JPS6128001B2 - - Google Patents

Info

Publication number
JPS6128001B2
JPS6128001B2 JP55054314A JP5431480A JPS6128001B2 JP S6128001 B2 JPS6128001 B2 JP S6128001B2 JP 55054314 A JP55054314 A JP 55054314A JP 5431480 A JP5431480 A JP 5431480A JP S6128001 B2 JPS6128001 B2 JP S6128001B2
Authority
JP
Japan
Prior art keywords
die
annular
sintered body
core
punch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55054314A
Other languages
Japanese (ja)
Other versions
JPS56152906A (en
Inventor
Fumio Kyota
Tatsuo Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Riken Corp
Original Assignee
Riken Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Riken Corp filed Critical Riken Corp
Priority to JP5431480A priority Critical patent/JPS56152906A/en
Publication of JPS56152906A publication Critical patent/JPS56152906A/en
Publication of JPS6128001B2 publication Critical patent/JPS6128001B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は金属粉末の環状焼結体の気孔率を低
減し、密度を高める加工処理方法に係る。 金属粉末の焼結体すなわち焼結合金は溶製した
合金とは異なり、例えばいわゆる凝固偏析がない
ため均一な組織とすることができ、通例の溶製方
法では得ることができないような金属組織を持つ
た金属材料を製造することができるが、一方通常
の圧縮、成形、焼結方法によつて得られる焼結体
は組織中に気孔が残ることは避けることができ
ず、気孔率が大約10〜20%となり、これが耐摩耗
性の点では焼結合金の利点が一つであるが、機械
的性質の点からみれば欠点となる場合が多い。気
孔率を小さくするためには粉末を成形する場合の
成形圧を高めればよいが、例えば高合金粉末では
成形性の悪いものが多く、或いは成形機能力を大
きくすることにも工業的に限度があるため所望の
低気孔率まで圧縮することは難かしい。また焼結
体を再圧縮して気孔率を低減することも考えられ
るが、例えばピストンリングやバルブシート用リ
ングのような環状焼結体は炭素含有量が高く、合
金元素を多量に含み、その上硬質の合金粒子が分
散した組織を呈する場合が多く、気孔率の低下に
必要な塑性変形性が小さいので通常の鍛造の如く
に一軸方向の力で再圧縮して塑性変形させるため
には例えば10〜20t/cm2程度の大きな加圧力を必要
とし、焼結体の気孔率を低め、密度を高める前に
ポンチが破損するような技術上の困難が伴なつて
来る。 本発明は塑性変形しにくく、かつ形状から言つ
ても圧縮装置の破損を生じ易いような環状焼結体
を鍛圧して気孔率を低減し、密度を向上させる処
理方法を提供することを目的とし、 金属粉末焼結体の気孔率を低減する方法におい
て、 上面が上ポンチの加圧面に弾発的に当接し上下
動するダイによつて外側面が、該ダイの内側に設
けられ上面が上ポンチの加圧面に弾発的に当接し
て上下動するコアによつて内側面が、前記ダイと
コアとの間に設けられ調節可能に上下動する下ポ
ンチによつて底面が形成される環状ダイ溝に環状
焼結体を挿入し、 円柱先端部に頂角が鈍角の直円錐状の加圧面を
有する上ポンチをその中心軸を環状ダイ溝上面に
傾斜させて回転させ、円錐状加圧面をダイおよび
コアの上面に沿つて転がしながら下ポンチを徐々
に所望高さまで上昇させ、 環状ダイ溝中の焼結体を上ポンチの円錐状加圧
面に押しつけて上ポンチの転がり円錐面によつて
局部的に順次圧縮力を加えて行くことを特徴とす
る環状焼結体の気孔率低減処理方法に係る。 次に添付図面を示す装置を参照して本発明の方
法を説明する。 円筒状のダイ1がダイホルダー2に固定され、
ダイホルダー2とダイベース3との間には複数個
の弾性体4(スプリング或いはウレタン樹脂等)
が嵌装されていて、ダイホルダー2をダイベース
3に対して弾発的に支持している。ダイホルダー
2には下向きに複数本の案内棒5が固設され、ダ
イベース3に嵌装されたスリーブ5a中を上下し
てダイホルダー2およびダイ1が水平にかつスム
ースに上下するように案内する。ダイベース3を
下方から上方へつき抜けてダイホルダー2にねじ
こまれた止めねじ7はねじ頭とダイホルダー2と
の間にスペーサカラー8を挾んでおり、スペーサ
カラーの高さを調節することによりダイホルダー
2とダイベース3との間隔を規制すると共に、ダ
イベース3上におかれたストツパ6とダイ1の下
面との間隔を調節し、これによつて後述する環状
ダイ環13の深さを調節することができる。ダイ
ベース3は押えカラー9によつて台板10に固定
され、台板10は図示しない第一の流体圧シリン
ダのピストンに連結されて上下するようにしてあ
る。台板10の中央孔内には後述する第二の流体
圧シリンダのピストン17が内装されており、ピ
ストン17の頭部フランジ17aが台板10の中
央孔の肩部10aに乗つていて、台板10の上下
移動と共に上下できるようにしてある。 ダイ1の内側には円筒状の下ポンチ11がダイ
1の内面1aに接して上下移動するように設けら
れており、円筒状下ポンチ11の中央にはコアー
14が嵌装され、その側面14aとダイ1の内側
面1a、下ポンチの上面11aとによつて環状ダ
イ溝13を形成している。コアー14の下端は弾
性体16(スプリング、またはウレタン樹脂等)
を介して下ポンチ11の内孔の底面12に支承さ
れ、該弾性体16によつて弾発的に上方へ押上げ
られ、後述する上ポンチによる加圧中は上ポンチ
の円錐状加圧面に圧接してダイ1の上面と同じ高
さになるようにしてある。下ポンチ11は図示し
ない第二の流体圧シリンダのピストン17に複数
個の止めねじ18によつて連結されており、ピス
トン17従つて下ポンチ11は前記のように台板
10と共に上昇するほかに、台板10とは別個に
その中心孔内を上下することもできるようになつ
ている。コアー14の中央部に横に固定されたコ
ア止め棒19は外周の下ポンチをつき抜けてその
両端がダイベース3の内側フランジ3aに弾発的
に当接し、コアー14が抜け出すことのないよう
にしてあり、また下ポンチ11の上昇位置を規制
するストツパの役目もするようにしてある。 環状焼結体Rと環状ダイ溝13とのクリアラン
スについて言えば、焼結体R外周とダイ1の内側
面との間では大よそ0.05〜1.0mmとするのがよ
く、これが小さ過ぎると焼結体を挿入しにくく、
また大き過ぎると鍛圧時に焼結体の外周が割れを
生じ易い。環状焼結体Rの内周とコアー14との
間のクリアランスは最終製品形状に仕上げ代をみ
こんで決定されているコアー寸法に対して焼結体
の変形能力の限度内で大きくとつて、焼結体をで
きるだけ流動変形させるようにすると気孔率低
減、密度上昇に効果的である。 環状ダイ溝13内に焼結体Rをセツトしたとき
焼結体Rの上面はダイの上面より下になるように
ダイベース3とダイホルダー2との間隔を止めね
じ7とスペーサカラー8によつて調節しておくこ
とが重要である。 円柱状の上ポンチ20はその端部に頂角θの円
錐形の加圧面21を有し、図示しない球座軸受に
支承されており、図示しない駆動装置によつて中
心軸OBが環状ダイ溝13の中心軸OAに対してα
=(180−θ)×1/2の角度だけ傾斜し、かつコアの
中 心を支点として軸OAのまわりにこまが回転する
ように首回り回転させると、加圧面21はダイ1
およびコアー14の上面に沿つて平らにころがる
ようになる。頂角θは鈍角とし、実験結果によれ
ば170〜176゜とすることが好ましく、これより角
度が大きいと上ポンチ加圧面が平面に近づいて鍛
圧効果が小さくなり、またこれより角度が小さく
なると焼結体表面にのみ加圧効果がきいて表面層
が剥離し易くなるので好ましくない。 このような構造になつているので環状ダイ溝1
3の中に、予め用意した環状焼結体を挿入し、台
板10を上昇させてダイ1とコアー14の上面を
弾発的に上ポンチ20の加圧面に当接させ、上ポ
ンチを前記のように首振り回軸させながら、台板
10を油圧シリンダによつて少しづつ上昇させれ
ば下ポンチ11はその基部がピストン17の頭部
フランジ17aを介して台板10に係合されてい
るので共に上昇し、焼結体を押上げて上ポンチ2
0の円錐状加圧面21に押付ける。 焼結体は下から下ポンチ11によつて押上げら
れ、上ポンチ20の加圧面21によつて加圧され
ながら次第に圧縮されて高さを減じ、ダイベース
3上に置かれ焼結体の所要最終高さに合せた高さ
のストツパ6がダイホルダー2およびダイ1の下
面に当接すると台板10および下ポンチ11の上
昇は停止する。このときの状態が第2図に示して
ある。 暫時この状態で停止させたのち台板用の第一の
流体圧シリンダを逆に作動させて降下させると共
に、第二の流体圧シリンダを作動させ下ポンチ1
1を上昇させると下ポンチ11はコア止めピン1
9によつて規制されてダイ上面より僅か上まで上
昇して環状ダイ溝13内の焼結体Rを溝13から
押出すので、図示しないレバーによつて焼結体を
金型外に取出して鍛圧を終了する。 次に実施例について説明する。
The present invention relates to a processing method for reducing the porosity and increasing the density of an annular sintered body of metal powder. Sintered bodies of metal powders, that is, sintered alloys, differ from melted alloys in that they do not have so-called solidification segregation, so they can have a uniform structure, which cannot be obtained by conventional melting methods. On the other hand, sintered bodies obtained by ordinary compression, molding, and sintering methods inevitably have pores remaining in their structure, and their porosity is approximately 10. ~20%, which is one of the advantages of sintered alloys in terms of wear resistance, but is often a disadvantage in terms of mechanical properties. In order to reduce the porosity, it is possible to increase the compacting pressure when compacting the powder, but for example, many high-alloy powders have poor compactability, or there is an industrial limit to increasing the compacting ability. Therefore, it is difficult to compress the porosity to the desired low porosity. It is also possible to reduce the porosity by recompressing the sintered body, but for example, annular sintered bodies such as piston rings and valve seat rings have a high carbon content and contain large amounts of alloying elements. In many cases, the structure has a structure in which hard alloy particles are dispersed, and the plastic deformability required to reduce the porosity is small. It requires a large pressurizing force of about 10 to 20 t/cm 2 , lowers the porosity of the sintered body, and is accompanied by technical difficulties such as the punch breaking before the sintered body can be densified. An object of the present invention is to provide a processing method for reducing porosity and improving density by forging an annular sintered body that is difficult to plastically deform and is likely to cause damage to a compression device due to its shape. , in a method for reducing the porosity of a metal powder sintered body, the outer surface is provided inside the die by a die that moves up and down with the upper surface elastically abutting against the pressure surface of the upper punch, and the upper surface is An annular shape in which an inner surface is formed by a core that elastically abuts against the pressing surface of the punch and moves up and down, and a bottom surface is formed by a lower punch provided between the die and the core and adjustable up and down. The annular sintered body is inserted into the die groove, and the upper punch, which has a pressure surface in the shape of a right cone with an obtuse apex angle at the tip of the cylinder, is rotated with its center axis inclined toward the upper surface of the annular die groove, and the conical pressure surface is formed. The lower punch is gradually raised to the desired height while rolling it along the upper surface of the die and core, and the sintered compact in the annular die groove is pressed against the conical pressing surface of the upper punch, and the rolling conical surface of the upper punch presses the sintered compact in the annular die groove. The present invention relates to a method for reducing the porosity of an annular sintered body, which is characterized by sequentially applying compressive force locally. The method of the invention will now be described with reference to the apparatus shown in the accompanying drawings. A cylindrical die 1 is fixed to a die holder 2,
A plurality of elastic bodies 4 (springs, urethane resin, etc.) are installed between the die holder 2 and the die base 3.
is fitted to elastically support the die holder 2 with respect to the die base 3. A plurality of guide rods 5 are fixedly fixed to the die holder 2 facing downward, and guide the guide rods 5 up and down in the sleeve 5a fitted to the die base 3 so that the die holder 2 and the die 1 move up and down horizontally and smoothly. . The setscrew 7, which passes through the die base 3 from below to above and is screwed into the die holder 2, has a spacer collar 8 sandwiched between the screw head and the die holder 2, and by adjusting the height of the spacer collar. The distance between the die holder 2 and the die base 3 is regulated, and the distance between the stopper 6 placed on the die base 3 and the lower surface of the die 1 is adjusted, thereby adjusting the depth of the annular die ring 13, which will be described later. can do. The die base 3 is fixed to a base plate 10 by a presser collar 9, and the base plate 10 is connected to a piston of a first fluid pressure cylinder (not shown) to move up and down. A piston 17 of a second fluid pressure cylinder, which will be described later, is housed in the center hole of the base plate 10, and a head flange 17a of the piston 17 rests on a shoulder 10a of the center hole of the base plate 10. It is designed to be able to move up and down as the base plate 10 moves up and down. A cylindrical lower punch 11 is provided inside the die 1 so as to be movable up and down in contact with the inner surface 1a of the die 1. A core 14 is fitted in the center of the cylindrical lower punch 11, and its side surface 14a An annular die groove 13 is formed by the inner surface 1a of the die 1 and the upper surface 11a of the lower punch. The lower end of the core 14 is an elastic body 16 (spring, urethane resin, etc.)
is supported on the bottom surface 12 of the inner hole of the lower punch 11 via the elastic body 16, and is pushed upward elastically by the elastic body 16, and during pressurization by the upper punch, which will be described later, is pressed against the conical pressing surface of the upper punch. It is pressed so that it is at the same height as the top surface of the die 1. The lower punch 11 is connected to a piston 17 of a second fluid pressure cylinder (not shown) by a plurality of setscrews 18, and the piston 17 and therefore the lower punch 11 not only rise together with the base plate 10 as described above, but also , it is also possible to move up and down within the center hole separately from the base plate 10. A core stopper rod 19 horizontally fixed to the center of the core 14 passes through the lower punch on the outer periphery, and both ends of the rod resiliently abut against the inner flange 3a of the die base 3 to prevent the core 14 from slipping out. It also serves as a stopper for regulating the upward position of the lower punch 11. Regarding the clearance between the annular sintered body R and the annular die groove 13, the clearance between the outer periphery of the sintered body R and the inner surface of the die 1 is preferably approximately 0.05 to 1.0 mm; if this is too small, sintering may occur. It is difficult to insert the body,
Moreover, if it is too large, the outer periphery of the sintered body is likely to crack during forging. The clearance between the inner periphery of the annular sintered body R and the core 14 is set to be large within the limit of the deformation capacity of the sintered body relative to the core dimension, which is determined by taking the finishing allowance into the final product shape. It is effective to reduce porosity and increase density by allowing the aggregate to flow and deform as much as possible. The distance between the die base 3 and the die holder 2 is adjusted using the setscrew 7 and the spacer collar 8 so that when the sintered body R is set in the annular die groove 13, the top surface of the sintered body R is below the top surface of the die. It is important to keep it adjusted. The cylindrical upper punch 20 has a conical pressurizing surface 21 with an apex angle θ at its end, is supported by a spherical bearing (not shown), and the central axis OB is moved into the annular die groove by a driving device (not shown). α for the central axis OA of 13
When tilted by an angle of = (180 - θ) x 1/2 and rotated around the neck so that the top rotates around the axis OA using the center of the core as a fulcrum, the pressure surface 21
Then, it rolls flat along the upper surface of the core 14. The apex angle θ should be an obtuse angle, and according to experimental results, it is preferable to set it to 170 to 176°.If the angle is larger than this, the upper punch pressurizing surface approaches a flat surface and the forging effect becomes smaller, and if the angle is smaller than this, This is not preferable because the pressure effect is exerted only on the surface of the sintered body and the surface layer is likely to peel off. With this structure, the annular die groove 1
3, the annular sintered body prepared in advance is inserted, the base plate 10 is raised, the upper surfaces of the die 1 and the core 14 are resiliently brought into contact with the pressing surface of the upper punch 20, and the upper punch is If the base plate 10 is raised little by little by the hydraulic cylinder while swinging and rotating as shown in FIG. The upper punch 2 raises the sintered body and pushes up the sintered body.
Press it against the conical pressure surface 21 of 0. The sintered body is pushed up from below by the lower punch 11, gradually compressed while being pressed by the pressure surface 21 of the upper punch 20 to reduce its height, and placed on the die base 3 to form the sintered body as required. When the stopper 6 whose height matches the final height comes into contact with the lower surface of the die holder 2 and the die 1, the base plate 10 and the lower punch 11 stop rising. The state at this time is shown in FIG. After stopping in this state for a while, the first fluid pressure cylinder for the base plate is operated in reverse to lower it, and the second fluid pressure cylinder is operated to lower the lower punch 1.
1, the lower punch 11 will hit the core retaining pin 1.
9 and rises slightly above the top surface of the die to push out the sintered body R in the annular die groove 13 from the groove 13, so the sintered body is taken out of the mold by a lever (not shown). Finish forging. Next, an example will be described.

【表】 第1表に示す組成の高速度鋼のアトマイズ粉
(900℃、2時間、水素ガス中で焼鈍ずみ)にステ
アリン酸亜鉛1%(重量%、以下同じ)を混合
し、金型中で圧縮成形した環状圧粉体を水素ガス
中で650℃に60分間保持して予備焼結を施したの
ち、真空雰囲気中で1200℃に60分保持して焼結
し、次いで850℃まで下げて60分保持後、徐冷し
て気孔率25.9%、外径36.0mm、円径29.0mm、高さ
4.0mmの環状焼結体とした。 この焼結体をステアリン酸亜鉛を塗布乾燥した
ダイ内径36.1mm、コア外径27.9mm、深さ6mmの環
状ダイ溝に挿入して、前記の如くにして台板、下
ポンチを押上げて、上ポンチの円錐面のころがり
によつて鍛圧した。その条件は次のとおりであつ
た。頂角θ=176゜、α=2゜、上ポンチ外径=
100mm、上ポンチ回転速度=160r.p.m.、台板上昇
速度=0.3mm/分。 油圧回路に設置した圧力検出器によつて、鍛圧
時の最高荷重を検出記録し、鍛圧された焼結体の
気孔率との関係を求めた結果を第3図に示す。圧
縮荷重が大約13ton以上となるとほぼ気孔率は一
定となる。尚、外径36.1mm、内径27.9mmの環状体
の面積は4.12cm2であるから、前記の13tonの荷重
は13ton/4.12cm2=3.16ton/cm2の単位面積当りの荷
重に相当する。 従来、このような塑性変形能の低い材質のもの
を1〜5%程度の気孔率とする方法としていわゆ
るホツトコイニング法があり、この方法によれば
焼結体をアルゴンなどの保護雰囲気中で900〜
1100℃に高周波加熱等で加熱し、熱間工具鋼のよ
うな高価な金型中にセツトし10ton/cm2程度以上の
加圧力によつて加圧、圧縮するのであるが、本願
発明の方法によればホツトコイニング法に比して
はるかに小さい加圧力のプレス設備ですみ、しか
も加熱設備は不要で、金型も冷間加工用の材質の
もので良い等の利点がある。
[Table] 1% zinc stearate (wt%, same hereinafter) was mixed with atomized powder of high-speed steel having the composition shown in Table 1 (annealed at 900℃ for 2 hours in hydrogen gas), and the mixture was placed in a mold. The annular compact compacted by compression molding was pre-sintered by holding it at 650℃ in hydrogen gas for 60 minutes, then sintering by holding it at 1200℃ in a vacuum atmosphere for 60 minutes, and then lowered it to 850℃. After holding for 60 minutes, it was slowly cooled and the porosity was 25.9%, outer diameter 36.0mm, circle diameter 29.0mm, height
It was made into a 4.0 mm annular sintered body. This sintered body was inserted into an annular die groove with a die inner diameter of 36.1 mm, a core outer diameter of 27.9 mm, and a depth of 6 mm, which had been coated with zinc stearate and dried, and the base plate and lower punch were pushed up as described above. Forging was performed by rolling the conical surface of the upper punch. The conditions were as follows. Apex angle θ = 176°, α = 2°, upper punch outer diameter =
100mm, upper punch rotation speed = 160r.pm, base plate rising speed = 0.3mm/min. The maximum load during forging was detected and recorded by a pressure detector installed in the hydraulic circuit, and the relationship with the porosity of the forged sintered body was determined. The results are shown in FIG. When the compressive load is approximately 13 tons or more, the porosity becomes almost constant. Incidentally, since the area of the annular body having an outer diameter of 36.1 mm and an inner diameter of 27.9 mm is 4.12 cm 2 , the above-mentioned load of 13 tons corresponds to a load per unit area of 13 tons/4.12 cm 2 =3.16 tons/cm 2 . Conventionally, the so-called hot coining method has been used to make materials with low plastic deformability to a porosity of about 1 to 5%. According to this method, a sintered body is heated for 900°C in a protective atmosphere such as argon. ~
The method of the present invention is heated to 1100°C by high frequency heating, etc., set in an expensive mold such as hot work tool steel, and pressurized and compressed with a pressure of about 10 ton/cm 2 or more. According to the method, compared to the hot coining method, it requires press equipment with a much smaller pressure, and furthermore, there is no need for heating equipment, and the mold can be made of a material suitable for cold working, among other advantages.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法の実施に好適な回転鍛造
機の一例を示す要部断面図、第2図は同じく鍛造
末期の状態を示す断面図である。第3図は本方法
による圧縮荷重と気孔率の関係の一例を示すグラ
フである。 1……ダイ、3……ダイベース、4……弾性
体、5……案内棒、6……ストツパ、7……止め
ねじ、8……スペーサカラー、10……台板、1
1……下ポンチ、13……環状ダイ溝、14……
コア、16……弾性体、17……ピストン、19
……コア止めピン、20……上ポンチ、21……
円錐面(加圧面)、OA……環状ダイ溝(または
コア)の中心軸、OB……上パンチ中心軸、R…
…焼結体。
FIG. 1 is a sectional view of essential parts of an example of a rotary forging machine suitable for carrying out the method of the present invention, and FIG. 2 is a sectional view of the rotary forging machine at the final stage of forging. FIG. 3 is a graph showing an example of the relationship between compressive load and porosity according to the present method. 1... Die, 3... Die base, 4... Elastic body, 5... Guide rod, 6... Stopper, 7... Set screw, 8... Spacer collar, 10... Base plate, 1
1... Lower punch, 13... Annular die groove, 14...
Core, 16... Elastic body, 17... Piston, 19
... Core retaining pin, 20 ... Upper punch, 21 ...
Conical surface (pressure surface), OA...center axis of annular die groove (or core), OB...center axis of upper punch, R...
...Sintered body.

Claims (1)

【特許請求の範囲】 1 金属粉末焼結体の気孔率を低減する方法にお
いて、 上面が上ポンチの加圧面に弾発的に当接し上下
動するダイによつて外側面が、該ダイの内側に設
けられ上面が上ポンチの加圧面に弾発的に当接し
て上下動するコアによつて内側面が、前記ダイと
コアとの間に設けられ調節可能に上下動する下ポ
ンチによつて底面が形成される環状ダイ溝に環状
焼結体を挿入し、 円柱先端部に頂角が鈍角の直円錐状の加圧面を
有する上ポンチをその中心軸を環状ダイ溝上面に
傾斜させて回転させ、円錐状加圧面をダイおよび
コアの上面に沿つて転がしながら下ポンチを徐々
に所望高さまで上昇させ、 環状ダイ溝中の焼結体を上ポンチの円錐状加圧
面に押しつけて上ポンチの転がり円錐面によつて
局部的に順次圧縮力を加えて行くことを特徴とす
る環状焼結体の気孔率低減処理方法。
[Claims] 1. In a method for reducing the porosity of a metal powder sintered body, a die whose upper surface elastically contacts the pressurizing surface of an upper punch and moves up and down causes the outer surface to touch the inner side of the die. The core is provided between the die and the core and the upper surface elastically contacts the pressure surface of the upper punch and moves up and down. The annular sintered body is inserted into the annular die groove where the bottom surface is formed, and the upper punch, which has a pressure surface in the shape of a right cone with an obtuse apex angle at the cylindrical tip, is rotated with its central axis inclined toward the upper surface of the annular die groove. The lower punch is gradually raised to the desired height while rolling the conical pressure surface along the upper surface of the die and core, and the sintered compact in the annular die groove is pressed against the conical pressure surface of the upper punch. A method for reducing the porosity of an annular sintered body, characterized by sequentially applying compressive force locally using a rolling conical surface.
JP5431480A 1980-04-25 1980-04-25 Treatment of circular sintered body to reduce porosity Granted JPS56152906A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5431480A JPS56152906A (en) 1980-04-25 1980-04-25 Treatment of circular sintered body to reduce porosity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5431480A JPS56152906A (en) 1980-04-25 1980-04-25 Treatment of circular sintered body to reduce porosity

Publications (2)

Publication Number Publication Date
JPS56152906A JPS56152906A (en) 1981-11-26
JPS6128001B2 true JPS6128001B2 (en) 1986-06-28

Family

ID=12967114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5431480A Granted JPS56152906A (en) 1980-04-25 1980-04-25 Treatment of circular sintered body to reduce porosity

Country Status (1)

Country Link
JP (1) JPS56152906A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106903A (en) * 1983-11-15 1985-06-12 Nippon Funmatsu Gokin Kk Method and device for roller pressing of sintered metallic material
US20070157693A1 (en) * 2006-01-10 2007-07-12 Gkn Sinter Metals, Inc. Forging/coining method
CN101827667B (en) * 2007-10-17 2012-03-14 Gkn烧结金属股份有限公司 Core rod forging for precise internal geometry

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016169A (en) * 1973-06-14 1975-02-20

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016169A (en) * 1973-06-14 1975-02-20

Also Published As

Publication number Publication date
JPS56152906A (en) 1981-11-26

Similar Documents

Publication Publication Date Title
CN105935766B (en) Powder molding apparatus and method for manufacturing rare earth sintered magnet using the same
US6228140B1 (en) Texture free ballistic grade tantalum product and production method
US5093076A (en) Hot pressed magnets in open air presses
US2299192A (en) Method of making sintered articles
US2806596A (en) Metal extrusion process
US4352648A (en) Powdered metal press and tooling therefor
Lampman Compressibility and compactibility of metal powders
JPS6128001B2 (en)
US4795333A (en) Rotary forging
US2319373A (en) Method of making metal articles
JPS646241B2 (en)
Sutradhar et al. Production of sinter-forged components
US3648343A (en) Method of making a composite high-temperature valve
US6190605B1 (en) Dry die wall lubrication
CN1034854C (en) Method for mfg. of compound products by using powder metallurgy
CN112958683B (en) Composite material forming device and forming method
US2536689A (en) Method of making small metal bodies
US3805360A (en) Method and apparatus for sizing brake drum rings
GB718382A (en) Powder metallurgical method of shaping articles from high melting metals
US6167802B1 (en) Sliding frame press
RU2332279C2 (en) Method of making complex figure thin-walled sintered bars from heavy alloys based on tungsten
CN111085685A (en) Porous high-entropy alloy material and preparation method and application thereof
EP1629908B1 (en) Method of making valve guide by forming a not hollowed compact by uniaxial pressure perpendicular to its longitudinal axis
JPS6148564B2 (en)
JPS6148565B2 (en)