JPS6128023B2 - - Google Patents

Info

Publication number
JPS6128023B2
JPS6128023B2 JP57048489A JP4848982A JPS6128023B2 JP S6128023 B2 JPS6128023 B2 JP S6128023B2 JP 57048489 A JP57048489 A JP 57048489A JP 4848982 A JP4848982 A JP 4848982A JP S6128023 B2 JPS6128023 B2 JP S6128023B2
Authority
JP
Japan
Prior art keywords
alloy
weight
magnetic
present
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57048489A
Other languages
Japanese (ja)
Other versions
JPS58164765A (en
Inventor
Osamu Myoga
Hitoshi Igarashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP57048489A priority Critical patent/JPS58164765A/en
Publication of JPS58164765A publication Critical patent/JPS58164765A/en
Publication of JPS6128023B2 publication Critical patent/JPS6128023B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はFe−Co−Mn−C系磁性合金に関す
る。 Fe−Co−Mn−C−B合金は強度な冷間加工が
可能であり、簡単な熱処理で良好な磁気特性を有
し、さらに所望の場所を非磁性化できるという大
きな特徴を有する磁性材料合金として、すでに、
本発明の発明者らによつて提案されている。 Fe−Co−Mn−C−B合金は上記のような優れ
た性質を有ているものの、耐食性の点で他の磁性
材料用合金、例えば、e−Cr−Co系合金と比べ
てやや劣つている。 本発明はFe−Co−Mn−C−B合金の上記のよ
うな優れた性質を損うことなく、優れた耐食性を
有する磁性材料用合金を提供するものである。 本発明の磁性材料用合金はCoが30〜55重量
%、Mnが15〜20重量%、Cが0.3〜1.8重量%、
Bが0.022重量%以下、Crが2〜15重量%、そし
て残部がFeからなることを特徴とする合金であ
る。Feは910℃〜1390℃の温度範囲で非磁性の面
心立方構造(以下、γ相という)となるが、室温
に急冷すると、磁性を有する体心立方構造(以
下、α相という)となる。FeにMnを添加し、
Mnの添加量を増加すると、γ/(γ+α)境界
が低温側へ向つて移り、そして、Cを少量添加す
ると、高温での非磁性のγ相が室温で得られる。
さらにCoの添加は本発明の合金の磁化量を増加
させ、保磁力を大きくする効果がある。BはFe
に対して高温でγ域を形成て固溶し、Fe−Co−
Mn−C合金の磁気特性を改善する元素である。
またCrの添加は本発明の合金の大きな特徴であ
り、本発明の合金が耐食性を有するために必要な
元素である。 上記の本発明の合金は、熱平衡状態で非磁性の
γ相が得られる温度範囲で熱処理した後、室温に
急冷すると相変態が起ることなくγ相状態であり
冷間圧延、冷間スエージおよび冷間伸線加工を強
度に施しても割れを生じることはなく、しかも非
磁性状態を保持し、良好な加工性を有する合金で
ある。さらにこれらの冷間加工を行なつた後、熱
処理によつて所望の磁気特性を有した本発明の合
金はFe−Cr−Co系合金と同等の耐食性を有して
いることがわかつた。 次に本発明の合金について実施例によつて説明
する。まず試料として次の第1表に示すNo.1〜
7までの7種類の組成を選んだ。また比較のため
No.8およびNo.9として公知のFe−Co−Mn−C−
B合金およびFe−Cr−Co−Ti合金を選んだ。
The present invention relates to a Fe-Co-Mn-C magnetic alloy. Fe-Co-Mn-C-B alloy is a magnetic material alloy that can be subjected to strong cold working, has good magnetic properties with simple heat treatment, and can be made non-magnetic at desired locations. As, already,
It has been proposed by the inventors of the present invention. Although Fe-Co-Mn-C-B alloy has the above-mentioned excellent properties, it is slightly inferior in corrosion resistance compared to other alloys for magnetic materials, such as e-Cr-Co alloys. There is. The present invention provides an alloy for magnetic materials that has excellent corrosion resistance without impairing the above-mentioned excellent properties of the Fe-Co-Mn-C-B alloy. The alloy for magnetic materials of the present invention contains 30 to 55% by weight of Co, 15 to 20% by weight of Mn, and 0.3 to 1.8% by weight of C.
It is an alloy characterized by B being 0.022% by weight or less, Cr being 2 to 15% by weight, and the balance being Fe. Fe has a non-magnetic face-centered cubic structure (hereinafter referred to as γ phase) in the temperature range of 910℃ to 1390℃, but when rapidly cooled to room temperature, it changes to a magnetic body-centered cubic structure (hereinafter referred to as α phase). . Adding Mn to Fe,
When the amount of Mn added is increased, the γ/(γ+α) boundary shifts toward the lower temperature side, and when a small amount of C is added, a high-temperature nonmagnetic γ phase is obtained at room temperature.
Furthermore, the addition of Co has the effect of increasing the amount of magnetization of the alloy of the present invention and increasing the coercive force. B is Fe
At high temperatures, a γ region is formed and solid solution is formed, and Fe−Co−
It is an element that improves the magnetic properties of Mn-C alloys.
Further, the addition of Cr is a major feature of the alloy of the present invention, and is an element necessary for the alloy of the present invention to have corrosion resistance. The above-mentioned alloy of the present invention is heat treated in a temperature range in which a non-magnetic γ phase is obtained in a thermal equilibrium state, and then rapidly cooled to room temperature to maintain a γ phase state without phase transformation. It is an alloy that does not crack even when subjected to intense cold wire drawing, maintains a non-magnetic state, and has good workability. Furthermore, after performing these cold workings, it was found that the alloy of the present invention, which had the desired magnetic properties through heat treatment, had corrosion resistance equivalent to that of Fe-Cr-Co alloys. Next, the alloy of the present invention will be explained using examples. First, as a sample, No.1~ shown in Table 1 below.
Seven types of compositions up to 7 were selected. Also for comparison
Fe-Co-Mn-C- known as No.8 and No.9
B alloy and Fe-Cr-Co-Ti alloy were selected.

【表】 まず、第1表のNo.1〜4に示した化学成分組
成の合金インゴツトは1100℃の温度で1時間、
Ar雰囲気中で溶体化処理した後、10%NaOH水溶
液中に浸して急冷した。これらの合金インゴツト
から各々小片を切り出し、磁化量を測定すると、
飽和磁束密度(以下、Bsという)はいずれも
10Gauss程度であつた。またX線回折により結晶
構造を調べたところ、いずれも面方立方構造以外
の回折パターンは観測されず、γ相が室温で得ら
れたことを確認した。No.5〜6は本発明の特許
請求の範囲から外れた化学成分組成の合金インゴ
ツトであるが、No.1〜4の合金インゴツトと同
様の処理を施したところ、No.5は同様の結果が
得られた。しかし、No.6の合金インゴツトは、
Bs=1.1KGaussとなり、非磁性のγ相を室温に
導入できなかつた。No.7〜8はCrを添加しない
従来のFe−Co−Mn−C−Bの化学成分組成の合
金インゴツトであり、No.1〜4の合金インゴツ
トと同様の処理を施したところ、同様の結果が得
られた。No.1〜5、およびNo.7〜8のγ相状態
の合金インゴツトの表面酸化膜を除去した後、減
面率で97%の冷間伸線加工を施し、その後Ar雰
囲気中で熱処理を施した。また第1表のNo.9は
Fe−Cr−Co系合金の1例である。No.9の合金イ
ンゴツトは、1180℃で1時間水素雰囲気中で溶体
化処理を施し、水中に浸して急冷した。その後、
減面率70%の冷間伸線加工を施し、再び、650℃
で1時間水素雰囲気中で熱処理を施し、水中に急
冷した(条件A)。その後再び、625℃から505℃
まで18℃/時間の速度で降しつつ水素雰囲気中で
熱処理をし、さらに505℃で8時間、素雰囲気中
で熱処理を施した(条件B)。次に第1表に示し
た試料の組成と各種処理条件及び磁気特性との関
係を第2表に示す。
[Table] First, alloy ingots having the chemical composition shown in Nos. 1 to 4 in Table 1 were heated at a temperature of 1100℃ for 1 hour.
After solution treatment in an Ar atmosphere, it was quenched by immersing it in a 10% NaOH aqueous solution. Cutting out small pieces from each of these alloy ingots and measuring the amount of magnetization,
The saturation magnetic flux density (hereinafter referred to as Bs) is
It was about 10 Gauss. In addition, when the crystal structure was examined by X-ray diffraction, no diffraction pattern other than an in-plane cubic structure was observed, confirming that the γ phase was obtained at room temperature. Nos. 5 to 6 are alloy ingots with chemical compositions that are outside the scope of the claims of the present invention, but when subjected to the same treatment as the alloy ingots of Nos. 1 to 4, No. 5 had similar results. was gotten. However, No. 6 alloy ingot is
Bs=1.1 KGauss, and the nonmagnetic γ phase could not be introduced at room temperature. Nos. 7 to 8 are alloy ingots with the conventional chemical composition of Fe-Co-Mn-C-B without the addition of Cr, and when subjected to the same treatment as the alloy ingots Nos. 1 to 4, the same results were obtained. The results were obtained. After removing the surface oxide film of the alloy ingots in the γ phase state of Nos. 1 to 5 and Nos. 7 to 8, they were subjected to cold wire drawing with an area reduction rate of 97%, and then heat treated in an Ar atmosphere. provided. Also, No.9 in Table 1 is
This is an example of a Fe-Cr-Co alloy. Alloy ingot No. 9 was solution-treated at 1180°C for 1 hour in a hydrogen atmosphere, and then quenched by immersion in water. after that,
Cold wire drawing process with area reduction rate of 70% is applied, and then heated to 650℃ again.
The sample was heat-treated in a hydrogen atmosphere for 1 hour and quenched in water (condition A). Then again from 625℃ to 505℃
Heat treatment was performed in a hydrogen atmosphere at a rate of 18°C/hour to 505°C for 8 hours (condition B). Next, Table 2 shows the relationship between the composition of the samples shown in Table 1, various processing conditions, and magnetic properties.

【表】【table】

【表】 の条件である。
第2表中の磁気特性から、従来のFe−Co−Mn
−C−B合金にCrを添加しても保磁力(Hc)、残
留磁束密度(Br)、Br/Bs、最大エネルギー積
(BHmax)等の磁気特性を劣化させないことがわ
かつた。 次に第2表に示した磁気特性を有する試料を温
度50℃、湿度90%の環境で耐食試験を行ないその
結果を第3表に示した。評価は目視で行ないさび
の有無を判定した。
These are the conditions in [Table].
From the magnetic properties in Table 2, conventional Fe-Co-Mn
It has been found that adding Cr to the -C-B alloy does not deteriorate magnetic properties such as coercive force (Hc), residual magnetic flux density (Br), Br/Bs, and maximum energy product (BHmax). Next, the samples having the magnetic properties shown in Table 2 were subjected to a corrosion resistance test at a temperature of 50° C. and a humidity of 90%, and the results are shown in Table 3. Evaluation was performed visually to determine the presence or absence of rust.

【表】 示す。
第3表中のCrを2重量%以上添加した試料は
Fe−Cr−Co系の試料と同等の耐食性を有してい
ることがわかる。 第2表および第3表の結果から、本発明の合金
の組成請求範囲を次のように限定する。Crが2
重量%を下まわるとCrの耐食性への効果は得ら
れなく、Crが15%を越えて添加されると非磁性
のγ相を室温に導入することができなくなる。し
たがつて、Crは2〜15重量%の範囲でなければ
ならない。Coが30〜55重量%を外れると保磁
力、残留磁束密度Br/Bs、および最大エネルギ
ー積が劣化した。またCoが30重量%のときMnを
27重量%より多く加えると磁化が減少し、実用的
でなくなり、Coが55重量%のときはMnを15重量
%を下まわつて添加すると磁気的に硬い合金は得
られなかつた。Mnを27重量%添加した本発明の
合金に対してはCを0.3重量%を下まわつて添加
するとγ相を室温に導入することが不可能であつ
た。またCは1.8重量%まで本発明の合金のγ相
内に固溶させることができた。Bは0.022重量%
を越えて添加するとγ相を室温に導入することが
下可能であつた。したがつて、Coは30〜55重量
%、Mnは15〜27重量%、Cは0.3〜1.8重量%、
Crは2〜15重量%、Bは0.022重量%に限定し
た。 以上のように、本発明の合金は、強度の冷間加
工が容易で、簡単な熱処理で良好な磁気特性を有
し、さらに所望の部分を非磁性化でき、さらに耐
食性も優れた工業上、多くの分野において有用な
磁性材料である。
[Table] Shown.
The samples in Table 3 with 2% or more of Cr added are
It can be seen that the sample has corrosion resistance equivalent to that of the Fe-Cr-Co-based sample. Based on the results shown in Tables 2 and 3, the claimed composition range of the alloy of the present invention is limited as follows. Cr is 2
If the amount is less than 1% by weight, the effect of Cr on corrosion resistance cannot be obtained, and if Cr is added in excess of 15%, it becomes impossible to introduce the non-magnetic γ phase at room temperature. Therefore, Cr must be in the range 2-15% by weight. When the Co content was less than 30 to 55% by weight, the coercive force, residual magnetic flux density Br/Bs, and maximum energy product deteriorated. Also, when Co is 30% by weight, Mn
When more than 27% by weight is added, the magnetization decreases, making it impractical, and when Co is 55% by weight, adding less than 15% by weight of Mn does not result in a magnetically hard alloy. For the alloy of the present invention containing 27% by weight of Mn, it was impossible to introduce the γ phase at room temperature if less than 0.3% by weight of C was added. Furthermore, up to 1.8% by weight of C could be dissolved in the γ phase of the alloy of the present invention. B is 0.022% by weight
It was possible to introduce the γ phase at room temperature by adding more than Therefore, Co is 30 to 55% by weight, Mn is 15 to 27% by weight, C is 0.3 to 1.8% by weight,
Cr was limited to 2 to 15% by weight, and B was limited to 0.022% by weight. As described above, the alloy of the present invention can be easily cold-worked for strength, has good magnetic properties with simple heat treatment, can be made non-magnetic in desired parts, and has excellent corrosion resistance. It is a useful magnetic material in many fields.

Claims (1)

【特許請求の範囲】[Claims] 1 Co:30〜55重量%、Mn:15〜27重量%、
C:0.3〜1.8重量%、B:0.022重量%以下、
Cr:2〜15重量%、および残部Feからなること
を特徴とする磁性材料用Fe−Co−Mn−C系磁性
合金。
1 Co: 30-55% by weight, Mn: 15-27% by weight,
C: 0.3 to 1.8% by weight, B: 0.022% by weight or less,
An Fe-Co-Mn-C based magnetic alloy for magnetic materials, characterized by comprising Cr: 2 to 15% by weight, and the balance being Fe.
JP57048489A 1982-03-25 1982-03-25 Mangetic fe-co-mn-c alloy Granted JPS58164765A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57048489A JPS58164765A (en) 1982-03-25 1982-03-25 Mangetic fe-co-mn-c alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57048489A JPS58164765A (en) 1982-03-25 1982-03-25 Mangetic fe-co-mn-c alloy

Publications (2)

Publication Number Publication Date
JPS58164765A JPS58164765A (en) 1983-09-29
JPS6128023B2 true JPS6128023B2 (en) 1986-06-28

Family

ID=12804797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57048489A Granted JPS58164765A (en) 1982-03-25 1982-03-25 Mangetic fe-co-mn-c alloy

Country Status (1)

Country Link
JP (1) JPS58164765A (en)

Also Published As

Publication number Publication date
JPS58164765A (en) 1983-09-29

Similar Documents

Publication Publication Date Title
JP2811354B2 (en) Ferrite alloys, corrosion-resistant magnetic products made from these alloys, parts for automotive fuel injection devices, and magnetic cores for solenoid valves
US5306356A (en) Magnetic sheet metal obtained from hot-rolled strip steel containing, in particular, iron, silicon and aluminum
JPH0542493B2 (en)
JPH0315323B2 (en)
JPS6128021B2 (en)
JPS6128023B2 (en)
JPS6128024B2 (en)
JPS6128022B2 (en)
JPS6128019B2 (en)
JPS6128020B2 (en)
Perrier et al. Some physical and mechanical properties of SiAlFe alloys
JP3676477B2 (en) Composite magnetic member and manufacturing method thereof
JPS6128016B2 (en)
JPS6128011B2 (en)
JPS59110763A (en) Fe-co-mn-c type magnetic alloy
JPS6128012B2 (en)
JPS6128015B2 (en)
JPS5919986B2 (en) Corrosion resistant magnetic alloy
JPS6128014B2 (en)
JPS6128013B2 (en)
JPS58164755A (en) Fe-co-mn-c alloy for magnetic material
Narita et al. On magnetic properties of Fe-Si-Mn alloy sheet
KR810000626B1 (en) Anisotropic permanent magnet alloy
CN112063919A (en) Duplex stainless steel
JPS5935432B2 (en) Heat treatment method for amorphous magnetic materials