JPS61280552A - Method for detecting temperature abnormality of bearing - Google Patents

Method for detecting temperature abnormality of bearing

Info

Publication number
JPS61280552A
JPS61280552A JP60120508A JP12050885A JPS61280552A JP S61280552 A JPS61280552 A JP S61280552A JP 60120508 A JP60120508 A JP 60120508A JP 12050885 A JP12050885 A JP 12050885A JP S61280552 A JPS61280552 A JP S61280552A
Authority
JP
Japan
Prior art keywords
bearing
temperature
temp
cooling water
rising ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60120508A
Other languages
Japanese (ja)
Other versions
JPH0548856B2 (en
Inventor
Hideo Mori
英夫 森
Junji Katakura
片倉 順二
Kazuo Onozuka
小野塚 一男
Kentaro Sato
健太郎 佐藤
Kenji Eguchi
江口 兼治
Shinya Asano
真也 浅野
Kazuo Uejima
上島 和男
Kazuji Aoyama
青山 和司
Takayoshi Tanimura
隆義 谷村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Tohoku Electric Power Co Inc
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Electric Power Co Inc, Meidensha Electric Manufacturing Co Ltd filed Critical Tohoku Electric Power Co Inc
Priority to JP60120508A priority Critical patent/JPS61280552A/en
Publication of JPS61280552A publication Critical patent/JPS61280552A/en
Publication of JPH0548856B2 publication Critical patent/JPH0548856B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

PURPOSE:To detect the temp. abnormality of a bearing with good accuracy, by comparing the temp. rising ratio of the bearing and the evaluation temp. rising ratio thereof and judging the temp. abnormality of the bearing when the temp. rising ratio of the bearing became higher than the evaluation temp. rising ratio thereof. CONSTITUTION:In the embodiment of an upright type water wheel dynamo, the temp. of a thrust bearing and that of cooling water are measured by the resistance thermometer provided to an inlet side and the temp. rising ratio D of the bearing is shown by formula I as the function of bearing evaluation temp. thetax, wherein the correction of the temp. of cooling water was added to the temp. of the bearing, on the basis of the measured temp. Then, the temp. thetax is operated according to the formula I to operate the rising ratio D. Further, an actual temp. rising ratio dtheta/dt is operated. Next, the rising ratio D is compared with the rising ratio dtheta/dt and, when dtheta/dt becomes larger than D, an abnormal alarm is emitted. By this method, the detection of the temp. of the bearing can be performed with good accuracy.

Description

【発明の詳細な説明】 A、産業上の利用分野 本発明は軸受の温度異常を検出する方法に関し、水温等
の外乱lこ影響さnずに確実に軸受の温度異常が検出で
きるように企図したものである。
DETAILED DESCRIPTION OF THE INVENTION A. Field of Industrial Application The present invention relates to a method for detecting temperature abnormalities in bearings, and is intended to reliably detect temperature abnormalities in bearings without being affected by external disturbances such as water temperature. This is what I did.

B0発明の概要 本発明は軸受の温度異常を検出する方法において、潤滑
油冷却水温度と軸受温度とから軸受換算温度を定め、こ
の軸受換算温度から求めた軸受評価温度上昇率上、軸受
温度から求めた軸受温度上昇率を比べて軸受の温度異常
を検出するようにしたもので、潤滑油冷却水温度の変化
に係わらず全ての温度範囲にわたり軸受の温度異常が検
出できるようにしたものである。
B0 Summary of the Invention The present invention provides a method for detecting temperature abnormalities in a bearing, in which a bearing conversion temperature is determined from the lubricating oil cooling water temperature and the bearing temperature, and the bearing evaluation temperature increase rate determined from the bearing conversion temperature is calculated based on the bearing temperature. This system detects bearing temperature abnormalities by comparing the determined bearing temperature rise rates, and allows bearing temperature abnormalities to be detected over the entire temperature range regardless of changes in lubricating oil cooling water temperature. .

C1従来の技術 一般に、水力発′α所の発電機や水車の軸受には、軸受
保護のために温度検出装置が取り付けられ、その軸受の
温度が異常温度となった場合に警報を発して水車等の運
転を停止させて機器の損傷を防止している。
C1 Conventional technology In general, temperature detection devices are attached to the bearings of generators and water turbines at hydropower stations to protect the bearings, and if the temperature of the bearing becomes abnormal, an alarm is issued and the water turbine is stopped. etc., to prevent damage to the equipment.

従来、この軸受温度検出装置による軸受温度の検出監視
は、第4図で示すように許容される最高温度θ=を設定
し、検出さnる軸受温度θ1が許容最高温度θ!を越え
た時警報を発するようにしている。ところがこの検出方
法では軸受が低温時(始動直後)に異常上昇した場合、
軸受温度の上昇は@oiの如く、軸受温度θlが異常上
昇開始時点から許容最高温度#、に達するまでに時間1
.を要、L/、t1時間経過後に始めて軸受温度θ−5
異常状態であることが確認できる。このため、警報が出
た時はすでに軸受部の焼付等重大な故障に発展してしま
うことがある。
Conventionally, in detecting and monitoring the bearing temperature using this bearing temperature detection device, the maximum allowable temperature θ= is set as shown in FIG. 4, and the detected bearing temperature θ1 is the maximum allowable temperature θ! An alarm will be issued when the limit is exceeded. However, with this detection method, if the bearing rises abnormally at low temperatures (immediately after startup),
As shown in @oi, the bearing temperature rise takes 1 time from the start of the abnormal rise until the bearing temperature θl reaches the maximum allowable temperature #.
.. The bearing temperature θ-5 starts after the elapse of L/, t1 time.
An abnormal state can be confirmed. Therefore, by the time the alarm is issued, a serious failure such as seizure of the bearing may already occur.

そこで上記方法の欠点を解消するため軸受@度の上昇過
程の異常を監視することに着目し、第5図で示すように
軸受温度の関数としにしたものが提案されている。この
方法によると温度上昇率により異常判断を行なうため応
答性が良好であり、しかも軸受温度θの変化に応じて適
確な異常判断値としての温度上昇率を変化させるため、
起動時あるいは長時間運転後にかかわらず適切な温度異
常判断を行なうことができる。
Therefore, in order to eliminate the drawbacks of the above method, attention has been focused on monitoring abnormalities in the process of increasing the temperature of the bearing, and a method has been proposed in which the abnormality is monitored as a function of the bearing temperature, as shown in FIG. According to this method, the abnormality is judged based on the temperature rise rate, so the responsiveness is good.Moreover, since the temperature rise rate is changed as an accurate abnormality judgment value according to changes in the bearing temperature θ,
Appropriate temperature abnormality judgments can be made whether at startup or after long-term operation.

ところで、潤滑油冷却水の温度が季節によシ変化すると
第6図の如く軸受温度θに本変化が生じる。即ち、夏場
の水温Bと冬場の水温AにはΔtcの差があり、軸受飽
和温度に4ΔtBの差が生じ、軸受温度−aを温度上昇
率と軸受温度の関係で表わす第7図で示すように軸受温
度の上昇率は冷却水温度によって異なった値となる。こ
こで軸受飽和温度差ΔtBは一般的に冷却水温度差Δt
cの約半分になることが判明しておシ、冷却水温の年間
変化はおおむね20℃であるので、軸受温度の変化は約
10℃となる。尚%第6図において、冷却水温度がへの
場合の各時間に対する軸受温度θは下式で表わすこ七が
できる。
By the way, when the temperature of the lubricating oil cooling water changes depending on the season, this change occurs in the bearing temperature θ as shown in FIG. In other words, there is a difference of Δtc between water temperature B in summer and water temperature A in winter, resulting in a difference of 4ΔtB in bearing saturation temperature, as shown in Fig. 7, which shows bearing temperature -a as a relationship between temperature increase rate and bearing temperature. The rate of increase in bearing temperature varies depending on the cooling water temperature. Here, the bearing saturation temperature difference ΔtB is generally the cooling water temperature difference Δt
Since the annual change in cooling water temperature is approximately 20°C, the bearing temperature change is approximately 10°C. In FIG. 6, the bearing temperature θ for each time when the cooling water temperature is 0 can be expressed by the following equation.

θミθA(1−1−TA)             
拳・・ (1)(1)式よシ また(1ン式より 一止 θ;θ −θ ε TA A   人 σA (z)、 (3)式よシ軸受温度の変化率は。
θmi θA (1-1-TA)
Fist... (1) According to the formula (1), the rate of change of the bearing temperature is given by the equation (1).

となる。becomes.

上式においてtは時間、TAは時間常数(タイムコンス
タント)である。
In the above formula, t is time and TA is a time constant.

また冷却水温がBの場合も同様1こ計算することができ
る。
Further, when the cooling water temperature is B, the same calculation can be performed.

D6発明が解決しようとする問題点 上述した方法では軸受温度上昇率を異常判断の基準とし
ているため、始動時に軸受温度が急上昇した場合は速や
力)に異常判断を行なうことができる等、運転状態に合
わせた異常判断が可能であるが、軸受温度に無視できな
い影響を与える潤滑油冷却水温に対する考慮がない。そ
の結果、特に腿と冬で冷却水温の差が大きい場所で使用
さnる発電機等の軸受の温度異常検出は精度良(行なう
ことが不可能であった。
D6 Problems to be Solved by the Invention In the method described above, the rate of increase in bearing temperature is used as the standard for abnormality judgment, so if the bearing temperature suddenly rises during startup, abnormality judgment can be made based on speed and force. Although it is possible to determine abnormalities according to the condition, there is no consideration given to the lubricating oil cooling water temperature, which has a non-negligible effect on the bearing temperature. As a result, it has been impossible to accurately detect temperature abnormalities in bearings of generators, etc., which are used in places where there is a large difference in cooling water temperature between winter and winter.

本発明は上述した欠点を解決するためなさnたもので、
@受温度と潤滑油冷却水温度を基にして軸受温度の異常
を検出する方法を提供し、もって全ての温度範囲にわた
って短時間に軸受温度異常):i:検出できるようにす
ると共に、冷却水温度変化などの外乱を防止して精度良
く軸受温度異常を検出できるようにすることを目的とす
る。
The present invention has been made to solve the above-mentioned drawbacks.
@Provides a method to detect bearing temperature abnormalities based on bearing temperature and lubricating oil cooling water temperature, thereby making it possible to detect bearing temperature abnormalities over the entire temperature range in a short time) The purpose is to prevent disturbances such as temperature changes and to detect bearing temperature abnormalities with high accuracy.

E0問題点を解決するための手段・作用上記のような欠
点を解決する本発明は、潤滑油冷却水温度−ζ軸受構造
毎に定めらnる定数を乗じた値と軸受温度とを演算して
軸受換算温度を定め、この軸受換算温度から軸受評価温
度上昇率を求めると共に軸受温度から軸受温度上昇率を
求め、この軸受温度上昇率と前記軸受評価温度上昇車と
を比べ軸受温度上昇率がその時点の軸受評価温度上昇率
を越えた場合に軸受温度異常とみなすようにしたもので
ある。
Means and operation for solving the E0 problem The present invention, which solves the above-mentioned drawbacks, calculates the value obtained by multiplying the lubricating oil cooling water temperature by a constant n determined for each bearing structure and the bearing temperature. Determine the bearing conversion temperature, calculate the bearing evaluation temperature rise rate from this bearing conversion temperature, calculate the bearing temperature rise rate from the bearing temperature, and compare this bearing temperature rise rate with the bearing evaluation temperature rise car. If the temperature rise rate exceeds the bearing evaluation temperature increase rate at that time, it is considered as a bearing temperature abnormality.

F6実施例 以下本発明の一実施例を図面に基づき詳細に説明する。F6 example An embodiment of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例に係る軸受温度異常検出方法
を示すグラフ、第2図は本発明方法を適用した立形水車
発電機の推力軸受の部分縦断面、第3図は本発明を示す
フローチャートである。推力軸受の回転軸1は回転子2
と一体となっており、又回転軸lには回転部材〔スラス
トボス〕3が一体的に取付けられている。回転部材3の
周面はラジアルジャーナル部4aなっており、又回転部
材3には11ング状の回転板5が取付けられ1回転板5
の下面はスラストジャーナル部6となっている。一方、
枠体7には回転板5及び回転部材3を収容し且つ潤滑用
の油8が貯えられた油槽9が設けらnている。油槽9の
上部には前記ラジアルジャーナル部4を囲繞するラジア
ル軸受(ガイドメタル)10が設けられ1回転部材3に
は油8を前記ラジアルジャーナル部4とラジアル軸受1
0との間に導くための導油孔11が設けられている。油
槽9の底部には前記スラストジャーナル部6と面するス
ラスト軸受(セクターメタル)12が固定されて、スラ
スト軸受121こは図示しない抵抗温度計が設けらnて
いる。又、油W!9内の油8中(こは多数の冷却水管1
3が配管さn・その中を冷却水が通されるようになって
おり、冷却水管13の人口側には図示しない抵抗温度計
が設けられている@ この装置では1回転軸lと共に回転部材3が回転し、そ
の遠心力により油8がスラストジャーナル部6とスラス
ト軸受12との間並びに導油管11を通ってラジアルジ
ャーナル部4とラジアル軸受10との間に供給さ几。
FIG. 1 is a graph showing a bearing temperature abnormality detection method according to an embodiment of the present invention, FIG. 2 is a partial vertical cross-section of a thrust bearing of a vertical water turbine generator to which the method of the present invention is applied, and FIG. 3 is a graph showing the method according to the present invention. It is a flowchart which shows. The rotating shaft 1 of the thrust bearing is the rotor 2
A rotating member [thrust boss] 3 is integrally attached to the rotating shaft l. The circumferential surface of the rotating member 3 is a radial journal portion 4a, and an 11-ring-shaped rotating plate 5 is attached to the rotating member 3.
The lower surface of is a thrust journal portion 6. on the other hand,
The frame body 7 is provided with an oil tank 9 that accommodates the rotating plate 5 and the rotating member 3 and stores lubricating oil 8. A radial bearing (guide metal) 10 surrounding the radial journal part 4 is provided at the upper part of the oil tank 9, and oil 8 is supplied to the rotating member 3 between the radial journal part 4 and the radial bearing 1.
0 is provided with an oil guide hole 11 for guiding the oil between the two. A thrust bearing (sector metal) 12 facing the thrust journal portion 6 is fixed to the bottom of the oil tank 9, and the thrust bearing 121 is provided with a resistance thermometer (not shown). Also, oil W! Oil in 9 (this is a large number of cooling water pipes 1)
3 is a pipe (n) through which cooling water is passed, and a resistance thermometer (not shown) is installed on the artificial side of the cooling water pipe (13). 3 rotates, and the oil 8 is supplied between the radial journal part 4 and the radial bearing 10 through the oil guide pipe 11 and between the thrust journal part 6 and the thrust bearing 12 due to the centrifugal force.

各軸受部がそれぞれ冷却さnると共に、冷却に供さnた
油8は冷却水管13内を流れる水によって冷却される。
As each bearing portion is cooled, the oil 8 used for cooling is cooled by water flowing through the cooling water pipe 13.

スラスト軸受12と冷却水の温度はスラスト軸受12と
冷却水管13の入口側(こ設けられた抵抗温度計によっ
て計測され、計測された温度を基にして下式の如く軸受
評価温度上昇率りを軸受温度に冷却水温の補正を加えた
軸受評価温度θXの関数として表わす。
The temperature of the thrust bearing 12 and the cooling water is measured by a resistance thermometer installed on the inlet side of the thrust bearing 12 and the cooling water pipe 13.Based on the measured temperature, the bearing evaluation temperature rise rate is calculated as shown in the following formula. It is expressed as a function of bearing evaluation temperature θX, which is the bearing temperature plus cooling water temperature correction.

θX−θN−θCN−K(θCo−θcN)@″(5)
Dミー A19X + B             
 −* (6)θXX軸軸受換算温 度N二刻々の軸受温度 θCNCN前の冷却水温度 に:冷却水温変化の補正係数 θco:初期値(基準値)の冷却水温度D=軸受評価温
度上昇率 A、B:そnぞn軸受の大きさ、構造によって決する係
1      ℃ 数及び定数。単位はそnぞれ=及び=−0min   
   mtn 尚、(5)式中の補正係数には軸受構造及びその冷却構
造などによシ異なった値上なる。水車発電機の軸受例で
は0.4〜0.8程度である。
θX-θN-θCN-K(θCo-θcN)@″(5)
D Me A19X + B
-* (6) θXX axis bearing conversion temperature N2 Momentary bearing temperature θCNCN Previous cooling water temperature: Correction coefficient for cooling water temperature change θco: Initial value (reference value) cooling water temperature D = Bearing evaluation temperature increase rate A , B: Coefficient 1°C and constant determined by the size and structure of the bearing. Units are n= and =-0min respectively
mtn Note that the correction coefficient in equation (5) has different values depending on the bearing structure, its cooling structure, etc. In an example of a bearing for a water turbine generator, it is about 0.4 to 0.8.

とのKの値を軸受構造の異なった実測例毎に用意してお
けば類似機の冷却水温度変化の補正係数には事前に推定
することが可能である。
If the value of K is prepared for each measured example of a different bearing structure, it is possible to estimate in advance the correction coefficient for the cooling water temperature change of a similar machine.

この(5) (63式により第6図で示した冷却水温度
A、  Bそnぞれの軸受温度上昇率りと軸受評価温度
θXとの関係を表わす上第1図で示したようになる。即
ち冷却水温度に大きな差があっても軸受温度θえとθB
の特性がほとんど一致しているので軸受換算温度θXに
対して軸受評価温度上昇率りは略同じ値となり、軸受温
度の異常を正確に検出することができる。
Using this formula (5) (63), the relationship between the bearing temperature rise rate for each of the cooling water temperatures A and B shown in Figure 6 and the bearing evaluation temperature θX is expressed as shown in Figure 1. In other words, even if there is a large difference in the cooling water temperature, the bearing temperature θ, θB
Since the characteristics are almost the same, the bearing evaluation temperature increase rate has approximately the same value with respect to the bearing conversion temperature θX, and an abnormality in the bearing temperature can be accurately detected.

尚、冷却水温度にΔtcなる大きな差があっても極〈わ
ずかな差ΔtBX の範囲の誤差となることは軸受温度
θ^とθBが略一致しているので当然の結果である。
It should be noted that even if there is a large difference of Δtc in the cooling water temperature, the error will be within the range of a very small difference ΔtBX, which is a natural result since the bearing temperatures θ^ and θB are substantially the same.

次に具体的な異常検出について第3図のフローチャート
を参照して説明する。まず軸受温度と冷却水温度がコン
ピュータに入力され軸受評価温度θXが(5)式に基づ
き演算さn、この軸受評価温度θXから(6)式に基づ
き軸受評価温度上昇率りが演算される。また実際の軸受
率りよシも大きくなった場合には異常警報が変上昇率り
よりも小さいかあるいは等しい場合には軸受温度と冷却
水温度の検出が続けらnる。
Next, specific abnormality detection will be explained with reference to the flowchart of FIG. First, the bearing temperature and the cooling water temperature are input to the computer, and the bearing evaluation temperature θX is calculated based on equation (5). From this bearing evaluation temperature θX, the bearing evaluation temperature increase rate is calculated based on equation (6). Further, when the actual bearing rate increase also increases, if the abnormality alarm is smaller than or equal to the change rate, the detection of the bearing temperature and cooling water temperature continues.

尚上記一実施例は水車発電機の軸受に適用したものであ
るが、軸受潤滑油を水で冷却する型の軸受であれば上記
一実施例に限定されるものではない。
Although the above embodiment is applied to a bearing of a water turbine generator, the present invention is not limited to the above embodiment as long as the bearing is of a type in which the bearing lubricating oil is cooled with water.

G1発明の効果 本発明に係る軸受温度異常検出方法においては、軸受温
度と冷却水温度に基づき軸受換算温度を求めこの軸受換
算温度から軸受評価温度上昇率を演算し、この軸受評価
温度上昇率と実際の軸受温度上昇率を比較して軸受温度
の異常を検出しているので、全ての温度範囲にわたって
短時間に軸受温度異常の検出ができる。更に冷却水温度
変化などの外乱を防止して精度良く軸受温度異常の検出
ができる。
G1 Effects of the Invention In the bearing temperature abnormality detection method according to the present invention, a bearing conversion temperature is obtained based on the bearing temperature and the cooling water temperature, a bearing evaluation temperature increase rate is calculated from this bearing conversion temperature, and the bearing evaluation temperature increase rate and the bearing evaluation temperature increase rate are calculated. Since an abnormality in the bearing temperature is detected by comparing the actual bearing temperature increase rate, an abnormality in the bearing temperature can be detected in a short time over the entire temperature range. Furthermore, disturbances such as changes in cooling water temperature are prevented, and bearing temperature abnormalities can be detected with high accuracy.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る軸受温度異常検出方法
を示すグラフ、第2図は本発明方法を適用した立形水車
発電機の推力軸受の部分縦断面図、第3図は本発明方法
を示すフローチャート、第4図は許容最高温度を決めて
軸受温度の異常検出を行なう方法を示すグラフ、第5図
は軸受温度上昇率に基づいて軸受温度の異常検出を行な
う方@を示すグラフ、第6図は冷却水温度と軸受温度の
変化を示すグラフ、第7図は第6図で示した軸受温度面
!Iを温度上昇率と軸受温度の関係で表わすグラフであ
る。 図 面 中。 1は回転軸。 10はラジアル軸受。 12はスラスト軸受。 13は冷却水管。 θXは軸受換算温度。 Dは軸受評価温度上昇率である。
Fig. 1 is a graph showing a bearing temperature abnormality detection method according to an embodiment of the present invention, Fig. 2 is a partial vertical cross-sectional view of a thrust bearing of a vertical water turbine generator to which the method of the present invention is applied, and Fig. 3 is a graph showing the method of detecting an abnormality in bearing temperature according to an embodiment of the present invention. A flowchart showing the invention method, Fig. 4 is a graph showing a method for detecting abnormalities in bearing temperature by determining the maximum allowable temperature, and Fig. 5 shows a method for detecting abnormalities in bearing temperature based on the bearing temperature increase rate. The graph, Figure 6 is a graph showing the change in cooling water temperature and bearing temperature, and Figure 7 is the bearing temperature surface shown in Figure 6! 2 is a graph showing I as a relationship between temperature increase rate and bearing temperature. Inside the drawing. 1 is the rotation axis. 10 is a radial bearing. 12 is a thrust bearing. 13 is the cooling water pipe. θX is the bearing conversion temperature. D is the bearing evaluation temperature increase rate.

Claims (1)

【特許請求の範囲】[Claims] 潤滑油冷却水温度に軸受構造毎に定められる定数を乗じ
た値と実際の軸受温度とを基にして軸受換算温度を定め
、該軸受換算温度から軸受評価温度上昇率を求めると共
に、実際の軸受温度から軸受温度上昇率を求め、当該軸
受温度上昇率と前記軸受評価温度上昇率を比較し、軸受
温度上昇率が軸受評価温度上昇率よりも高くなつた場合
に軸受温度の異常と判定することを特徴とする軸受温度
の異常検出方法。
The bearing conversion temperature is determined based on the value obtained by multiplying the lubricating oil cooling water temperature by a constant determined for each bearing structure and the actual bearing temperature, and the bearing evaluation temperature increase rate is determined from the bearing conversion temperature. Determine the bearing temperature increase rate from the temperature, compare the bearing temperature increase rate with the bearing evaluation temperature increase rate, and determine that the bearing temperature is abnormal if the bearing temperature increase rate becomes higher than the bearing evaluation temperature increase rate. A bearing temperature abnormality detection method characterized by:
JP60120508A 1985-06-05 1985-06-05 Method for detecting temperature abnormality of bearing Granted JPS61280552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60120508A JPS61280552A (en) 1985-06-05 1985-06-05 Method for detecting temperature abnormality of bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60120508A JPS61280552A (en) 1985-06-05 1985-06-05 Method for detecting temperature abnormality of bearing

Publications (2)

Publication Number Publication Date
JPS61280552A true JPS61280552A (en) 1986-12-11
JPH0548856B2 JPH0548856B2 (en) 1993-07-22

Family

ID=14787940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60120508A Granted JPS61280552A (en) 1985-06-05 1985-06-05 Method for detecting temperature abnormality of bearing

Country Status (1)

Country Link
JP (1) JPS61280552A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089786A (en) * 2009-10-20 2011-05-06 Toyota Motor Corp Lubrication system
CN111521427A (en) * 2020-05-30 2020-08-11 华能澜沧江水电股份有限公司 Method for detecting abnormity of guide bearing cooler in real time based on heat transfer coefficient change

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011089786A (en) * 2009-10-20 2011-05-06 Toyota Motor Corp Lubrication system
CN111521427A (en) * 2020-05-30 2020-08-11 华能澜沧江水电股份有限公司 Method for detecting abnormity of guide bearing cooler in real time based on heat transfer coefficient change

Also Published As

Publication number Publication date
JPH0548856B2 (en) 1993-07-22

Similar Documents

Publication Publication Date Title
Oh et al. A novel method and its field tests for monitoring and diagnosing blade health for wind turbines
JP4364641B2 (en) How to monitor sensors
CN1043187A (en) The turbine blade shroud temp monitor unit
CN109830941A (en) New-energy automobile IGBT mould group overheat protector strategy and device
WO2014064514A1 (en) Failure prediction in a rotating device
CN110700997A (en) Method for monitoring rotating speed of impeller of wind power pitch control system
CN107527667A (en) A kind of nuclear power station Important Auxiliary equipment protects system
KR102208831B1 (en) Apparatus and method for diagnosis of motor pump
JPS61280552A (en) Method for detecting temperature abnormality of bearing
JP2011132961A (en) System and method for triggering emergency system of wind turbine, wind turbine, computer program and computer readable record medium
CN107956518B (en) Nuclear turbine low-pressure rotor expansion amount accounting method
JP7239510B2 (en) Vacuum pump
TWI815960B (en) Bearing apparatus
CN112013980B (en) Brake resistor over-temperature detection method, device and storage medium
JPS588823A (en) Diagnosis method for abnormality in bearing
CN112304635B (en) Electric drive system fault detection device, detection system and detection method
CN105736255A (en) Determination method for over-temperature shut-down of water chilling unit in offshore wind farm
JPH05182838A (en) Abnormality monitoring device of oil-immersed electric equipment
JPH10339663A (en) Method for triggering protective means at time of vibration generation of rotating apparatus
JPH05225474A (en) Method and device for abnormality diagnosis of plant apparatus
JPS6324170B2 (en)
SU1751499A1 (en) Method of control over radial active magnetic bearings of rotary machine
JPH026296B2 (en)
JPS58217816A (en) Trouble monitoring device for thrust bearing
Matías et al. Torsional vibration analysis applied for centrifugal pump condition monitoring

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees