JPS61280619A - Exposing device - Google Patents

Exposing device

Info

Publication number
JPS61280619A
JPS61280619A JP60122184A JP12218485A JPS61280619A JP S61280619 A JPS61280619 A JP S61280619A JP 60122184 A JP60122184 A JP 60122184A JP 12218485 A JP12218485 A JP 12218485A JP S61280619 A JPS61280619 A JP S61280619A
Authority
JP
Japan
Prior art keywords
wafer
exposure
mask
time
irradiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60122184A
Other languages
Japanese (ja)
Inventor
Makoto Torigoe
真 鳥越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP60122184A priority Critical patent/JPS61280619A/en
Publication of JPS61280619A publication Critical patent/JPS61280619A/en
Priority to US07/217,058 priority patent/US4822975A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70425Imaging strategies, e.g. for increasing throughput or resolution, printing product fields larger than the image field or compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching or double patterning
    • G03F7/70475Stitching, i.e. connecting image fields to produce a device field, the field occupied by a device such as a memory chip, processor chip, CCD, flat panel display

Abstract

PURPOSE:To enable to perform a uniform exposure on a wafer in a scanning type exposing device by a method wherein pulsed laser beam is irradiated on the wafer each time the scanning position reaches the prescribed positions at equal intervals. CONSTITUTION:Pulse-status laser beam, which is irradiated from an excimer laser light source 2, is made to diverge from its focal position F by a convex cylindrical lens 3, is reflection-condensed by a ring-band type spherical mirror 4, is turned into circular arc slit-shaped light in the Y direction and is irradiated on a mask M, while the carriage carrying the mask M and a water W thereon is made to shift to the X direction, electrical pulse for laser irradiation generates each time an index 6 passes through the graduations of a graduated scale 7 and lastly the circuit pattern of the mask M is exposed on the whole surface of the wafer W. As a pulse exposure is performed spacially and at equal intervals on the wafer W each time the carriage is made to shift as much as the slit width L to the scanning direction, an exposure can be performed continuously, and at the same time, uniformly on the wafer W.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は露光装置に関し、特に半導体露光装置に適する
@ 〔従来の技術〕 半導体技術は冒集積化、微細化の一途を辿シ。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to exposure equipment, and is particularly suitable for semiconductor exposure equipment. [Prior Art] Semiconductor technology is becoming increasingly integrated and miniaturized.

光学的な露光方式も高解除力のレンズの開発等でますま
す七の領域を拡げつつある。このような半導体露光装置
において、マスク又はレチクルの回路パターン上ウェハ
上に転写、焼付ける場合には、ウェハ上に焼付けられる
回路パターンの解倣線巾は光称の波長Vこ比例する友め
、近年では遠紫外(Deep LIV )領域の短い波
長の光源が用すられている。
Optical exposure methods are also expanding into new areas with the development of lenses with high release power. In such semiconductor exposure equipment, when transferring and printing a circuit pattern on a mask or reticle onto a wafer, the line width of the circuit pattern printed on the wafer is proportional to the wavelength V of the optical name. In recent years, light sources with short wavelengths in the deep ultraviolet (Deep LIV) region have been used.

従来この種の遠紫外光源としては、重水素ランプやXe
 −Hgランプが知られているが、これらの光源は遠紫
外領域においては出力が低く、またウェハ上に塗布され
るフォトレジスト材の感度4一般のリンクラフィに使わ
れるα用のレジストに対して低いので、露光時間が長く
なシ、スループットが小さくなる。
Conventionally, this type of deep ultraviolet light source includes deuterium lamps and Xe lamps.
- Hg lamps are known, but these light sources have low output in the far ultraviolet region, and the sensitivity of the photoresist material applied on the wafer4 is low compared to the α resist used in general link graffiti. Since the exposure time is low, the exposure time is long and the throughput is low.

一方、近年エキシマ(excimer )レーザという
高出力のdsep UV領域での光源が露光装置に対し
て有効な手段となる事〜が知得されている。しかしなが
ら、エキ7マレーザは従来の重水素ランプ。
On the other hand, in recent years, it has been discovered that an excimer laser, a high-output light source in the dsep UV region, is an effective means for exposure apparatuses. However, the Ex7Mer laser is a conventional deuterium lamp.

Xe −Hgランプと異なってパルス発振方式であるの
で、スリット状光のような小画面の光を走査して露光を
行う反射投影型の露光装置に単純にこの種のレーザ光を
用するのは一般に困難である。
Unlike the Xe-Hg lamp, it uses a pulse oscillation method, so it is difficult to simply use this type of laser light in a reflection projection exposure device that performs exposure by scanning a small screen of light such as a slit. Generally difficult.

〔発明が解決しようとする問題点と解決するための手段〕[Problems to be solved by the invention and means for solving them]

本発明はパルス比され几レーザ光を用いてスリット走査
型の露光を行なうことができる露光装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide an exposure apparatus capable of performing slit scanning type exposure using a pulse-ratio laser beam.

更に本発明は、走査の定速制御を不要とする露光装置1
に提供することを目的とする。
Furthermore, the present invention provides an exposure apparatus 1 that does not require constant scanning speed control.
The purpose is to provide

この目的は走査位置が等間隔の所定位置に達する毎にパ
ルス化され几レーザ光を照射させることによって達成さ
れる。ここでスリット走査される物体を載置するキャリ
ッジに指標を設ける一方、静止基準台上に例えばスリッ
ト幅の間隔を有する等間隔の目盛pヲ設は指標が目盛ル
を通過してい〈毎にレーザパルス照射用の信号ヲ発生さ
せる。
This purpose is achieved by irradiating pulsed laser light every time the scanning position reaches a predetermined position at equal intervals. Here, while an index is provided on the carriage on which the object to be scanned by the slit is placed, on the other hand, an equally spaced scale P having an interval of, for example, the slit width is provided on a stationary reference table. Generate a signal for pulse irradiation.

〔実施例〕〔Example〕

以下図面を参照して本発明の一実施例を説明する。第1
図(1) 、 (b)は1本発明の一実施例の反射投影
走査型の露光装置の縦断面図であ夛、I!1図(a)は
第1図(b)の照明部lの平面図である。
An embodiment of the present invention will be described below with reference to the drawings. 1st
Figures (1) and (b) are longitudinal cross-sectional views of a reflection projection scanning type exposure apparatus according to an embodiment of the present invention. FIG. 1(a) is a plan view of the illumination part l of FIG. 1(b).

ここで第1図(a)に示される円弧状のスリット光Sに
対し、物体が第1図(b)の矢印方向(走査方向〕に相
対移動してスリット領域毎、パターンを転写する。
Here, the object moves relative to the arc-shaped slit beam S shown in FIG. 1(a) in the direction of the arrow (scanning direction) in FIG. 1(b) to transfer the pattern in each slit area.

なお、第1図(c)は走査方向のエキシマレーザ光強度
分布を示す。
Note that FIG. 1(c) shows the excimer laser light intensity distribution in the scanning direction.

第1図(e)でLはスリット巾であシ、半値幅、すなわ
ち光強度が50チとなる位置の間隔とする。
In FIG. 1(e), L is the slit width, which is the half width, that is, the interval between the positions where the light intensity is 50 inches.

これによシ走査方向の光強度分布は裾部が重畳されて均
一化される。
As a result, the light intensity distribution in the scanning direction is made uniform by overlapping the tail portions.

照明部lにおいて、エキシマレーザ光源2は、例えばK
rFやXeC1が封入され、パルス化され九レーザ光を
発生する光源でるり、それぞれ248箇(KrF ) 
、 308 m (Xs C1)の遠紫外領域の波長の
光’kR生する。光源2の光路に沿って、遠紫外全透過
する材料で形成された凸シリンドリカルレンズ3又はト
ーリックレンズ、更に輪帯型の球面鏡4が配置されてい
る。
In the illumination section l, the excimer laser light source 2 is, for example, K
A light source containing rF and XeC1 and generating nine pulsed laser beams, each with 248 points (KrF).
, 308 m (Xs C1), which produces light 'kR with a wavelength in the deep ultraviolet region. Along the optical path of the light source 2, a convex cylindrical lens 3 or toric lens made of a material that completely transmits deep ultraviolet light, and an annular spherical mirror 4 are arranged.

球面鏡4によ)反射される光路に沿って、マスク量0反
射型の投影光学系5.ウェハWが配置されている。マス
クMとウェハWは、不図示の構造物(キャリッジ)によ
シ一体で担持され第1図(b)に示す方向(X方向〕に
移動可能である。
Along the optical path reflected by the spherical mirror 4), a reflection type projection optical system 5. A wafer W is placed. The mask M and the wafer W are integrally carried by a structure (carriage) not shown and are movable in the direction (X direction) shown in FIG. 1(b).

なお、この実施例では投影光学系5は等培結潅系である
In this embodiment, the projection optical system 5 is an equal-culture irrigation system.

ま之、6はキャリッジ(移動台)につけた指標。Mano, 6 is an index attached to the carriage (moving table).

7はそれと対になった静止基準台に設けられる等間隔の
目盛シで、目盛シの間隔は像面上のスリット巾し、即ち
走査方向の露光領域中に一致している。8は信号伝達系
、9はスリット光s2形成するためのスリットである。
Reference numeral 7 denotes equally spaced scale marks provided on a stationary reference stand paired therewith, and the interval between the scale marks corresponds to the slit width on the image plane, that is, the exposure area in the scanning direction. 8 is a signal transmission system, and 9 is a slit for forming the slit light s2.

上記橢底において、エキシマレーザ光源2により照射さ
れるパルス状のレーザ光は凸シリンドリカルレンズ3に
よシその焦点位置Fから発散され。
At the bottom, the pulsed laser beam irradiated by the excimer laser light source 2 is diverged from the focal point F by the convex cylindrical lens 3.

輪帯型の球面fs4により反射集光されて第1図(b)
の紙面と直交方向(Y方向に)Vc円孤スリット状の光
となりてマスクM上に照射される。
The light is reflected and focused by the annular spherical surface fs4 as shown in Fig. 1(b).
The mask M is irradiated with the Vc arc slit-shaped light in a direction perpendicular to the plane of the paper (in the Y direction).

他方マスクM及びウェハw2坦持するキャリッジはX方
向に移動し、最終的にマスクMO回路パターンがウェハ
Wの全面に露光される。
On the other hand, the carriage carrying the mask M and the wafer w2 moves in the X direction, and the mask MO circuit pattern is finally exposed on the entire surface of the wafer W.

すなわち、キャリッジが移動していって、それにつけら
れた指標6が目盛7の目盛を通過していく毎にレーザ照
射用の電気パルスを発生するようになっている。この指
標と目盛の組み合せはマグネスケールのような磁気的手
段、レーザ干渉測長機、エンコーダのような光電的手段
1等間隔に設けられる電気的スイッチ手段のいずれによ
っても良い。特にレーザ干渉測長機によれば最も高精度
となる。
That is, as the carriage moves, an electric pulse for laser irradiation is generated each time the mark 6 attached to it passes through the scale 7. The combination of the index and the scale may be made by a magnetic means such as a Magnescale, a laser interferometric length measuring machine, a photoelectric means such as an encoder, or an electric switch means provided at equal intervals. In particular, a laser interferometric length measuring machine provides the highest accuracy.

このように発生した電気パルスは信号伝達系8によって
エキシマレーザ2の発振トリガー用に適当なパルスに変
換されてエキシマレーザ2をパルス発振させる。なお、
発生したパルスがそのままエキシマレーザ2の発振トリ
ガー用として使えるならばこの信号伝達系8は不要であ
る。
The electric pulses thus generated are converted by the signal transmission system 8 into appropriate pulses for triggering the oscillation of the excimer laser 2, causing the excimer laser 2 to oscillate. In addition,
If the generated pulses can be used as they are to trigger the oscillation of the excimer laser 2, this signal transmission system 8 is unnecessary.

このように走査方向のスリット巾りだけキャリッジが移
動する毎に、すなわち空間的に等間隔にパルス露光が行
われるので、ウェハW上に連続的に、しかも均一に露光
を行うことができる。
In this way, pulse exposure is performed every time the carriage moves by the width of the slit in the scanning direction, that is, at equal spatial intervals, so that the wafer W can be exposed continuously and uniformly.

ところでエキシマレーザのパルス発光時間は通常lO〜
20 n5acと非常に短いので、キャリッジを連続移
動させても問題はない。
By the way, the pulse emission time of excimer laser is usually lO ~
Since it is very short at 20 n5ac, there is no problem even if the carriage is moved continuously.

なお、走査方向の露光光の均一性はフライアイレンズを
設け7’C!0、或いはフィルター、アパーチャー等に
よシ強度分布を均一に整形するとかすれば更に向上する
In addition, the uniformity of the exposure light in the scanning direction was confirmed by using a fly-eye lens. 0, or if the intensity distribution is shaped uniformly using a filter, aperture, etc., further improvement can be achieved.

なお目盛7を走査方向■露光領域中よシも十分小さくし
ておけば重ね露光することになシ、そのために、前記走
査方向の露光光の照度均一性はあまり問題にならない。
It should be noted that if the scale 7 is set in the scanning direction (2) and the width of the exposure area is made sufficiently small, overlapping exposure will not occur, so that the illuminance uniformity of the exposure light in the scanning direction will not be much of a problem.

但し、その場合、一枚のウェハの露光に多くのパルス全
必要とし、エキシマレーザのガス劣化をそれだけ早める
ことになる。
However, in this case, a large number of pulses are required to expose one wafer, which accelerates gas deterioration of the excimer laser.

なお、指標6と目盛シフに関しては目盛シt−都ヤリッ
ジに、指標tW止台に設けても良い。又、この指標〔若
しくは目盛ジ〕は、ウェハ側キャリッジでなくマスク側
キャリジに設けても良騒。
Note that the index 6 and the scale shift may be provided on the scale shift and the index tW stop. Also, this indicator (or scale) may be provided on the mask side carriage instead of the wafer side carriage.

なお、前述した実施例中、投影光学系5は縮小納置系に
しても良い。この際像側の開口数が大きくなるので解像
力の向上が見込まれる。
In the embodiments described above, the projection optical system 5 may be a reduction storage system. At this time, since the numerical aperture on the image side increases, it is expected that the resolution will improve.

但し、縮小率に合わせて走査速度を変える必要がある。However, it is necessary to change the scanning speed according to the reduction ratio.

〔効 果〕〔effect〕

以上説明したように、本発明に=れば走査型の露光装置
において均一な露光が可能となる。
As explained above, according to the present invention, uniform exposure is possible in a scanning type exposure apparatus.

また露光■トリガーを等間隔の目盛シを基準に行ってい
るのでキャリッジの走査を定速で行う必要がない。
Furthermore, since the exposure trigger is performed based on equally spaced scale marks, there is no need to scan the carriage at a constant speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b)は本発明の一実施例の図で、
第1図(b)は縦断面図、第1図(a)は第1図(b)
の平面図、第1図(e)はエキシマレーザの走査方向の
光強度分布図。 図中Mはマスク、Wはウェハ、2はエキシマレーザ光源
、6は指標、7は目盛シ、8は信号伝達系、9はスリッ
トである。
FIGS. 1(a) and 1(b) are diagrams of one embodiment of the present invention,
Figure 1(b) is a vertical cross-sectional view, Figure 1(a) is Figure 1(b)
FIG. 1(e) is a plan view of the excimer laser light intensity distribution in the scanning direction. In the figure, M is a mask, W is a wafer, 2 is an excimer laser light source, 6 is an index, 7 is a scale, 8 is a signal transmission system, and 9 is a slit.

Claims (1)

【特許請求の範囲】 1、第1の物体のパターンに対し相対的にスリット光を
走査し投影光学系を介して第2の物体にパターン転写す
る露光装置において、パルス化されたレーザ光で前記ス
リット光を形成する手段と、前記走査の走査位置が等間
隔の所定位置に達する毎に前記パルス化されたレーザ光
を発生させる手段を有することを特徴とする露光装置。 2、前記間隔はスリット幅に一致する特許請求の範囲第
1項記載の露光装置。 3、前記投影光学系は等倍結像系である特許請求の範囲
第1項記載の露光装置。 4、前記投影光学系は縮小結像系である特許請求の範囲
第1項記載の露光装置。
[Claims] 1. In an exposure apparatus that scans a slit light relative to a pattern on a first object and transfers the pattern to a second object via a projection optical system, An exposure apparatus comprising: means for forming a slit beam; and means for generating the pulsed laser beam every time the scan position of the scan reaches a predetermined position at equal intervals. 2. The exposure apparatus according to claim 1, wherein the distance corresponds to the slit width. 3. The exposure apparatus according to claim 1, wherein the projection optical system is a same-magnification imaging system. 4. The exposure apparatus according to claim 1, wherein the projection optical system is a reduction imaging system.
JP60122184A 1984-01-30 1985-06-05 Exposing device Pending JPS61280619A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP60122184A JPS61280619A (en) 1985-06-05 1985-06-05 Exposing device
US07/217,058 US4822975A (en) 1984-01-30 1988-07-08 Method and apparatus for scanning exposure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60122184A JPS61280619A (en) 1985-06-05 1985-06-05 Exposing device

Publications (1)

Publication Number Publication Date
JPS61280619A true JPS61280619A (en) 1986-12-11

Family

ID=14829655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60122184A Pending JPS61280619A (en) 1984-01-30 1985-06-05 Exposing device

Country Status (1)

Country Link
JP (1) JPS61280619A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135132A (en) * 1993-06-16 1995-05-23 Nikon Corp Projection aligner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07135132A (en) * 1993-06-16 1995-05-23 Nikon Corp Projection aligner

Similar Documents

Publication Publication Date Title
US4822975A (en) Method and apparatus for scanning exposure
US5160962A (en) Projection exposure apparatus
US6753947B2 (en) Lithography system and method for device manufacture
US4711568A (en) Exposure apparatus
US4952060A (en) Alignment method and a projection exposure apparatus using the same
US4780615A (en) Alignment system for use in pattern transfer apparatus
GB2155648A (en) Exposing wafers
JPH10135123A (en) Projection aligenr and manufacturing semiconductor device, using the same
JPH0114695B2 (en)
CN108474651A (en) Shape measurement system
JPS647618A (en) Method and apparatus for exposing semiconductor
Switkes et al. Patterning of sub-50 nm dense features with space-invariant 157 nm interference lithography
JPH04211110A (en) Projection aligner and aligning method
KR970077120A (en) Exposure condition measurement method
JPH01114035A (en) Aligner
KR970062822A (en) Exposure device
JPS61280619A (en) Exposing device
JPS60158449A (en) Exposing device
JPS56111218A (en) Projection and exposuring device
JPH08339954A (en) Illumination method and illumination device, and aligner using them
JPH0894338A (en) Mask inspection device
JP2501053B2 (en) Projection type exposure method using ultraviolet pulse laser
JPS6340316A (en) Device for manufacturing semiconductor
JPS6216526A (en) Projection exposure apparatus
JPH0547627A (en) Manufacturing method of semiconductor device and projection aligner using the same