついで導
電性の良好な電導軸16に通じ、電導軸の鍔16aより
円錐状筒形発熱体22t−熱じて、接点17bより円錐
状凹部17に至り、更にシリンダヘッド5′@:通って
接続片12より電源に帰る。
As a heating device for the plasticized fluid in the above-mentioned conventional injection molding machine, there is one shown in FIG. 1, in which the plasticized raw material is stored in the raw material storage chamber 3 in the cylinder 1, Upon receiving an injection instruction, the raw material is forced out from the storage chamber 3 and enters the heating passage 3b through the raw material 3a that is open in the flange 15a of the conical convex portion 15. The heating passage 3b includes an electrically insulating layer 19
A conical cylindrical heating element 20 made of a thin metal resistance material is fixed to the conical convex part 15 via an electric insulating layer 21, and a conical cylindrical heat generating element 20 is fixed to the conical concave part 17 via an electrical insulating layer 21. Since the gap faces the heating element 22, by turning the screw 17a'i of the conical recess in either direction, the gap can be widened or narrowed on the same central axis as the conical protrusion 15. is also free. The sliding surface 5a of the cylinder head 5 has a conical convex portion 15 and a conical concave portion 1.
7t-1 Always keep it correctly concentric. The double nut 18 fixes the gap between the heating passages 3b at a desired position. Insulating layer 2
3.24.25.26 often uses an electrically insulating backing material, but ceramic or other inorganic or organic insulating materials may be used, for example, by thermal spraying or painting. 4 b, 1
7b is a contact that electrically connects both metals by welding, brazing, etc., and 27 is a conductive plate that is a good electrical conductor. Now, the electric current supplied from the connecting piece 11 passes through the conductive plate 27 to the conical cylindrical heating element 20 made of a plate-shaped electrically resistive material such as nichrome, stainless steel, etc. It enters the conical convex part 15, then leads to the conductive shaft 16 with good conductivity, is heated by the conical cylindrical heating element 22t from the collar 16a of the conductive shaft, reaches the conical concave part 17 through the contact 17b, and then reaches the cylinder head. 5'@: Passes through and returns to the power supply from the connection piece 12.

加熱通路3b内で加熱された原料は、電導軸の鍔16a
に穿たれている孔を通りて3cに集まり、ノズル6より
グイ方向へ進む。
The raw material heated in the heating passage 3b is transferred to the flange 16a of the conductive shaft.
It passes through the hole drilled in , gathers at 3c, and advances from the nozzle 6 in the direction of the gun.

上記従来の発熱体20.22には次にのべるような欠点
がある。すなわち発熱体は、比較的薄い、均一な肉厚の
電気抵抗材でメガホン状(円錐状)K形成されていて、
上記メガホンの一方の端面の口径は大きく、他方の端面
の口径は上記口径より小さいか、又はほぼ円錐の頂点を
なしている、電流は上記両端面間を直進し、抵抗は導体
断面積に逆比例するから、発熱体内では位tKより電気
抵抗が異なり、上記両口径部では両者の抵抗は、その口
径(直径)に反比例する。したがってジュール熱はI”
Hに比例するから、発熱量もまた口径に反比例して、口
径が小さくなるほど核部の発熱量は大きくなる。更に又
、上記と同様に、発熱体内のワット![t−位置によっ
て比較すると、ワット密度の比は、その位置する口径の
一二°乗−に一逆・比例することが分かる。つまり、発
熱体の小口径部分には、単位面積当り大口径部に比較し
て想像以上の発熱量が生ずるのである。以上の如き結果
により、従来の発熱体では、発熱体の小口径の端面に近
い部分が過熱におちいり易く、上記過熱を回避しようと
すれば、発熱量の総量が不足するという結果を招いた。
The conventional heating elements 20 and 22 described above have the following drawbacks. In other words, the heating element is formed into a megaphone shape (conical shape) by a relatively thin electrically resistive material with uniform wall thickness.
The aperture of one end face of the megaphone is large, and the aperture of the other end face is smaller than the aperture, or almost forms the apex of a cone.The current travels straight between the two end faces, and the resistance is opposite to the cross-sectional area of the conductor. Since they are proportional, the electrical resistance within the heating element is different by tK, and the resistances of both diameter portions are inversely proportional to their diameters. Therefore, Joule heat is I”
Since it is proportional to H, the calorific value is also inversely proportional to the aperture, and the smaller the aperture, the greater the calorific value of the core. Furthermore, as above, the watts inside the heating element! [When compared by t-position, it can be seen that the ratio of watt densities is inversely proportional to the 12° power of the aperture at which it is located. In other words, the small-diameter portion of the heating element generates more heat per unit area than the large-diameter portion. As a result of the above results, in the conventional heating element, the portion close to the small-diameter end face of the heating element tends to overheat, and if an attempt is made to avoid the above-mentioned overheating, the total amount of heat generated is insufficient.

その他、加熱制御、加熱効率の点から見て、上記例に示
したようなワット密度の極端な相違は好ましくない。
In addition, from the point of view of heating control and heating efficiency, extreme differences in watt density as shown in the above example are not preferable.

この発明は、上記従来装置のもつ欠点を解消し、実用上
の便を得るため、電気抵抗材よりなる円錐状筒形発熱体
の、口径の大なる端面より、口径の小なる端面へ向けて
、抵抗材の肉厚を次第に、もしくは段階的に変え、上記
両端面間に電流を通じて発生するジュール熱を、任意に
制御するようにした。実例を上げて説明すれば、上記円
錐状筒形発熱体の一方のロ径’130m、他方のロ径ヲ
15露とし、発熱体の肉厚を上記大口径の端面で例えば
0.15m、同じく小口径の端面で0.3 mとすれば
、通電により上記発熱体に生ずる熱出力は、発熱体の直
径差によって変ることなく、平均することができる。
In order to eliminate the drawbacks of the above-mentioned conventional device and to obtain practical convenience, this invention aims at the end surface of a conical cylindrical heating element made of an electrically resistive material from the end surface with a large diameter to the end surface with a small diameter. By changing the thickness of the resistive material gradually or stepwise, the Joule heat generated through the electric current between the two end faces can be arbitrarily controlled. To give an example, the diameter of one side of the conical cylindrical heating element is 130 m, the diameter of the other side is 15 m, and the wall thickness of the heating element is, for example, 0.15 m at the end face of the large diameter. If the end face of a small diameter is 0.3 m, the thermal output generated in the heating element by energization can be averaged without changing due to the difference in diameter of the heating element.

第2図は、この発明の円錐状筒形発熱体の一実施例を示
す拡大断面図である。この発熱体の付属する加熱装置に
ついては、種々の実施例があるが、基本的にはいずれも
第1図に示したものと大差がないこと、及び発熱体の形
状の説明を明確にするため、ここKは発熱体のみを示し
、これを付属すべき加熱装置を省略した。28.29は
(この発明の)円錐状筒形発熱体、3aは原料入口、3
bは加熱通路、28a * 29aは大口径の端面、2
8b 、29bは小口径の端面、30はカラーをそれぞ
れ示す。円錐状筒形発熱体28.29はニクロムその他
の金属抵抗材料、ステンレス、低膨張合金等の薄板、管
等全、溶接、研磨、旋削等の工法で製する。又上記材か
ら、いわゆるしぼり加工して製することもできる。図に
示した発熱体28.29の肉厚は、大口径の端面28a
、29aから、それぞれ小口径の端面28b 、29b
へ向けて次第に厚くなっているが、上記肉厚の傾斜率(
勾配)は、先の例に上げたように、口径比にストレート
に逆比例すると限るものでない。発熱体の肉厚及び上記
肉厚の勾配は、所望の熱出力、所望の加熱制御等の見地
より、任意に決定する。
FIG. 2 is an enlarged sectional view showing an embodiment of the conical cylindrical heating element of the present invention. There are various examples of heating devices attached to this heating element, but basically they are not much different from the one shown in Figure 1, and in order to clarify the explanation of the shape of the heating element. , here K indicates only the heating element, and the heating device to which it is attached is omitted. 28.29 is a conical cylindrical heating element (of this invention), 3a is a raw material inlet, 3
b is a heating passage, 28a * 29a is a large diameter end face, 2
8b and 29b are small-diameter end faces, and 30 is a collar, respectively. The conical and cylindrical heating elements 28 and 29 are made of nichrome or other metal resistance material, stainless steel, low expansion alloy, etc. thin plates, tubes, etc., and are manufactured by methods such as welding, polishing, turning, etc. It can also be manufactured from the above materials by so-called squeezing processing. The wall thickness of the heating element 28, 29 shown in the figure is the large diameter end face 28a.
, 29a to small diameter end faces 28b, 29b, respectively.
It gradually becomes thicker towards , but the slope rate of the thickness mentioned above (
gradient) is not necessarily directly and inversely proportional to the aperture ratio, as in the previous example. The thickness of the heating element and the gradient of the thickness are arbitrarily determined from the viewpoints of desired heat output, desired heating control, etc.

父上記肉厚の勾配をやめて、肉厚が段階的に異なるもの
を連続して、これに替えることもできる。
It is also possible to eliminate the gradient of the wall thickness above the father and replace it with one in which the wall thickness varies in stages.

更に、例外的であるが、発熱体28.29の円錐状の勾
配が非常にゆるやかである場合、又は加熱制御上の理由
から、通常は上記大口径部の肉厚全小口径部へ向けて次
第に厚くしていたものを、肉厚を一様にしたり、ついに
はこれを逆転して、上記大口径部の肉厚より、小口径部
の肉厚を薄くする等の場合もある。さて、カラー30は
、円錐状筒形発熱体の加熱通路3bの通路間隔を調整す
るに際し、生ずる間隙のうめ物であり、電導性であるか
、絶縁性であるかは電流回路の都合で定める。
Furthermore, in exceptional cases, if the conical slope of the heating element 28, 29 is very gentle, or for reasons of heating control, the entire wall thickness of the large diameter section is usually directed toward the small diameter section. In some cases, the thickness may be made uniform after gradually increasing the thickness, or the thickness may be reversed and the thickness of the small diameter portion may be made thinner than the thickness of the large diameter portion. Now, the collar 30 is a filler for the gap that is created when adjusting the interval between the heating passages 3b of the conical cylindrical heating element, and whether it is conductive or insulating is determined by the current circuit. .

カラー30は、種々の厚さの物を用意しおき、加熱通路
3bの所望の間隔に対応して、交換して用いる。
Collars 30 of various thicknesses are prepared in advance and used by being replaced depending on the desired spacing of the heating passages 3b.

この発明は、上記の例の如く゛、二個の円錐状筒形発熱
体を組み合わせて用いると限るものでなく、上記発熱体
全単独で使用してもよい。父上記発熱体の面にふれつつ
通過して加熱される被加熱物は、高分子打型化流動体に
限るものでなく、常温で液状を呈する高分子化合物、又
はセラミック、粉末成形原料等の粉末流動体、ないしは
、水、油その他の液体、気体等多岐にわたる。
The present invention is not limited to the use of two conical cylindrical heating elements in combination as in the above example, but all of the above heating elements may be used alone. The heated object that is heated by passing through the surface of the heating element is not limited to polymer molding fluids, but may also include polymeric compounds that are liquid at room temperature, ceramics, powder molding raw materials, etc. There are a wide variety of materials, including powder fluids, water, oil and other liquids, and gases.

この発明の発熱体は、第1に狭いスペースで大出力の加
熱を行なうのに適している。第2に加熱通路の断面積全
調整し易いこと。第3に被加熱物である流体を、少量づ
つ、発熱体に触れつつ通過する間に加熱するので、短時
間に大巾な加熱昇温を実現することができ、又熱効率が
高い。第4に加熱部の熱容量を極度に小さくできるため
、加熱応答が非常に敏速であり、これは間欠的加熱に適
応する利点である。第5に加熱通路を狭窄して、通過す
る流体の圧力損失(圧力降下)t−熱エネルある。以上
の優れた効果を有するものである。
The heating element of the present invention is firstly suitable for performing high-output heating in a narrow space. Second, it is easy to adjust the entire cross-sectional area of the heating passage. Thirdly, since the fluid to be heated is heated little by little as it passes through while touching the heating element, a large heating temperature can be achieved in a short period of time, and the thermal efficiency is high. Fourthly, since the heat capacity of the heating section can be extremely small, the heating response is very rapid, which is an advantage in adapting to intermittent heating. Fifth, by narrowing the heating passage, there is a pressure loss (pressure drop) t-thermal energy of the fluid passing through. It has the above excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の高分子耳型化物加熱装置の要部の断面を
示す例。第2図はこの発明の円錐状筒形発熱体の一実施
例の断面図である。 3b・・・・・・加熱通路 5・・・・・・シリンダヘ
ッド5a・・・・・・スライド面 15・・・・・・円
錐状凸部17・・・・・・円錐状凹部 17a・・・・
・・ねじ20.22・・・・・・円錐状筒形発熱体28
.29・・・・・・(この発明の)円錐状筒形発熱体
FIG. 1 is an example showing a cross section of the main part of a conventional polymer ear shaped compound heating device. FIG. 2 is a sectional view of one embodiment of the conical cylindrical heating element of the present invention. 3b...Heating passage 5...Cylinder head 5a...Sliding surface 15...Conical convex portion 17...Conical recess 17a. ...
...Screw 20.22...Conical cylindrical heating element 28
.. 29... Conical cylindrical heating element (of this invention)

Claims (1)

【特許請求の範囲】[Claims] (1)電気抵抗材よりなる円錐状筒形発熱体の、口径の
大なる端面より、口径の小なる端面へ向けて、抵抗材の
肉厚を次第に、もしくは段階的に変え、上記両端面間に
電流を通じて発生するジュール熱を、任意に制御するよ
うにした高分子可塑化物加熱装置の発熱体。
(1) The thickness of the resistive material is gradually or stepwise changed from the end face with a larger diameter to the end face with a smaller diameter of a conical cylindrical heating element made of an electrically resistive material, and the thickness of the resistive material is gradually or stepwise changed between the two end faces. A heating element for a polymer plastic heating device in which the Joule heat generated through electric current can be arbitrarily controlled.
JP12257185A 1985-06-07 1985-06-07 Exothermic body of heating apparatus for high polymer plasticized material Pending JPS61280907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12257185A JPS61280907A (en) 1985-06-07 1985-06-07 Exothermic body of heating apparatus for high polymer plasticized material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12257185A JPS61280907A (en) 1985-06-07 1985-06-07 Exothermic body of heating apparatus for high polymer plasticized material

Publications (1)

Publication Number Publication Date
JPS61280907A true JPS61280907A (en) 1986-12-11

Family

ID=14839196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12257185A Pending JPS61280907A (en) 1985-06-07 1985-06-07 Exothermic body of heating apparatus for high polymer plasticized material

Country Status (1)

Country Link
JP (1) JPS61280907A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163956A (en) * 1978-06-07 1979-12-27 Ewikon Entwicklung Konstr Nozzle for molding machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54163956A (en) * 1978-06-07 1979-12-27 Ewikon Entwicklung Konstr Nozzle for molding machine

Similar Documents

Publication Publication Date Title
CA2413256C (en) Thick film heater apparatus
US11464920B2 (en) Indirectly heated capillary aerosol generator
AU2001250210A1 (en) Thick film heater apparatus
US10870149B2 (en) Material melting device
JPS58212919A (en) Die for multilayer extrusion molding
JPS6061224A (en) Injection molding device
CN206870391U (en) 3D printer shower nozzle and 3D printer
US4459250A (en) Process and apparatus of extrusion molding rubbers and thermal cross-linking synthetic resins
US4010351A (en) Cartridge heater with improved thermocouple
JPS59192543A (en) Injection molding device
JP7025085B2 (en) Hot end of modeling material for 3D modeling device, and 3D modeling device equipped with hot end
US5382147A (en) Intermittently heated injection molding apparatus
JPS61280907A (en) Exothermic body of heating apparatus for high polymer plasticized material
US4580037A (en) Electrically operated heated element with a flow channel for molten plastic
JPH10330804A (en) Sintering device
JPH018338Y2 (en)
CN220499963U (en) Printing head and 3D printer
RU2036800C1 (en) Apparatus to weld fitting with polymer material pipe
US20210187844A1 (en) Display screen with a graphical user interface
Taniguchi et al. Application Kaizen for FDM 3D High Temp (500° C) Hotend
Taniguchi et al. New and Unique Hotend for 500° C Range 3D FDM/FFF Usage
JPH04321895A (en) Fluid heating pipe
JPS595564Y2 (en) Heating device for plasticized molding materials
JP2019014144A (en) Roll for melt extrusion molding and method for producing sheet molded article
JPH10337760A (en) Injection molding machine with instantaneous heater by joule heat heating