JPS6127984B2 - - Google Patents

Info

Publication number
JPS6127984B2
JPS6127984B2 JP11458878A JP11458878A JPS6127984B2 JP S6127984 B2 JPS6127984 B2 JP S6127984B2 JP 11458878 A JP11458878 A JP 11458878A JP 11458878 A JP11458878 A JP 11458878A JP S6127984 B2 JPS6127984 B2 JP S6127984B2
Authority
JP
Japan
Prior art keywords
control signal
state
controlled object
loop point
lock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP11458878A
Other languages
Japanese (ja)
Other versions
JPS5543923A (en
Inventor
Takehiko Naito
Kazuo Oota
Masatoshi Tezuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Toshiba Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electric Power Co Inc filed Critical Toshiba Corp
Priority to JP11458878A priority Critical patent/JPS5543923A/en
Publication of JPS5543923A publication Critical patent/JPS5543923A/en
Publication of JPS6127984B2 publication Critical patent/JPS6127984B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

【発明の詳細な説明】 本発明は配電線を伝送路として2状態制御をな
す配電線搬送制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distribution line transport control system that performs two-state control using a distribution line as a transmission path.

配電自動化システムは一般に第1図に示すよう
に構成される。同図において、1は変電所、2は
親局、3は高圧結合器、4はループ点事故捜査
器、5は高圧配電線、6は選択順送用事故捜査
器、7はループ点である。ループ点7は配電線路
網中の適所に配置される常開接点であり、親局か
らの制御でロツク状態およびロツク解除状態の2
状態をとる。ロツク解除状態とは、配電線路の事
故に応じて健全区間の無停電化を図るために、ル
ープ点7が自動的に事故区間を切り離して健全区
間への給電をなすように切り換わり得る状態であ
る。これに対しロツク状態とは、配電線路に事故
が多発する場合に、ループ点7が自動切換機能を
有していると事故が拡大する虞れがあるので、こ
れを一時停止させている状態を指す。
A power distribution automation system is generally configured as shown in FIG. In the figure, 1 is a substation, 2 is a master station, 3 is a high voltage coupler, 4 is a loop point accident investigation device, 5 is a high voltage distribution line, 6 is an accident investigation device for selective sequential transmission, and 7 is a loop point. . Loop point 7 is a normally open contact placed at a suitable location in the distribution line network, and can be switched into two states, locked and unlocked, under control from the master station.
take a state. The unlocked state is a state in which loop point 7 can automatically switch to disconnect the faulty section and supply power to the healthy section in order to ensure uninterrupted power in the healthy section in response to an accident on the power distribution line. be. On the other hand, a locked state is a state in which the automatic switching function of loop point 7 is temporarily stopped because if accidents occur frequently on the distribution line, there is a risk that the accident will spread if the loop point 7 has an automatic switching function. Point.

第1図において、親局2の制御でループ点7が
ロツク解除状態にある場合、事故区間を選択順送
用事故捜査器6が切り離すと、ループ点事故捜査
器4が動作してループ点7を投入し、健全区間の
無停電化を図る。これに対し、親局2から高圧結
合器3を通してロツク制御信号が高圧配電線5に
注入されると、ループ点事故捜査器4はループ点
7をロツク状態にして投入を禁止する。
In FIG. 1, when the loop point 7 is in the unlocked state under the control of the master station 2, when the accident investigation device 6 for selective sequential transmission disconnects the accident section, the loop point accident investigation device 4 operates and the loop point 7 will be introduced to ensure uninterrupted power outages in healthy sections. On the other hand, when a lock control signal is injected from the master station 2 to the high voltage distribution line 5 through the high voltage coupler 3, the loop point fault investigation device 4 locks the loop point 7 and prohibits the input.

上述した2状態制御に関し、従来は第2図に示
すような制御信号を用いている。第2図Aは親局
2で制御しようとする2状態の期間を示し、同図
Bはそれに応じて送出されるロツク制御信号B1
およびロツク解除制御信号B2を示している。こ
れら2つの制御信号B1,B2の一方をループ点事
故捜査器4が受信すると、以後他方の制御信号が
到来するまでループ点を一方の状態に保持してお
く。
Regarding the above-mentioned two-state control, conventionally a control signal as shown in FIG. 2 has been used. FIG. 2A shows the period of two states to be controlled by the master station 2, and FIG.
and unlock control signal B2 . When the loop point accident investigation device 4 receives one of these two control signals B 1 and B 2 , it holds the loop point in one state until the other control signal arrives.

ところが、配電線を伝送路とする場合に、親局
2とループ点事故捜査器4との間の信号減衰量
が、他系統の親局とループ点事故捜査器間の回り
込み(漏話)信号減衰量と同程度になることがあ
り、その結果第2図Cに示すような他系統からの
ロツク解除制御信号C1が発生するとループ点7
の状態は第2図Dに示すように第2図Aと異つた
ものとなり、ループ点7は第2図Eに示すように
本来ロツク状態であるべき期間に誤投入されてし
まう。
However, when using a distribution line as a transmission path, the amount of signal attenuation between the master station 2 and the loop point accident investigation device 4 is the same as the amount of signal attenuation between the master station of another system and the loop point accident investigation device (crosstalk). As a result, when a lock release control signal C1 is generated from another system as shown in FIG. 2C, loop point 7
As shown in FIG. 2D, the state is different from that in FIG. 2A, and the loop point 7 is erroneously turned on during a period when it should be in the locked state, as shown in FIG. 2E.

このような2状態制御では、ロツク解除期間に
ループ点7が回り込みによりロツク状態になる誤
動作も生ずるが、この場合には健全区間の停電率
が上がつても、事故の拡大は防止できる。しかし
ながら、第2図で示したように、ロツク期間中に
ロツク解除となる誤動作は事故拡大につながるの
で極力避けなければならない。
In such two-state control, a malfunction may occur during the lock release period when the loop point 7 wraps around and becomes locked, but in this case, even if the power outage rate in the healthy section increases, the expansion of the accident can be prevented. However, as shown in FIG. 2, a malfunction that causes the lock to be released during the lock period should be avoided as much as possible because it will lead to an accident.

本発明は上記した如き点に鑑みなされたもの
で、配電線を伝送路とする2状態制御において、
2つの状態間に優先順位を付け、優先状態から非
優先状態への誤動作による移行を防止した配電線
搬送制御方式を提供する。
The present invention has been made in view of the above points, and in two-state control using power distribution lines as transmission paths,
To provide a distribution line transport control system that prioritizes two states and prevents transition from a priority state to a non-priority state due to malfunction.

以下、配電自動化システムにおいてループ点の
2状態制御に際し、ロツク状態を優先状態とした
本発明の一実施例を第3図乃至第5図を参照して
説明する。第3図は配電自動化システムの構成図
であり、第1図と同一部分には同一符号を付して
ある。同図に示す親局2は、ロツク制御信号およ
びロツク解除制御信号を発生する制御信号発生回
路21と、この出力で搬送波を振幅変調するAM
変調回路22と、この出力を増幅する増幅回路2
3とを備えている。また、ループ点事故捜査器4
は、2系統のAM復調回路41a,41bと、これ
らの出力からロツク制御信号およびロツク解除制
御信号を検出して判別する制御信号判別回路42
a,42bと、これらの判別結果の論理和でループ
点7の状態を制御する論理和回路43を備えてい
る。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 3 to 5, in which the lock state is prioritized during two-state control of loop points in a power distribution automation system. FIG. 3 is a configuration diagram of the power distribution automation system, and the same parts as in FIG. 1 are given the same reference numerals. The master station 2 shown in the figure includes a control signal generation circuit 21 that generates a lock control signal and an unlock control signal, and an AM control signal generation circuit 21 that amplitude modulates a carrier wave with the output of the control signal generation circuit 21.
A modulation circuit 22 and an amplifier circuit 2 that amplifies this output.
3. In addition, loop point accident investigation device 4
, two systems of AM demodulation circuits 41 a and 41 b , and a control signal discrimination circuit 42 that detects and discriminates a lock control signal and an unlock control signal from their outputs.
a , 42b , and an OR circuit 43 that controls the state of the loop point 7 by the OR of these determination results.

上記構成において、親局2がループ点7を第4
図Aのように制御するものとすると、制御信号発
生回路21は第4図Aの区分に従い第4図Bのよ
うにロツク制御信号B3およびロツク解除制御信
号B4を発生する。ロツク制御信号B3はロツク期
間全域にわたり短周期で繰り返すパルス列からな
り、各パルスがロツク制御信号としての意味を持
つ。このパルス列の周期は、ループ点事故捜査器
4がロツク解除制御信号を受けてからループ点7
が投入されるまでの保護時間Xより短かく設定さ
れている。一方、ロツク解除制御信号B4は状態
の切換時点において短期間のみ送出される。
In the above configuration, the master station 2 connects the loop point 7 to the fourth
When control is performed as shown in FIG. 4A, the control signal generating circuit 21 generates the lock control signal B 3 and the lock release control signal B 4 as shown in FIG. 4B according to the divisions shown in FIG. 4A. The lock control signal B3 consists of a pulse train that repeats at short intervals over the entire lock period, and each pulse has a meaning as a lock control signal. The period of this pulse train is determined from when the loop point accident investigation device 4 receives the lock release control signal to when the loop point 7
The protection time until the power is turned on is set to be shorter than the protection time X. On the other hand, the unlock control signal B4 is sent out only for a short period of time at the time of state switching.

このような制御信号の形態であると、親局2か
ら第4図Bのロツク制御信号B3を送信している
際に、同図Cに示す他系統のロツク解除制御信号
C3がループ点事故捜査器4で受信され、誤つて
ループ点7がロツク解除状態になろうとしても、
保護時間X内にロツク制御信号B3が再び受信さ
れるので、ロツク期間に誤つてロツク解除となる
ことはなく、事故拡大を未然に防止することがで
きる。
If the control signal has such a form, when the master station 2 is transmitting the lock control signal B3 shown in FIG. 4B, the lock release control signal of another system shown in FIG.
Even if C 3 is received by the loop point accident investigation device 4 and the loop point 7 attempts to become unlocked by mistake,
Since the lock control signal B3 is received again within the protection time X, the lock will not be erroneously unlocked during the lock period, and the spread of the accident can be prevented.

この場合にも他系統のロツク制御信号C2の一
部でロツク解除期間にループ点7がロツク状態に
なる誤動作はあるが、この点は前述したと同様の
理由で許容される。結局、本来の制御信号Bと回
り込んだ制御信号Cとにより、ループ点7の状態
は第4図Dのようになるが、ループ点7の投入は
同図Eに示すように本来のロツク解除期間でのみ
行なわれるので、配電自動化システムの安全性は
向上する。
In this case as well, there is a malfunction in which the loop point 7 becomes locked during the lock release period due to a part of the lock control signal C2 of the other system, but this is allowed for the same reason as mentioned above. In the end, due to the original control signal B and the looped control signal C, the state of loop point 7 becomes as shown in Fig. 4D, but the input of loop point 7 is due to the original lock release as shown in Fig. 4E. The safety of the distribution automation system is improved because it is carried out only during the period.

尚、実施例ではロツク解除制御信号B4を第4
図に示すように状態の切換時点のみにおいて送出
している。このため、一般に長期にわたるロツク
解除期間にロツク制御信号B3に近似した雑音が
混入すると、不要にロツク状態となつてしまう。
前記実施例では回り込みによる誤動作を対象とし
たが、雑音による誤動作で不要にロツク状態とな
ることは、安全性は確保されても配電自動化シス
テムの自動切換機能が阻害されるという点で好ま
しくない。このような場合第5図Bに示すよう
に、ロツク解除制御信号B4を、状態の切換時点
のみならず、繰り返し送出すれば、ロツク制御信
号B3に近似した雑音Nが混入してループ点7の
状態が、第5図Cに示すように一旦ロツク状態と
なつても、次のロツク解除制御信号B4によりル
ープ点7は再びロツク解除状態に復元することが
できる。ロツク解除制御信号B4は第5図Aに示
すロツク解除期間中は前述した保護時間Xより長
周期で繰り返し送出する。
In the embodiment, the lock release control signal B4 is
As shown in the figure, it is sent only at the time of state switching. Therefore, if noise similar to the lock control signal B3 is mixed into the lock release period which generally lasts a long time, the lock state will be unnecessarily caused.
Although the above embodiment deals with malfunctions due to wraparound, unnecessary locking due to malfunctions due to noise is undesirable in that, even if safety is ensured, the automatic switching function of the power distribution automation system will be inhibited. In such a case, as shown in FIG. 5B, if the lock release control signal B4 is repeatedly sent out not only at the time of state switching, but also when the lock release control signal B4 is repeatedly sent out, noise N that is similar to the lock control signal B3 will be mixed in and the loop point will be lost. Even if the state of loop point 7 once becomes the locked state as shown in FIG. 5C, the loop point 7 can be restored to the unlocked state again by the next unlocking control signal B4 . During the lock release period shown in FIG. 5A, the lock release control signal B4 is repeatedly sent at a cycle longer than the protection time X described above.

実施例ではロツク制御信号とロツク解除制御信
号とを時間幅で区別するようにしているが、周波
数を異ならせることで区別してもよい。殊に周波
数を異ならせる場合には、ロツク制御信号はロツ
ク期間中連続して送出してもよい。
In the embodiment, the lock control signal and the unlock control signal are distinguished by time width, but they may also be distinguished by having different frequencies. The lock control signal may be sent out continuously during the lock period, especially if the frequencies are different.

以上述べたように、配電線を伝送路とした2状
態制御に際し、2つの状態間に優先順位をつけ、
優先状態に対する制御信号は制御期間中連続して
若しくは短周期で繰り返し送信し、非優先状態に
対する制御信号は状態の切換時における短期間の
み若しくは長周期で繰り返し送信する本発明の配
電線搬送制御方式であれば、高圧配電線特有の信
号回り込み現象があつても、他系統の制御信号で
優先状態から非優先状態へ移行する誤動作を防止
することができる。
As mentioned above, when performing two-state control using a power distribution line as a transmission path, priority is assigned between the two states,
The distribution line transport control method of the present invention, in which the control signal for the priority state is transmitted continuously or repeatedly in short cycles during the control period, and the control signal for the non-priority state is transmitted repeatedly only for a short period of time or in long cycles when switching states. If so, even if there is a signal wrap-around phenomenon unique to high-voltage distribution lines, it is possible to prevent malfunctions in which a priority state shifts to a non-priority state due to control signals from other systems.

尚、優先状態および非優先状態はループ点のロ
ツク状態およびロツク解除状態に限定されるもの
でなく、他の制御対象における2状態でもよいこ
とは明らかである。
It is clear that the priority state and non-priority state are not limited to the locked state and unlocked state of the loop point, but may be two states of other controlled objects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は配電自動化システムの一例を示す構成
図、第2図は従来のループ点2状態制御を説明す
るためのタイムチヤート、第3図は本発明の一実
施例を示す構成図、第4図および第5図は同実施
例を説明するために用いた異なるタイムチヤート
である。 1……変電所、2……親局、3……高圧結合
器、4……ループ点事故捜査器、5……高圧配電
線、6……選択順送用事故捜査器、7……ループ
点、21……制御信号発生回路、22……AM変
調回路、23……増幅回路、41a,41b……
AM復調器、42a,42b……制御信号判別回
路、43……論理和回路。
Fig. 1 is a block diagram showing an example of a power distribution automation system, Fig. 2 is a time chart for explaining conventional loop point two-state control, Fig. 3 is a block diagram showing an embodiment of the present invention, and Fig. 4 is a block diagram showing an example of a power distribution automation system. 5 and 5 are different time charts used to explain the same embodiment. 1... Substation, 2... Master station, 3... High voltage coupler, 4... Loop point accident investigation device, 5... High voltage distribution line, 6... Accident investigation device for selective sequential transmission, 7... Loop Point, 21... Control signal generation circuit, 22... AM modulation circuit, 23... Amplification circuit, 41 a , 41 b ...
AM demodulator, 42 a , 42 b . . . control signal discrimination circuit, 43 . . . OR circuit.

Claims (1)

【特許請求の範囲】[Claims] 1 制御側から被制御対象に対し配電線を伝送路
として制御信号を送信し、これにより被制御対象
を所定の2状態に設定する配電線搬送制御方式に
おいて、前記2状態間に優先順位を設けるととも
に、前記被制御対象が非優先状態に対応する第2
の制御信号を受信してから非優先状態に移行する
までの間に所定長の保護時間を設け、被制御対象
を優先状態に設定する場合は、優先状態に対応す
る第1の制御信号を被制御対象が優先状態に設定
されている期間中連続してもしくは被制御対象の
前記保護時間より短い周期で繰返し送信し、かつ
非優先状態に設定する場合は、前記第2の制御信
号を切換時において短期間もしくは非制御対象の
前記保護時間よりも長い周期で繰返し送信するよ
うにしたことを特徴とする配電線搬送制御方式。
1 In a distribution line transfer control method in which a control side sends a control signal to a controlled object using a distribution line as a transmission path, and thereby sets the controlled object in two predetermined states, a priority is set between the two states. and a second state in which the controlled object corresponds to a non-priority state.
When setting a controlled object to a priority state by providing a predetermined protection time between receiving the first control signal and shifting to a non-priority state, the first control signal corresponding to the priority state is set to the priority state. If the controlled object is transmitted continuously during the period when the controlled object is set to the priority state or repeatedly at a cycle shorter than the protection time of the controlled object, and is set to the non-priority state, the second control signal is transmitted at the time of switching. A power distribution line transport control system characterized in that the transmission is repeatedly transmitted for a short period of time or at a cycle longer than the protection time of a non-controlled object.
JP11458878A 1978-09-20 1978-09-20 Wire feeding control system Granted JPS5543923A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11458878A JPS5543923A (en) 1978-09-20 1978-09-20 Wire feeding control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11458878A JPS5543923A (en) 1978-09-20 1978-09-20 Wire feeding control system

Publications (2)

Publication Number Publication Date
JPS5543923A JPS5543923A (en) 1980-03-28
JPS6127984B2 true JPS6127984B2 (en) 1986-06-27

Family

ID=14641603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11458878A Granted JPS5543923A (en) 1978-09-20 1978-09-20 Wire feeding control system

Country Status (1)

Country Link
JP (1) JPS5543923A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51114376U (en) * 1975-03-10 1976-09-16
JPS58404A (en) * 1981-06-24 1983-01-05 Toyo Tire & Rubber Co Ltd Steel radial tire good in bead durability

Also Published As

Publication number Publication date
JPS5543923A (en) 1980-03-28

Similar Documents

Publication Publication Date Title
CA1196976A (en) Loop transmission system and method of controlling the loop-back condition thereof
US4529979A (en) Remote return loop control in a data transmission system
US4829512A (en) Loop-back control apparatus for a loop network having duplicate optical fiber transmission lines
CA1084625A (en) Encoding and decoding device for error-detecting transmission systems, in particular for remote- control and remote-actuation equipments
US4570162A (en) Local area networks
JPS6127984B2 (en)
EP0246663B1 (en) Channel switching system without instantaneous signal loss
CA1336987C (en) Communication control method for releasing communication apparatus from occupied state
EP0531332B1 (en) Radio test loop for a radio transceiver
CA1331645C (en) Apparatus and method for a secure and diagnosable antijabber communication circuit
JP3487324B2 (en) Transmission data amount control method and device
JPH0354906B2 (en)
JPS61133798A (en) Lock control method for remote devices
SU674019A1 (en) Redundancy device for control of the switching of system modules
JPS5842327A (en) Controlling system for remote folding release
JPS58190138A (en) Loop-back controlling system
JPS645786B2 (en)
GB2265012A (en) Measuring the propagation delay of a communications network
JPS63299423A (en) System for relieving fault in loop shape transmission processing system
JPS5941952A (en) Diagnostic processing system in common channel signaling
JPH0414816B2 (en)
JPS5935519A (en) Method of inspecting frequency modulation current differential relay
JPS62159541A (en) Switching system for communication unit
JPH04100421A (en) End box for submarine cable system
JPS58186332A (en) Method of discriminating wiring line defect zone