JPS61279433A - Electrode wire for wire electric discharge machining and manufacture thereof - Google Patents

Electrode wire for wire electric discharge machining and manufacture thereof

Info

Publication number
JPS61279433A
JPS61279433A JP11674085A JP11674085A JPS61279433A JP S61279433 A JPS61279433 A JP S61279433A JP 11674085 A JP11674085 A JP 11674085A JP 11674085 A JP11674085 A JP 11674085A JP S61279433 A JPS61279433 A JP S61279433A
Authority
JP
Japan
Prior art keywords
wire
zinc
electrode wire
discharge machining
workpiece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11674085A
Other languages
Japanese (ja)
Other versions
JPH0431808B2 (en
Inventor
Hitoshi Shiyou
仁 尚
Michio Okuno
奥野 道雄
Akitoshi Suzuki
昭利 鈴木
Takeo Nakamura
竹夫 中村
Minoru Ishikawa
実 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP11674085A priority Critical patent/JPS61279433A/en
Publication of JPS61279433A publication Critical patent/JPS61279433A/en
Publication of JPH0431808B2 publication Critical patent/JPH0431808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To improve working efficiency of a composite wire providing zinc or zinc alloy coating layer on the surface of a core wire mode of copper or brass, by coating a specified thickness of chromic oxide on the surface of zinc or zinc alloy coating layer. CONSTITUTION:By forming a chromic oxide layer on the outside of a zinc plated layer is reduced a discharge gap 6 in electric discharge machining. As a result, spark discharging energy is efficiently consumed for melting and remov ing a workpiece 5. Thus, the working groove width 7 is also reduced and the working speed and accuracy are improved. Also, by the presence of 100-1,000Angstrom thick chromic oxide on the surface are prevented short-circuit between an elec trode wire and the workpiece and fusing of the electrode wire. Also, 1,000Angstrom or more thick one has difficulty to discharge and reduces working efficiency.

Description

【発明の詳細な説明】 C子女 術 分 テラ 〕 本発明は電気スパーク浸食による加工のためのワイヤ放
電加工用電極線とその製造法に関するものである。ワイ
ヤ放電加工は、加工用電極線と被加工物との間で放電現
象を起こさせ、該放電により被加工物を溶融除去するも
ので、特に複雑で、精密な形状の被加工物、例えば、プ
レス金型の加工等に用いられる。このような放電加工で
は被加工物の仕上り表面状態及び寸法ji’i度が良く
、加工速度が速いことが要求されている。
[Detailed Description of the Invention] The present invention relates to an electrode wire for wire electrical discharge machining for machining by electric spark erosion, and a method for manufacturing the same. Wire electric discharge machining involves causing an electric discharge phenomenon between a machining electrode wire and a workpiece, and melting and removing the workpiece by the electric discharge, especially when processing workpieces with complex and precise shapes, such as Used for processing press molds, etc. In such electric discharge machining, it is required that the finished surface condition and dimensions of the workpiece be good, and that the machining speed be high.

〔従来の技術〕[Conventional technology]

従来ワイヤ加工用電極線としては銅線又は賛銅線が用い
られているが、近年、ワイヤ放電加工の利用範囲の広が
りと共に、より一唐の加工速度と仕上16度の向上を望
まれ、これらの要望にこたえたものとして、特公昭57
−5848が公知とされた。
Conventionally, copper wire or copper wire has been used as the electrode wire for wire machining, but in recent years, as the range of use of wire electrical discharge machining has expanded, there has been a desire for a drastic improvement in machining speed and finish of 16 degrees. In response to the requests of
-5848 was made public.

これは銅線又はvL銅線を芯材とし、その表面に亜鉛又
は亜鉛合金を被覆した複合電極線である。
This is a composite electrode wire in which the core material is copper wire or VL copper wire, and the surface thereof is coated with zinc or zinc alloy.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来技術の問題点とじて、放電加工時の放電ギャップの
広さがあげられる0例えば上記複合電極線のように黄銅
芯材に亜鉛を5蓼の厚さに被覆した電極線では亜鉛を被
覆しない電極線に比較して加工速度は向上しているが、
5〜10%程度で充分であるとはいえない、それは、曲
名の場合すなわち亜鉛を被覆している電極線で放電加工
したとき4よ・後者の場合すなわち被覆なしの電極線で
放電加〜 工するときに比較して、放電ギヤーlプが広くなってい
るため、放電エネルギーが効率的に消費されていないか
らである。そこで亜鉛を被覆した電極線を使用しても放
電加工時の放電ギャップが大きくならずに、なおかつ、
被加工物との短絡とか、ift掻線の溶断とかのトラブ
ルが起こらないような手段をとることが必要である。す
なわち、本発明の目的は亜鉛被覆銅及び亜鉛被i黄銅な
どの電極線と被加工物との放電ぜヤップを小さくするこ
とによって、火花放電エネルギーを被加工物の溶融と除
去に効率的に消費させると共に、表面のクロム酸化物の
存在によって電極線と被加工物との短絡と電極線の溶断
を防止させることにある。
A problem with the conventional technology is the wideness of the discharge gap during electrical discharge machining.For example, in the case of an electrode wire in which a brass core material is coated with zinc to a thickness of 5 mm, such as the above-mentioned composite electrode wire, the zinc is not coated. Although the processing speed is improved compared to electrode wire,
It cannot be said that 5 to 10% is sufficient.In the case of the song title, that is, when electrical discharge machining is performed with an electrode wire coated with zinc, and in the latter case, that is, electrical discharge machining is performed with an electrode wire that is not coated. This is because the discharge energy is not consumed efficiently because the discharge gap is wider than when the discharge gap is used. Therefore, even if a zinc-coated electrode wire is used, the discharge gap during electrical discharge machining will not become large, and
It is necessary to take measures to prevent troubles such as short circuits with the workpiece and melting of the ift scratch lines. That is, an object of the present invention is to reduce the discharge jump between an electrode wire such as zinc-coated copper or zinc-coated brass and a workpiece, thereby efficiently consuming spark discharge energy for melting and removing the workpiece. At the same time, the presence of chromium oxide on the surface prevents short circuits between the electrode wire and the workpiece and melting of the electrode wire.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は特公昭57−58411で公知にされた電極線
に15jlする改良である。すなわち第1因にその断面
を示すように銅又は黄銅からなる芯材lの表面に亜鉛又
は亜鉛合金液l!1層2を設けた複合線において亜鉛又
は亜鉛合金液l′11層の表面にクロム酸化物3を 1
00〜1000Åの厚さに被覆したことを特徴とするも
のである。その製造法としては、芯材の表面に亜鉛メッ
キを施した後805以上の冷間加工を行い、さらにクロ
ムイオンを含む硫酸水溶液中でクロム酸化物を浸漬又は
電解にて付着させることを特徴とするものである。また
クロムイオンを含むIi&酸水溶液の液組成はクロムイ
オン 5g/交〜100g/見、硫酸 5g/立〜30
g/lであることを特徴としている。
The present invention is an improvement of 15Jl on the electrode wire disclosed in Japanese Patent Publication No. 57-58411. In other words, the first factor is the presence of zinc or zinc alloy liquid l on the surface of the core material l made of copper or brass, as shown in its cross section! In a composite wire with 1 layer 2, chromium oxide 3 is added to the surface of the zinc or zinc alloy liquid l'11 layer.
It is characterized by being coated with a thickness of 00 to 1000 Å. The manufacturing method is characterized by galvanizing the surface of the core material, performing cold working of 805 or higher, and then attaching chromium oxide by immersion or electrolysis in a sulfuric acid aqueous solution containing chromium ions. It is something to do. In addition, the liquid composition of the Ii & acid aqueous solution containing chromium ions is chromium ion 5g/100g/ml, sulfuric acid 5g/30g/ml.
g/l.

〔作用〕[Effect]

本発明では、亜鉛メッキ層の外側にクロム酸化加工速度
および、加工精度を向上させるものである。また表面の
クロム酸化物の存在により、被加工物との短絡と電極線
の溶断を防止するものである。
In the present invention, chromium oxidation is applied to the outside of the galvanized layer to improve processing speed and processing accuracy. Furthermore, the presence of chromium oxide on the surface prevents short circuits with the workpiece and melting of the electrode wire.

クロム醜化層の厚さは、 100八以下では効果が少な
く、またLOOOA以上では放電しにくくなり加工の効
率が低下する。
If the thickness of the chromium obscuring layer is less than 100 8, the effect will be small, and if it is more than LOOOA, it will be difficult to cause electrical discharge and the efficiency of machining will be reduced.

製造法における、亜鉛メッキ後の冷間加工率は80%以
下では、引張強度が不足し、ワイヤ放電加工時に断線し
やすくなる。クロム酩処理を行う水溶液中のクロムイオ
ンは 5g/l以下ではクロム酸化物が充分に付着せず
、又、 100g/i以上では液が不安定になり、安定
した付着が得られなくなる。硫醜は 5g/文以下では
効果がな(,30g/立以上では、むしろ亜鉛層の溶解
が大となってしまう。
In the manufacturing method, if the cold working rate after galvanizing is 80% or less, the tensile strength will be insufficient and the wire will easily break during wire electric discharge machining. If the amount of chromium ions in the aqueous solution used for chromium treatment is less than 5 g/l, chromium oxide will not adhere sufficiently, and if it is more than 100 g/i, the solution will become unstable and stable adhesion will not be obtained. Sulfur oxidation is not effective if it is less than 5g/liter (and if it is more than 30g/liter, the dissolution of the zinc layer will become greater.

〔実施例〕〔Example〕

本発明を実施例によって更に詳細に説明する。 The present invention will be explained in more detail by way of examples.

実施例1 1.0−■φの灸銅線 (Cu−35駕Zn)に次に示
す電気メツキ条件、すなわち、 ZnCl2 240g
/Q 、 NH4Cl2290g/ Q f) ) y
キ液組成で浴温50℃、DC30A/drr11の条件
で亜鉛を被覆し、外径を1.1m−φとした後、0.2
層−φに冷間伸線した。この線を試料として、室温条件
でi1表に示す(No、1−10は本発明によるもので
、 No、11〜14は比較例で本発明にならない)よ
うな111合からなる重クロム酸ソーダと!酸の況合液
の中を通し、クロム酸化物の付着の度合いを口視により
調べてみた。その結果を第1表に併記した。
Example 1 A 1.0-■φ moxibustion copper wire (Cu-35 steel Zn) was electroplated under the following conditions: 240 g of ZnCl2
/Q, NH4Cl2290g/Q f)) y
Zinc was coated with the liquid composition at a bath temperature of 50°C and DC30A/drr11, and the outer diameter was set to 1.1 m-φ.
Cold wire drawing was carried out to layer -φ. Using this line as a sample, sodium dichromate consisting of 111 compounds as shown in Table i1 (Nos. 1-10 are according to the present invention, Nos. 11-14 are comparative examples and not according to the present invention) under room temperature conditions. and! The degree of adhesion of chromium oxide was examined by oral inspection through the acid solution. The results are also listed in Table 1.

第1表 注)ヨ屯クロム酸ソーダが析出して液が不安定を家並鉛
層の溶解穴となり線径5終細る×:はとんど付着してい
ない 第1表から151らかな如く未発明による製造法でクロ
ム酸化物を付着させたNo、 1〜10は良好な付着を
示したが、クロムイオンと硫酸の含量が本発明にならな
いNo、11〜目は付着結果が悪かった。
Table 1 Note) Sodium chromate precipitates and the solution becomes unstable, which becomes a dissolution hole in the Yanami lead layer and the wire diameter decreases at the end of 5. Samples Nos. 1 to 10, in which chromium oxide was deposited using an uninvented production method, showed good adhesion, but samples Nos. 11 to 11, in which the content of chromium ions and sulfuric acid did not meet the present invention, had poor adhesion results.

実施例2 次に実施例1と同じ試料を第1表No、3の本発明によ
る条件の混合液の中を種々の速度で通過させ、試料の表
面に本発明による IQOA、800 A、1000A
の種々の厚さのクロム酸化物を浸漬付着させた。又比較
例として、50Aと+500Aの厚さに付着させたもの
もつくった。クロム酸化物の厚さの測定は、オージェ電
子分光分析によった。
Example 2 Next, the same sample as in Example 1 was passed through the mixed liquid under the conditions according to the present invention shown in Table 1 No. 3 at various speeds, and the surface of the sample was coated with IQOA, 800 A, 1000 A according to the present invention.
Various thicknesses of chromium oxide were dip deposited. In addition, as comparative examples, we also made products with thicknesses of 50A and +500A. The thickness of the chromium oxide was measured by Auger electron spectroscopy.

以上の試料について、ワイヤカット放電加工機(DWC
!jOFl)を使用してff42表に示すような条件で
加工を行った表中のVp、[pは第6図に示した。
For the above samples, wire cut electric discharge machine (DWC)
! Vp and [p in the table are shown in FIG.

第2表 注)電圧切換:無負荷時の極間電圧の大きさくVp)を
選定するためのツマミ 加工セッティング、ビー4電流(Ip)の大きさを選定
するためのツマミ 結果を第2図に示す、第2図によればクロム酸化物の厚
さが、 100A、800A、1000Åの本発明によ
るものは加工速度は大であったが、厚さが50へのもの
は効果が少なく、1500Aのものは。
Table 2 Note) Voltage switching: Figure 2 shows the knob machining settings for selecting the magnitude of the inter-electrode voltage (Vp) at no load, and the knob results for selecting the magnitude of the B4 current (Ip). According to FIG. 2, the machining speed was high when the thickness of the chromium oxide was 100A, 800A, and 1000A, but the processing speed was low when the thickness was 50A, and when the thickness was 150A, the processing speed was high. Things.

放電が不安定になり加工速度が低下するようである。It seems that the discharge becomes unstable and the machining speed decreases.

実施例3 次に従来の電極線として、シ11及び炬鉛被覆呂銅線と
実施M2の本発明によるクロム酸化物の厚さ Boo 
Aの試料の3者について実施例2と同じ条件で、サーボ
電圧(シ均加工電圧V)を変化させて加工速度のデータ
をとった。結果を第3図に示す、:tS3図によれば本
発明による電極線の放電加工性は優れており、その加工
速度は従来の黄銅線より20〜25%速く、また―鉛被
IWM銅線に比べても、15〜20%速くなっていた。
Example 3 Next, as a conventional electrode wire, a thickness of chromium oxide according to the present invention of M2 and a lead coated copper wire of M2 was used.
Data on machining speed was taken for three samples A under the same conditions as in Example 2 while changing the servo voltage (uniform machining voltage V). The results are shown in Fig. 3. According to Fig. tS3, the electrode wire according to the present invention has excellent electrical discharge machinability, and its machining speed is 20-25% faster than the conventional brass wire. It was 15-20% faster than the previous version.

実施例4 実施例3の本発明による電極線と唾鉛被li2黄銅線を
用いて、第2表に示す条件で次のような加工テストを行
った。すなわち、第5図に示すように、被加工物(SK
D−11)5 ニ0.2R(7) ] −+ −hn 
工’に行い、光′$顕微鏡を使用して、被カa丁物にで
きたコーナーHの大きさを調べたところ5本発明電極線
によるものは、 0.21Rであったが、亜鉛被覆衝銅
線によるものは、0.22Rとやや大きかった。
Example 4 Using the electrode wire according to the present invention of Example 3 and the lead-coated Li2 brass wire, the following processing test was conducted under the conditions shown in Table 2. That is, as shown in FIG.
D-11)5 d0.2R(7) ] −+ −hn
When the size of the corner H formed on the object was examined using a light microscope, it was 0.21R for the electrode wire of the present invention, but the size of the corner H formed by the electrode wire of the present invention was 0.21R. The one using a pressed copper wire was slightly larger at 0.22R.

また2本発明の、表面にクロム酸化物を付着させた亜鉛
被m黄銅線の加工速度がなぜ速くなるかを解明するため
に、被加工物(SK[l−11)に電極線を徐々に近づ
けていったときに、どこで放電が始まるかを調べる実験
を行った。第2表に示す条件で行ったが、それによると
1表面にクロム酸化物を付着させる前の亜鉛被覆黄銅線
は被加工物と電極線の距離が55.のところで放電が始
まったが1表面にクロム酸化物を 800Aの厚さ付着
させた亜鉛波f!黄銅線は30牌まで近づかないと放電
が始まらなかった。このことから1本発明の表面にクロ
ム酸化物を付着させた亜鉛被覆黄銅線は、亜鉛被覆黄銅
線よりも小さい放電ギャップで放電加工を行っていると
考えられ、その結果、火花放電エネルギーを被加工物の
溶融と除去に効率的に消費させることができると考えら
れる。
In addition, in order to elucidate why the machining speed of the zinc-coated brass wire with chromium oxide attached to the surface of the present invention increases, the electrode wire was gradually attached to the workpiece (SK[l-11). We conducted an experiment to find out where the discharge begins when the object is brought close to the object. The test was carried out under the conditions shown in Table 2, which showed that the distance between the workpiece and the electrode wire for the zinc-coated brass wire before chromium oxide was attached to the surface was 55. The discharge started at 1, but the zinc wave f! had chromium oxide deposited on its surface to a thickness of 800A. The brass wire did not start discharging until it got close to 30 tiles. From this, it is thought that the zinc-coated brass wire of the present invention with chromium oxide attached to its surface is subjected to electrical discharge machining with a smaller discharge gap than the zinc-coated brass wire, and as a result, it is exposed to spark discharge energy. It is thought that it can be efficiently consumed for melting and removing the workpiece.

丈発明の効果〕 本発明の電極線を用いれば、放電ギャップを小さくする
ことによって、火花放電エネルギーを被加工物の溶融と
除去に効率的に消費させ、放電加工速度と仕Fげ精度を
改善し、放電加工機の加工能率を著しく向上することが
できる。
[Effects of the Invention] By using the electrode wire of the present invention, by reducing the discharge gap, spark discharge energy can be efficiently consumed for melting and removing the workpiece, improving the discharge machining speed and finishing accuracy. Therefore, the machining efficiency of the electrical discharge machine can be significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による電極線の断面図であり。 第2図は1本発明による電極線の効果度を表したもので
あり、第3図は、本発明による電極線と他の電極線とに
よる加工結果を比較したものであり、第4図は放電加工
中の被加工物と電極線の断面図であり、第5図は、コー
ナーR加工したときの被加工物の断面図である。第6図
は第2表中のvprpを示す説明図である。 第1図 第2図 り0ム酵5イ乙吻l之 八 第3図 刀−t’taV
FIG. 1 is a cross-sectional view of an electrode wire according to the present invention. Figure 2 shows the effectiveness of the electrode wire according to the present invention, Figure 3 compares the processing results of the electrode wire according to the present invention and other electrode wires, and Figure 4 shows the effectiveness of the electrode wire according to the present invention. FIG. 5 is a cross-sectional view of the workpiece and the electrode wire during electrical discharge machining, and FIG. 5 is a cross-sectional view of the workpiece when the corner is rounded. FIG. 6 is an explanatory diagram showing vprp in Table 2. Figure 1 Figure 2 Figure 2 Sword - t'taV

Claims (4)

【特許請求の範囲】[Claims] (1)芯材の表面に亜鉛又は亜鉛合金被覆層を設けた複
合線において亜鉛又は亜鉛合金被覆層の表面にクロム酸
化物を被覆したことを特徴とするワイヤ放電加工用電極
(1) An electrode wire for wire electrical discharge machining, characterized in that the surface of the zinc or zinc alloy coating layer is coated with chromium oxide in a composite wire in which a zinc or zinc alloy coating layer is provided on the surface of the core material.
(2)上記クロム酸化物の厚さが100〜1000Åで
あることを特徴とする特許請求の範囲第1項記載のワイ
ヤ放電加工用電極線
(2) The electrode wire for wire electrical discharge machining according to claim 1, wherein the thickness of the chromium oxide is 100 to 1000 Å.
(3)上記のワイヤ放電加工用電極線を製造するに当り
、芯材の表面に亜鉛メッキを施した後に、80%以上の
冷間加工を行い、更にクロムイオンを含む硫酸水溶液中
で浸漬又は電解によってクロム酸化物を亜鉛メッキ面に
付着せしめることを特徴とするワイヤ放電加工用電極線
の製造法。
(3) In manufacturing the above electrode wire for wire electrical discharge machining, the surface of the core material is galvanized, then cold worked by 80% or more, and then immersed or A method for manufacturing an electrode wire for wire electrical discharge machining, which is characterized by attaching chromium oxide to a galvanized surface by electrolysis.
(4)上記クロムイオンを含む硫酸水溶液の液組成はク
ロムイオン5g/l〜100g/l、硫酸5g/l〜3
0g/lであることを特徴とする特許請求の範囲第3項
記載のワイヤ放電加工用電極線の製造法。
(4) The liquid composition of the sulfuric acid aqueous solution containing chromium ions is 5 g/l to 100 g/l of chromium ions and 5 g/l to 3 g/l of sulfuric acid.
4. The method for manufacturing an electrode wire for wire electrical discharge machining according to claim 3, characterized in that the content of the electrode wire is 0 g/l.
JP11674085A 1985-05-31 1985-05-31 Electrode wire for wire electric discharge machining and manufacture thereof Granted JPS61279433A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11674085A JPS61279433A (en) 1985-05-31 1985-05-31 Electrode wire for wire electric discharge machining and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11674085A JPS61279433A (en) 1985-05-31 1985-05-31 Electrode wire for wire electric discharge machining and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS61279433A true JPS61279433A (en) 1986-12-10
JPH0431808B2 JPH0431808B2 (en) 1992-05-27

Family

ID=14694610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11674085A Granted JPS61279433A (en) 1985-05-31 1985-05-31 Electrode wire for wire electric discharge machining and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61279433A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800886A1 (en) * 1996-04-11 1997-10-15 Thermocompact Wire electrode structure, method for manufacturing, and application in electroerosion machining
WO2005097387A1 (en) * 2004-04-01 2005-10-20 Nv Bekaert Sa Electrode for high-speed electrical discharge machining

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103537768B (en) * 2013-11-12 2015-08-12 宁波博威麦特莱科技有限公司 Slow wire feeding spark discharge processing wire electrode and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662730A (en) * 1979-10-11 1981-05-28 Charmilles Sa Ateliers Electrode wire

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662730A (en) * 1979-10-11 1981-05-28 Charmilles Sa Ateliers Electrode wire

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0800886A1 (en) * 1996-04-11 1997-10-15 Thermocompact Wire electrode structure, method for manufacturing, and application in electroerosion machining
FR2747329A1 (en) * 1996-04-11 1997-10-17 Thermocompact Sa ELECTRODE WIRE STRUCTURE FOR ELECTROEROSION, METHOD FOR ITS MANUFACTURE, AND APPLICATION TO ELECTROEROSION
WO2005097387A1 (en) * 2004-04-01 2005-10-20 Nv Bekaert Sa Electrode for high-speed electrical discharge machining

Also Published As

Publication number Publication date
JPH0431808B2 (en) 1992-05-27

Similar Documents

Publication Publication Date Title
EP0125658B1 (en) Corrosion resistant surface-treated steel strip and process for making
JPH0257690A (en) Aluminum plated substrate for anodic oxidation
JP2001517737A (en) Electroplating method
US6495788B1 (en) Electrode for machining a piece by electro-erosion and its process for production
JPS61279433A (en) Electrode wire for wire electric discharge machining and manufacture thereof
JPS6214240B2 (en)
JPS6040519B2 (en) Manufacturing method of stain-free steel plate
JPS6228123A (en) Electrode wire for electric discharge machining
JPS61288932A (en) Electrode wire for wire electric discharge machining and its manufacture
KR100481950B1 (en) An electrode wire production method for a graphite coating discharge processing
JPS5928598A (en) Insoluble anode made of pb alloy for electroplating
JPH01177399A (en) Pb-base insoluble anode for electroplating
JPH0431039B2 (en)
JPS6396294A (en) Production of steel sheet having excellent weldability and corrosion resistance
JPS59110517A (en) Electrode wire for wire-cut electric discharge machining and its manufacturing method
JPH0452187B2 (en)
JP2610979B2 (en) Method for producing electrolytic chromated steel sheet having excellent corrosion resistance, surface color and weldability
JP3670844B2 (en) Chemical treatment of tin-plated steel sheet
JPS6396298A (en) Insoluble anode made of lead alloy
JPS59156625A (en) Electrode wire for wire cut electric discharge machining
FR2682691A1 (en) IMPROVED GALVANOPLASTY PROCESS OF A METAL STRIP
JPS5629661A (en) Manufacture of one-side zinc-plated steel-plate
JPS6379994A (en) Production of steel sheet for welded can
DE1934081C3 (en) Process to improve the electro-weldability and the corrosion resistance of electro-galvanized
JPH04202784A (en) Production of iron-zinc alloy plated steel sheet excellent in electrodeposition coating property and workability and having plural iron-zinc alloy plating layers