JPS61278566A - Electrically conductive thermoplastic resin composition - Google Patents
Electrically conductive thermoplastic resin compositionInfo
- Publication number
- JPS61278566A JPS61278566A JP12201485A JP12201485A JPS61278566A JP S61278566 A JPS61278566 A JP S61278566A JP 12201485 A JP12201485 A JP 12201485A JP 12201485 A JP12201485 A JP 12201485A JP S61278566 A JPS61278566 A JP S61278566A
- Authority
- JP
- Japan
- Prior art keywords
- conductive
- fiber
- electrically conductive
- glass
- weight
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Compositions Of Macromolecular Compounds (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
(発明の技術分野)
本発明は、機械的強度その他の機械的諸物性に優れた導
電性熱可塑性樹脂組成物に関する。さらに詳しくは、本
発明は、複雑な形状を有する精密機械部品、電気部品及
び電子機器分野に利用されうる、安定した導電性乃至半
導電性を有すると共に、機械的性能にも優れた熱可塑性
樹脂組成物に関する。DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a conductive thermoplastic resin composition having excellent mechanical strength and other mechanical properties. More specifically, the present invention relates to thermoplastic resins that have stable conductivity or semiconductivity and have excellent mechanical performance, which can be used in the fields of precision mechanical parts, electrical parts, and electronic devices having complex shapes. Regarding the composition.
(背景とその問題点)
近年、技術の高度化及び精密化に伴って、各種の機器及
びその構成部品に対して材質や構造面からその軽薄短小
化を求める声が活発化しており、その傾向は特に電子材
料及び電子機器の両分野において著しい、そして、昨日
まで金属で作られていた部品や部材が今日はプラスチッ
クスで置換されるという現象が急激に進行しつつある。(Background and issues) In recent years, as technology has become more sophisticated and precise, there has been an increasing demand for various devices and their component parts to be lighter, thinner, and smaller in terms of materials and structure. This is especially noticeable in the fields of electronic materials and electronic equipment, and the phenomenon is rapidly progressing that parts and members that were made of metal until yesterday are now being replaced with plastic.
しかし反面において、従来の金属製部品や部材では問題
にならなかった機械強度その他の機械的諸物性、帯電防
止性能及び導電性能等の諸問題が顕在化し、各分野にお
いてこれらの問題を解決するための研究が営々と進めら
れつつある。However, on the other hand, various problems such as mechanical strength and other mechanical properties, antistatic performance and conductive performance, which did not pose problems with conventional metal parts and members, have become apparent, and it is necessary to solve these problems in each field. Research is being actively carried out.
ところで、ヤング率の低さその他のプラスチックスの宿
命とも言うべき機械強度の低さを改善するためには、繊
維状補強剤をプラスチックに配合することが有力な解決
手段の一つである。By the way, in order to improve the low Young's modulus and other low mechanical strength that can be said to be the fate of plastics, one effective solution is to incorporate a fibrous reinforcing agent into plastics.
一方、帯電防止性能を付与する方法としては。On the other hand, as a method for imparting antistatic performance.
多価アルコールや多価アルコールの脂肪酸エステル、ポ
リアルキレングリコール、アルキルアミンなどの親木基
を有する化合物を添加する方法がある。しかしながら、
この親水性物質を添加する方法では、樹脂成型品の表面
抵抗は精々1011Ω程度までしか低下せず、しかも環
境湿度により著しく抵抗値が変化する欠点がある・
また他の方法として、導電性カーボンブラックを樹脂中
に配合する方法もある。しかし周知のように、導電性カ
ーボンブラックは、非常に嵩高で、取扱に際し飛散しや
すいため、作業場を汚し易いという欠点がある。しかも
水晶単独にて樹脂組成物に導電性を付与するには、少な
くとも10重量%程度の添加が必要である。しかるに、
7重量%以上の導電性カーボンブラックの配合は、対象
成形品の機械強度を著しく低下させる。従って、その適
用範囲は自ずと比較的狭い範囲内に限定されるが、特に
、導電性カーボンブラックの単独添加により導電性を付
与した樹脂組成物における最大の欠点は、再現性のある
固有抵抗値を対象樹脂組成物に付与しにくい点である。There is a method of adding a compound having a parent group such as a polyhydric alcohol, a fatty acid ester of a polyhydric alcohol, a polyalkylene glycol, or an alkylamine. however,
With this method of adding a hydrophilic substance, the surface resistance of the resin molded product can only be reduced to about 1011Ω at most, and the resistance value changes significantly depending on the environmental humidity.Another method is to use conductive carbon black. There is also a method of blending it into the resin. However, as is well known, conductive carbon black has the disadvantage that it is very bulky and easily scatters when handled, making it easy to pollute the workplace. Moreover, in order to impart conductivity to the resin composition using quartz alone, it is necessary to add at least about 10% by weight. However,
Blending 7% by weight or more of conductive carbon black significantly reduces the mechanical strength of the target molded product. Therefore, the scope of its application is naturally limited to a relatively narrow range, but the biggest drawback in particular to resin compositions that have been given conductivity by adding conductive carbon black alone is that they do not have a reproducible specific resistance value. This is difficult to apply to the target resin composition.
これをさらに詳しくいえば、導電性カーボンブラックを
7重量%未滴の割合で添加、配合された樹脂組成物では
、熱可塑性樹脂本来の高い電気抵抗値を示すのに対し、
前者を10重量%以上の割合で添加された樹脂組成物で
は、逆に導電性カーボンブラック固有の低い抵抗値を示
すようになり、7重量%以上lO重量%未満の中間領域
では、抵抗値は導電性カーボンブラック添加量の増加に
応じて極めて微妙に変化する。それ故、樹脂固有抵抗値
と導電性カーボンブラック固有の抵抗値との間の中間的
な設計抵抗値を、自由にしかも安定して付与することは
甚だ困難である。即ち、導電性カーボンブラック配合量
の僅かな変化により、配合物乃至それによる成形品の電
気特性が絶縁領域から低抵抗領域へ急激に変化するため
、所望の半導電性を一定に付与するのは極めて難かしい
、加えて、導電性カーボンブラックの配合により、被配
合樹脂の熱安定性が悪化する他、成形時に起こる熱分解
のため、得られた成形物の外観が著しく変化し、かつ成
形品の耐衝撃強度、曲げ強度が著しく低下するなど多く
の欠点を生じる。To explain this in more detail, a resin composition containing 7% by weight of conductive carbon black exhibits a high electrical resistance value inherent to thermoplastic resins, but
On the contrary, resin compositions to which the former is added at a ratio of 10% by weight or more exhibit a low resistance value inherent to conductive carbon black, and in the intermediate region of 7% by weight or more and less than 10% by weight, the resistance value decreases. It changes very subtly as the amount of conductive carbon black added increases. Therefore, it is extremely difficult to freely and stably provide a design resistance value intermediate between the resin specific resistance value and the specific resistance value of conductive carbon black. In other words, a slight change in the amount of conductive carbon black mixed can cause the electrical properties of the compound or molded product made from it to change rapidly from an insulating region to a low resistance region, so it is difficult to consistently impart the desired semiconductivity. In addition, the blending of conductive carbon black deteriorates the thermal stability of the blended resin, and thermal decomposition that occurs during molding significantly changes the appearance of the resulting molded product. This causes many drawbacks, such as a significant drop in impact resistance and bending strength.
以上の問題点を解決するための一手段として、本発明者
らが先に見出した、繊維状補強剤として導電性を刊与さ
れた導電性チタン酸カリウム(以下「導電性PTWJと
いう)を利用する方法がある。しかしながら、所望の高
い導電性を得るためには、該導電性PTWを例えば40
%程度以上の高充填率水準で配合する必要がある。As a means to solve the above problems, we used conductive potassium titanate (hereinafter referred to as "conductive PTWJ"), which was previously discovered by the present inventors and has been given conductivity as a fibrous reinforcing agent. However, in order to obtain the desired high conductivity, the conductive PTW must be
It is necessary to mix at a high filling rate level of about % or more.
一方、製品の重量が10mg〜1gという小型部品や肉
厚が0.5mm以下のような薄肉部を含む部品、歯車の
如く先端に鋭角部を含むような部品等の成形に際し、ガ
ラス繊維あるいは炭素mBを単独で配合した組成物を使
用すると、薄肉部や歯先等の狭隘部分への補強材の分布
が不充分となって充分な補強効果が得られず、強度や剛
性不足を生じるのみでなく、当該補強材の配向に基づく
異方性のため反りを生じ、さらには、表面粗さが増加す
るので精密な成形も困難である。On the other hand, when molding small parts with a product weight of 10 mg to 1 g, parts with thin parts with a wall thickness of 0.5 mm or less, parts with sharp edges such as gears, glass fiber or carbon If a composition containing mB alone is used, the reinforcing material will not be sufficiently distributed in narrow areas such as thin wall parts and tooth tips, and a sufficient reinforcing effect will not be obtained, resulting in insufficient strength and rigidity. Moreover, warping occurs due to anisotropy based on the orientation of the reinforcing material, and furthermore, surface roughness increases, making precise molding difficult.
(発明の目的)
本発明は、実用上充分な機械強度その他の機械的物性(
以下「機械的物性」とり・う)を有すると共に、平滑な
表面を保持し、しかも被成形物に対し、安定して任意の
導電性を発現せしめうる熱可塑性樹脂組成物を提供する
ことにある。(Purpose of the invention) The present invention provides practically sufficient mechanical strength and other mechanical properties (
The object of the present invention is to provide a thermoplastic resin composition that has the following "mechanical properties" (hereinafter referred to as "mechanical properties"), maintains a smooth surface, and can stably exhibit desired electrical conductivity in a molded object. .
(発明の構成)
以上の目的を達成せんがため、本発明の樹脂組成物は、
組成物中に、010〜30重量%の導電性チタン酸カリ
ウムFa維と、00.3〜5重量%の導電性カーボンブ
ラックと、05〜30重量%のガラス繊維及び/又は炭
素繊維とが配合されていることを特徴とする。(Structure of the Invention) In order to achieve the above object, the resin composition of the present invention includes:
The composition contains 010 to 30% by weight of conductive potassium titanate Fa fibers, 00.3 to 5% by weight of conductive carbon black, and 05 to 30% by weight of glass fibers and/or carbon fibers. It is characterized by being
木発明者は、上記問題点の解決を目的として種々研究を
進めた結果、熱可塑性樹脂に、010〜30重量%の導
電性PTWと、00.3〜5重量%の導電性カーボンブ
ラックと、05〜30重量%のガラスm維及び/又は炭
素繊維とを配合してなる導電性熱可塑性樹脂組成物が、
導電性PTWと導電性カーボンブラック、ガラスm維及
び/又は炭素tanの配合比及び配合量に応じて、被成
形物に任意の導電性を良好な再現性をもって付与しうる
こと、及び上の組成物が、意外にも、導電性PTW単独
使用時より低充填量の該PTWの充填量でもって、被成
形物に導電性PTWの特性を充分に発揮させること、従
って、この組成物が経済的にも極めて有利な導電性樹脂
組成物であることを見出した。As a result of various research aimed at solving the above-mentioned problems, the inventor of the tree added 0.10 to 30% by weight of conductive PTW and 0.3 to 5% by weight of conductive carbon black to a thermoplastic resin. A conductive thermoplastic resin composition containing 05 to 30% by weight of glass m fibers and/or carbon fibers,
Depending on the blending ratio and amount of conductive PTW, conductive carbon black, glass m fiber and/or carbon tan, arbitrary conductivity can be imparted to the molded object with good reproducibility, and the above composition. Surprisingly, the properties of the conductive PTW can be fully exhibited in the molded object with a filling amount of the PTW that is lower than when the conductive PTW is used alone, and therefore, this composition is economical. It has also been found that the conductive resin composition is extremely advantageous for the following purposes.
本発明者の得た新規な知見によれば、導電性PTWと導
電性カーボンブラックとガラス繊維及び/又は炭素繊維
を前述の量的範囲内で併用することにより、抵抗値が予
期値より遥かに低くなるばかりでなく、半導電領域で、
バラツキのない安定した電気抵抗値を容易に再現でき、
しかも薄肉部や鋭角部を有する精密な寸法精度の要求さ
れる成形品に対しても精密な射出成形が可能となり、し
かも得られた成形品は、その末端(ゲートから遠距離の
位置)に至るまで、4=4均一の高い強度を持ち、かつ
耐熱性にも優れている。従って本発明によれば、絶縁域
から低抵抗域までの何の任意の導電性能と高い機械強度
及び精密な寸法を必要とする成形品を均一に製作すると
か可能となる。According to the new findings obtained by the present inventors, by using conductive PTW, conductive carbon black, glass fiber and/or carbon fiber together within the above-mentioned quantitative range, the resistance value is much higher than the expected value. Not only is it lower, but in the semiconducting region,
Stable electrical resistance values without variations can be easily reproduced,
Moreover, precise injection molding is possible even for molded products that require precise dimensional accuracy, such as those with thin walls or acute angles, and the resulting molded product reaches its end (a position far from the gate). It has a high uniform strength of 4=4 and also has excellent heat resistance. Therefore, according to the present invention, it is possible to uniformly manufacture molded products that require any desired conductive performance, high mechanical strength, and precise dimensions from an insulating range to a low resistance range.
本発明に使用される導電性PTWは、下記の一般式(I
)で示される組成の単結晶繊維であって、平均繊維径0
.01〜1圃、平均繊維長1〜100 pm、平均繊維
長/平均繊維径比(アスペクト比)が10以上のもので
ある。The conductive PTW used in the present invention has the following general formula (I
), the average fiber diameter is 0.
.. 01 to 1 field, average fiber length 1 to 100 pm, and average fiber length/average fiber diameter ratio (aspect ratio) of 10 or more.
K2O・n(TiOz−X)働・・Φ(1)(式中nは
8以下の実数、Xは2未満の実数を意味する。)
この導電性PTWは、一般式、
K20s n (TiOz )
(式中nは8以下の正の実数、)
で表されるチタン酸カリウムウィスカーを、不活性ガス
雰囲気中で、又は水素、低級炭化水素ガスもしくはアン
モニアガス等の還元性ガス雰囲気中にて、そのまま、あ
るいは炭素物質などの酸素受容体と混合して、500−
1500℃の温度にて還元的に焼成することにより得ら
れる。因に、この際使用される炭素物質としては、カー
ボンブラック、グラファイト、コークス、石油ピッチ等
を例示することができる。この際、チタン酸カリウムウ
ィスカーと炭素物質との混合比は、還元炉の大きさ及び
材質によって異なるが、通常、チタン酸カリウムウィス
カーに対して1〜50重量%の範囲である。K2O・n(TiOz-X)...Φ(1) (In the formula, n means a real number of 8 or less, and X means a real number of less than 2.) This conductive PTW has the general formula, K20s n (TiOz) (In the formula, n is a positive real number of 8 or less) Potassium titanate whiskers represented by 500-
It is obtained by reductive firing at a temperature of 1500°C. Incidentally, examples of the carbon material used in this case include carbon black, graphite, coke, petroleum pitch, and the like. At this time, the mixing ratio of the potassium titanate whiskers and the carbon material varies depending on the size and material of the reduction furnace, but is usually in the range of 1 to 50% by weight relative to the potassium titanate whiskers.
またその他の導電性PTWとして、無電解メッキ法又は
浸漬法もしくはスプレーコート法により、チタン酸カリ
ウムウィスカーの表面に金属、金属酸化物等の導電性又
は半導電性物質を付着させ、又は沈着させたものも使用
できる。参考までに、チタン酸カリウムウィスカーを無
電解メッキするには、該ウィスカーを100℃のアルカ
リ性領域のニッケル、銅、白金、銀等のメッキ液中に5
分〜1時間浸漬、攪拌する。またスプレーコート法にお
いては、200〜900℃に加熱されたチタン酸カリウ
ムウィスカーに、錫、ニッケル、インジウム、アンチモ
ン等のハロゲン化物、硫酸塩又は酸化物の水溶液又は水
性有機溶媒溶液をスプレーガン等を用いて噴霧、塗布し
、該ウィスカーの表面を被覆する。In addition, as other conductive PTW, conductive or semiconductive substances such as metals and metal oxides are attached or deposited on the surface of potassium titanate whiskers by electroless plating, dipping, or spray coating. You can also use things. For reference, to electrolessly plate potassium titanate whiskers, place the whiskers in a plating solution of nickel, copper, platinum, silver, etc. in an alkaline range at 100°C for 50 minutes.
Soak and stir for 1 minute to 1 hour. In addition, in the spray coating method, an aqueous solution or an aqueous organic solvent solution of a halide, sulfate, or oxide such as tin, nickel, indium, or antimony is applied to potassium titanate whiskers heated to 200 to 900°C using a spray gun or the like. The whisker surface is coated by spraying and coating.
上記各導電性PTWは、通常、無処理状態のままでも使
用できるが、熱可塑性樹脂との界面接着性をより良好に
するため、シランカップリング剤、チタネートカップリ
ング剤など目的に応じた表面処理剤を使用した方が一般
に良い結果を与える。Each of the above conductive PTWs can usually be used in an untreated state, but in order to improve the interfacial adhesion with thermoplastic resins, surface treatments such as silane coupling agents and titanate coupling agents are applied depending on the purpose. The use of agents generally gives better results.
以上の導電性PTWの配合量は、導電性の付与、寸法精
度の向上並びに剛性、機械強度の向上という諸点から、
組成物中10〜30重量%の範囲で配合されるのが好ま
しい、前記配合量が10重量%未満では、成形品の薄肉
部の機械的強度及び導電性を充分向上させることができ
ない、一方、30重量%を越えて使用しても、該限界量
を越える量に見合う程の機械的強度向上及び導電性増大
効果を認めにくい傾向にある。The above blending amount of conductive PTW is determined from the viewpoints of imparting conductivity, improving dimensional accuracy, and improving rigidity and mechanical strength.
It is preferably blended in the range of 10 to 30% by weight in the composition. If the blended amount is less than 10% by weight, the mechanical strength and conductivity of the thin walled part of the molded article cannot be sufficiently improved. Even if it is used in an amount exceeding 30% by weight, it is difficult to observe an effect of improving mechanical strength and increasing conductivity commensurate with the amount exceeding the limit amount.
本発明に使用される導電性カーボンブラックとしては、
例えばファーネスブラック、サーマルブラック、チャン
ネルブラック及びグラファイト等が挙げられる。しかし
特に、
■ ストラフチャーが発達しやすい。The conductive carbon black used in the present invention includes:
Examples include furnace black, thermal black, channel black, and graphite. However, in particular, ■ stractures are likely to develop.
■ 粒子径が小さい。■ Small particle size.
■ 表面積が大きい。■Large surface area.
■ τ電子を捕捉する不純物が少ない。■ There are few impurities that capture τ electrons.
■ グラファイト化が進んでいる。■ Graphitization is progressing.
などの導電性に必要な性能を考慮すると、ファーネスブ
ラックのうち、コンダクティブ2アーネスの一員である
ケッチェンブラックが最適である。Among furnace blacks, Ketjen black, which is a member of the conductive 2 furnace blacks, is optimal when considering the performance required for conductivity.
導電性PTWと併用される導電性カーボンブラックの配
合量は、目標とする導電性及び半導電性の程度に応じて
組成物中0.3〜5重量%の範囲内が好適である。使用
量が0.3重量%以下では、樹脂中で導電性を付与でき
る程のストラフチャーが構成されず、従って、導電性P
TWとの併用効果を殆ど期待できない、他方、配合量が
5重量%を越えると、成形品における機械的物性の低下
が著しいのみでなく、樹脂組成物の熱安定性も低下し、
加えて造粒時の加工性も悪くなる。The amount of conductive carbon black used in combination with conductive PTW is preferably within the range of 0.3 to 5% by weight in the composition depending on the target degree of conductivity and semiconductivity. If the amount used is 0.3% by weight or less, strutures sufficient to impart conductivity will not be formed in the resin, and therefore, the conductive P
Almost no effect can be expected when used in combination with TW.On the other hand, if the blending amount exceeds 5% by weight, not only will the mechanical properties of the molded product decrease significantly, but also the thermal stability of the resin composition will decrease.
In addition, the processability during granulation also deteriorates.
本発明で使用されるガラス繊維は、 SiO2,B20
3AI203. CaO、Na2O、K2Oなどの酸化
物を成分とした無機ガラスから得られ、その目的に応じ
て無アルカリガラス(Eガラス)、含アルカリガラス(
Cガラス)、耐アルカリガラス(Aガラス)などが選択
して使用されるが、強化効果の点で、樹脂強化用として
一般に用いられているEガラスが好ましい、これらガラ
ス繊維の繊維長は、樹脂への配合上0.1〜1(lsm
のものが好ましく、通常樹脂充填用として使用されてい
る3■や6■程度の長さを有するチョツプドストランド
が特に好適である。The glass fiber used in the present invention is SiO2, B20
3AI203. It is obtained from inorganic glass containing oxides such as CaO, Na2O, K2O, etc. Depending on the purpose, it can be used as alkali-free glass (E glass) or alkali-containing glass (
C glass), alkali-resistant glass (A glass), etc. are selected and used, but in terms of reinforcing effect, E glass, which is generally used for resin reinforcement, is preferable.The fiber length of these glass fibers is 0.1 to 1 (lsm
Chopped strands having a length of about 3 cm or 6 cm, which are usually used for resin filling, are particularly suitable.
以上のガラス繊維は、無処理状態でも使用できるが、ア
ミノシラン、エポキシシラン等のシランカップリング剤
やクロム系カップリング剤及び該繊維の集束を目的とし
てプラスチック系集束剤などで処理したものが目的上よ
り好適である。The above glass fibers can be used in an untreated state, but for purposes such as those treated with a silane coupling agent such as aminosilane or epoxysilane, a chromium-based coupling agent, or a plastic-based sizing agent for the purpose of bundling the fibers. More suitable.
本発明に使用し得る炭素縁m(カーボンファイバー)は
、アクリロニトリル系又はピッチ系等のいずれでもよい
、またそのIa維長は、0.1 = 10mmのものが
好ましいが1通常は、普通樹脂充填用として使用されて
いる3〜6鵬鵬程度の長さを有するチ璽ツプドファイバ
ーが好適に用いられる0本炭素#a雌も、表面を種々の
処理剤、例えばエポキシ樹脂、ポリアミド樹脂、ポリカ
ーボネート樹脂又はポリアセタール樹脂等で処理された
もの或はプラズマ等でその表面を表面酸化処理されたも
のを用いることが好ましいが、発明目的上表面処理が不
可欠である訳ではない。The carbon fiber m (carbon fiber) that can be used in the present invention may be acrylonitrile-based or pitch-based, and its Ia fiber length is preferably 0.1 = 10 mm. The 0-carbon #a female, which is preferably a chopped fiber with a length of about 3 to 6 inches, is also coated with various treatment agents such as epoxy resin, polyamide resin, etc. It is preferable to use a material treated with a polycarbonate resin or a polyacetal resin, or a surface oxidized with plasma or the like, but the surface treatment is not essential for the purpose of the invention.
ガラスm維及び/又は炭素mrtaの配合量は1組成物
中5〜30重量%での範囲内であることが好ましい、こ
れら繊維の量が5重量%未満であれば強度改良効果が不
充分である。また、30重量%を越えて使用しても、該
限界量に見合う程の機械的強度の向上効果を期待できな
いのfみでなく、成形品の表面粗さが大きくなり、その
上、組成物の造粒化も難しくなる外、造粒機の摩耗が激
しくなるので好ましくない。The blending amount of glass m fibers and/or carbon mrta is preferably within the range of 5 to 30% by weight in one composition; if the amount of these fibers is less than 5 wt%, the strength improving effect is insufficient. be. Moreover, even if it is used in an amount exceeding 30% by weight, not only is it not possible to expect an effect of improving mechanical strength commensurate with the limit amount, but also the surface roughness of the molded product increases, and in addition, the composition This is not preferable because it becomes difficult to granulate the granulator and the granulator becomes more abrasive.
本発明でいう熱可塑性樹脂は、ポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル樹脂等の汎用熱可塑性プラスチ
ックス以外に、脂肪族ポリアミド、芳香族ポリアミド、
熱可塑性ポリエステル、ポリアセタール、ポリフェニレ
ンサルファイド、ポリサルフォン、ポリエーテルイミド
、ポリエーテルエーテルケトン等のエンジニアリングプ
ラスチックスの全てを含む。Thermoplastic resins in the present invention include general-purpose thermoplastics such as polyethylene, polypropylene, and polyvinyl chloride resins, as well as aliphatic polyamides, aromatic polyamides,
Includes all engineering plastics such as thermoplastic polyester, polyacetal, polyphenylene sulfide, polysulfone, polyetherimide, and polyetheretherketone.
以上の熱可塑性樹脂に、導電性PTW、導電性カーボン
ブラック、ガラス繊維及び/又は炭素繊維を配合する方
法自体は任意であって、トライブレンドする方法、押出
機を用いて熔融した熱可塑性樹脂に混入する方法のよう
な公知の配合法を自由に採用することができる。しかし
ながら、混線過程中における導電性PTW繊維繊維−カ
ーボンファイバーガラス繊維の切断や導電性カーボンブ
ラックのストラフチャーの破壊を防止乃至抑制するには
、緩和な混練手段、例えば押出機を用いて熔融した熱可
塑性樹脂中に導電性PTW、導電性カーボンブラック、
カーボンファイバー、ガラスta維を配合する手段を採
用するのが好ましい。The method of blending conductive PTW, conductive carbon black, glass fiber and/or carbon fiber with the above thermoplastic resin is arbitrary, and there is a method of tri-blending, a method of blending the thermoplastic resin melted using an extruder, etc. Known formulation methods such as mixing methods can be freely employed. However, in order to prevent or suppress the cutting of the conductive PTW fiber-carbon fiber glass fiber and the destruction of the conductive carbon black strafts during the cross-mixing process, it is necessary to use a mild kneading method, such as an extruder, to melt the thermoplastic. Conductive PTW, conductive carbon black in resin,
It is preferable to adopt a method of blending carbon fiber and glass TA fiber.
本発明の樹脂組成物には、さらに所望により、それ自体
公知の熱安定剤、光安定剤、可塑剤等の対衝撃性付与剤
、滑剤、難燃化剤、色素もしくは顔料等を必要に応じて
、かつ本発明の効果を失わせない範囲で任意に添加する
ことができる。The resin composition of the present invention may further contain known impact-resistant agents such as heat stabilizers, light stabilizers, and plasticizers, lubricants, flame retardants, dyes or pigments, etc., as necessary. It can be added as desired within a range that does not impair the effects of the present invention.
(実施例)
以下、実施例を掲げて発明具体化の例及び発明の具体的
効果等について記述するが、例示は当然説明用のもので
あって5発明思想の内包・外延を規定するものではない
。(Examples) Examples of embodiments of the invention and specific effects of the invention will be described below using examples, but the examples are of course for illustrative purposes and are not intended to define the connotation or extension of the five inventive ideas. do not have.
実施例!
ポリプロピレン[三井東圧化学■製;ノーブレンH3O
1]、チタン酸カリウムウィスカーを不活性雰囲気中で
1000℃にて還元焼成した導電性p”rw [大塚化
学■製]、ケッチェンブラックEC−P [ライオンア
クゾ■製]及び平均繊維長3■のガラス繊!1[塩ファ
イバーグラス社製;C303−MA497]を下表−1
にゴ
示す配合組成として、220℃に設定れた45m■φ^
二軸押出機にて、熔融したノープレンH3O1に上記の
導電性PTW、ケッチェンブラックEC−P及びガラス
#Jl雄を混入し、押出し造粒化した。その後、下記条
件下で射出成形を行い、物性測定用テストピースを作成
した。Example! Polypropylene [Mitsui Toatsu Chemical ■; Noblen H3O
1], conductive p"rw made by reducing and firing potassium titanate whiskers at 1000°C in an inert atmosphere [manufactured by Otsuka Chemical ■], Ketjen Black EC-P [manufactured by Lion Akzo ■], and average fiber length 3■ Glass fiber!1 [manufactured by Shio Fiberglass Co., Ltd.; C303-MA497] in the table below-1
As the compounding composition shown in Fig. 2, the above conductive PTW, Ketjenblack EC-P and glass #Jl were mixed into the melted Noprene H3O1 in a 45mφ^ twin-screw extruder set at 220°C. It was extruded and granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties.
シリンダ一温度=210℃
射出圧カニ500Kg/c■2
射出時間:、15秒
金型温度:60℃
得られた各テストピースについて、電気的性質と機械的
強度とを測定した。その結果を下表−1に示す。Cylinder temperature = 210°C Injection pressure 500 kg/c2 Injection time: 15 seconds Mold temperature: 60°C The electrical properties and mechanical strength of each test piece obtained were measured. The results are shown in Table 1 below.
(以下余白)
表に示した体積固有抵抗値及び曲げ強度から明らかなよ
うに、導電性PTWと導電性カーボンブラックの併用に
より、優れた導電性が得もまた、厚さ0.5+u+、縦
f15+*m、横50mmの薄型ケースを射出成形した
が、実施例1−1〜同1−5いずれも表面平滑性が良好
で、反りも見られず、寸法精度の良好なことが確認され
た。(Left below) As is clear from the volume resistivity and bending strength shown in the table, the combination of conductive PTW and conductive carbon black provides excellent conductivity. A thin case with a width of 50 mm was injection molded, and it was confirmed that all of Examples 1-1 to 1-5 had good surface smoothness, no warping, and good dimensional accuracy.
友五里名
ジュラコンM’fQ−02[ポリプラスチック■;ポリ
アセタール]、実施例1と同一の導電性PTW[大塚化
学輛製]、ケッチェンブラックE C−D J 500
[ライオンアクゾ輛製]及び断面直径9井、平均繊
維長6■の炭素縁!i[米国、バーキュレス社製:マグ
ナマイ)1810AS]を下表−2に示す配合組成とし
て、220℃に設定した45+smφの二軸押出機にて
、熔融したジュラコンM90−02に上記の導電性PT
WケッチェンブラックEC−DJ500及び炭素繊維を
混入し、押出し造粒した。その後、下記条件で射出成形
し、物性測定用テストピースを作成した。Tomogorina Duracon M'fQ-02 [Polyplastic ■; Polyacetal], Conductive PTW same as Example 1 [manufactured by Otsuka Chemical], Ketjenblack E C-D J 500
[Made by Lion Akzo] Carbon rim with cross-sectional diameter of 9mm and average fiber length of 6mm! The conductive PT described above was added to the molten Duracon M90-02 using a 45+smφ twin-screw extruder set at 220°C with the compounding composition shown in Table 2 below.
W Ketjen Black EC-DJ500 and carbon fiber were mixed and extrusion granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties.
シリンダ一温度:200℃
射出圧カニ l000Kg/c+s2
射出時間+30秒
金型温度=80℃
続いて、電気的性質と機械的強度を測定した。その結果
を下表−2に示す。Cylinder temperature: 200°C Injection pressure 1000Kg/c+s2 Injection time + 30 seconds Mold temperature = 80°C Subsequently, electrical properties and mechanical strength were measured. The results are shown in Table 2 below.
(以下余白) 電気的性質及び機械的強度 B[Jl[京精密製]で測定した(R+aax)。(Margin below) Electrical properties and mechanical strength B [Measured with Jl [manufactured by Kyo Seimitsu] (R+aax).
上表−2から明らかなように、炭素m雄の配合量が5重
量%未満では、機械物性の改良効果が小さく、一方、3
0重量%を越えると、表面粗さが大きくなり、精密成形
品の成形材料としては適さない傾向が見られた。As is clear from Table 2 above, when the blending amount of carbon m is less than 5% by weight, the effect of improving mechanical properties is small;
When it exceeds 0% by weight, the surface roughness becomes large and there is a tendency that it is not suitable as a molding material for precision molded products.
また、実施例2−3のペレット製造(造粒)引取り性の
面からかなり困難であった。In addition, the pellet production (granulation) of Example 2-3 was quite difficult from the viewpoint of take-up properties.
実施例3
RENY6001 [三菱瓦斯化学■製;ナイロンMX
D6]、チタン酸カリウムウィスカーとコークスとを混
合し、水素ガスとプロパンガスの混合気流中で還元焼成
することにより得られた導電性PTW[大塚化学■製]
及びケッチェンブラックEC−P [ライオンアクシー
製]、長さ3+u+のガラスチョツプドストランド及び
長さ6a+mの炭素amを下表−3に示す配合組成とし
て、270℃に設定された45m+oφの二軸押出機に
て、熔融したRENY6001に上記の導電性PTW、
ケッチェンブラックEC−Pガラス繊維及び炭素繊維を
混入し、押出し造粒した。その後、下記条件で射出成形
し、物性測定用テストピースを作成した。Example 3 RENY6001 [Made by Mitsubishi Gas Chemical ■; Nylon MX
D6], conductive PTW obtained by mixing potassium titanate whiskers and coke and reducing and firing the mixture in a mixed gas flow of hydrogen gas and propane gas [manufactured by Otsuka Chemical ■]
and Ketjen Black EC-P [manufactured by Lion Axie], a glass chopped strand with a length of 3+u+ and a carbon am with a length of 6a+m as shown in Table 3 below, and a biaxial 45m+oφ set at 270°C. The above conductive PTW was added to the melted RENY6001 using an extruder.
Ketjenblack EC-P glass fibers and carbon fibers were mixed and extrusion granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties.
シリンダ一温度:285℃
射出圧カニ 1000Kg/cra2
射出時間=20秒
金型温度:120°C
得られたテストピース≠について、電気的性質と機械的
強度を測定した。その結果を下表−3に示す。Cylinder temperature: 285°C Injection pressure: 1000 kg/cra2 Injection time: 20 seconds Mold temperature: 120°C The electrical properties and mechanical strength of the obtained test piece were measured. The results are shown in Table 3 below.
(以下余白)
上表−3から明らかなように、導電性PTW10〜20
重量%、導電性カーボンブラック2〜5重量%・ガラス
繊維及び/又は炭素繊!!5〜20重量%の配合におい
て、102〜lQI OΩ・amの任意の導電性と高い
強度とを有する成形品用材料を提供できることが分る。(Left below) As is clear from Table 3 above, conductive PTW10-20
Weight%, conductive carbon black 2-5% by weight, glass fiber and/or carbon fiber! ! It can be seen that in a blend of 5 to 20% by weight, it is possible to provide a material for molded articles having any electrical conductivity of 102 to 1QI OΩ·am and high strength.
実施例4
ティジンPBT CL7000 [奇人■;ポリブチ
レンテレフタレート]、チタン酸カリウムウィスカーを
300℃に加熱し、塩化第二錫の水溶液のスプレーにて
表面を導電被覆して得られた導電性PTW [大塊化学
■製]、ケッチェンブラックEC−P [ライオンアク
シー製]及び長さ6II謹の炭素繊維を、下表−4に示
す配合組成として、240℃に設定された4詣層φの二
軸押出機を用い、熔融した玉揚PBT CL7000
に、上記導電性PTW、ケッチェンブラックEC−P及
び炭素繊維を混入し、押出し造粒した。その後、下記条
件で射出成形を行い、物性測定用テストピースを作成し
た。Example 4 Conductive PTW [Large] obtained by heating Tijin PBT CL7000 [odd character ■; polybutylene terephthalate] and potassium titanate whiskers to 300°C and conductively coating the surface with a spray of an aqueous solution of stannic chloride. Ketjen Black EC-P [manufactured by Lion Axie], Ketjen Black EC-P [manufactured by Lion Axie] and 6II long carbon fibers were mixed into a biaxial 4-layer φ set at 240°C with the compounding composition shown in Table 4 below. Dolphin-fried PBT CL7000 melted using an extruder
The above-mentioned conductive PTW, Ketjenblack EC-P and carbon fiber were mixed into the mixture and extrusion granulated. Thereafter, injection molding was performed under the following conditions to create a test piece for measuring physical properties.
シリンダ一温度=245℃
射出圧カニ 1000Kg/crs2
射出時間;20秒
金型温度:100℃
次いで、得られたテストピースについて電気的性質と機
械的強度とを測定した。その結果を下表−4に示す。Cylinder temperature = 245°C Injection pressure: 1000 kg/crs2 Injection time: 20 seconds Mold temperature: 100°C Next, the electrical properties and mechanical strength of the obtained test piece were measured. The results are shown in Table 4 below.
(以下余白)
表−4
電気的性質及び機械的強度
(発明の効果)
本発明によれば、成形品の機械的強度が高く、また寸法
精度にも優れ、しかも絶縁域から導電域までの任意の導
電性を再現しうる樹脂組成物を容易に得ることができる
。(Leaving space below) Table 4 Electrical properties and mechanical strength (effects of the invention) According to the present invention, the mechanical strength of the molded product is high, the dimensional accuracy is excellent, and the molded product can be formed anywhere from the insulating region to the conductive region. It is possible to easily obtain a resin composition that can reproduce the conductivity of .
特に、本発明の導電性熱可塑性樹脂組成物は、体積固有
抵抗値で1014〜lQI QΩ・cllの帯電防止材
料 lQ10〜104Ω11の半導電性材料及び104
〜100Ω・C11の導電性成形材料を提供できるので
。In particular, the conductive thermoplastic resin composition of the present invention includes an antistatic material with a volume resistivity of 1014 to 1QI QΩ·cll, a semiconductive material with a volume resistivity of 1014 to 104Ω11, and a semiconductive material with a volume resistivity of 1014 to 104Ω
Because we can provide a conductive molding material of ~100Ω・C11.
電子部品の梱包、収納材料、複写機、プリンター等のO
A種機器機構部品やハウジングなどの成形に好適な樹脂
材料を提供する。Packaging of electronic parts, storage materials, copiers, printers, etc.
We provide resin materials suitable for molding A-class equipment mechanical parts, housings, etc.
Claims (1)
ム繊維と、[b]0.3〜5重量%の導電性カーボンブ
ラックと、[c]5〜30重量%のガラス繊維及び/又
は炭素繊維とが配合されていることを特徴とする安定し
た導電性又は半導電性を備え、かつ強度に優れた導電性
熱可塑性樹脂組成物。(1) [a] 10-30% by weight of conductive potassium titanate fibers, [b] 0.3-5% by weight of conductive carbon black, [c] 5-30% by weight of glass fibers and/or or carbon fiber, a conductive thermoplastic resin composition having stable conductivity or semiconductivity and excellent strength.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12201485A JPS61278566A (en) | 1985-06-04 | 1985-06-04 | Electrically conductive thermoplastic resin composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12201485A JPS61278566A (en) | 1985-06-04 | 1985-06-04 | Electrically conductive thermoplastic resin composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61278566A true JPS61278566A (en) | 1986-12-09 |
JPH0468348B2 JPH0468348B2 (en) | 1992-11-02 |
Family
ID=14825438
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12201485A Granted JPS61278566A (en) | 1985-06-04 | 1985-06-04 | Electrically conductive thermoplastic resin composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61278566A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429461A (en) * | 1987-07-24 | 1989-01-31 | Ishihara Mining & Chemical Co | Electrical conductive composition |
JPH01207356A (en) * | 1988-02-15 | 1989-08-21 | Showa Denko Kk | Electrically conductive thermoplastic resin composition |
JPH01267577A (en) * | 1988-04-19 | 1989-10-25 | Tokai Rubber Ind Ltd | Roll |
JPH01268759A (en) * | 1988-04-19 | 1989-10-26 | Tokai Rubber Ind Ltd | Electrically semiconductive high polymer material composition |
EP0539936A2 (en) * | 1991-10-29 | 1993-05-05 | Nitto Boseki Co., Ltd. | Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition |
WO1998015596A1 (en) * | 1996-10-08 | 1998-04-16 | Kaneka Corporation | Flame-retardant, antistatic polyester resin composition |
JP2011132550A (en) * | 2011-04-07 | 2011-07-07 | Mitsubishi Engineering Plastics Corp | Polyamide resin composition and conductive shaft-like molding |
-
1985
- 1985-06-04 JP JP12201485A patent/JPS61278566A/en active Granted
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6429461A (en) * | 1987-07-24 | 1989-01-31 | Ishihara Mining & Chemical Co | Electrical conductive composition |
JPH0571058B2 (en) * | 1987-07-24 | 1993-10-06 | Ishihara Sangyo Kaisha | |
JPH01207356A (en) * | 1988-02-15 | 1989-08-21 | Showa Denko Kk | Electrically conductive thermoplastic resin composition |
JPH01267577A (en) * | 1988-04-19 | 1989-10-25 | Tokai Rubber Ind Ltd | Roll |
JPH01268759A (en) * | 1988-04-19 | 1989-10-26 | Tokai Rubber Ind Ltd | Electrically semiconductive high polymer material composition |
EP0539936A2 (en) * | 1991-10-29 | 1993-05-05 | Nitto Boseki Co., Ltd. | Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition |
US5321071A (en) * | 1991-10-29 | 1994-06-14 | Nitto Boseki Co., Ltd. | Short fiber-containing polymer composition and method for controlling electrical resistance of the polymer composition |
WO1998015596A1 (en) * | 1996-10-08 | 1998-04-16 | Kaneka Corporation | Flame-retardant, antistatic polyester resin composition |
JP2011132550A (en) * | 2011-04-07 | 2011-07-07 | Mitsubishi Engineering Plastics Corp | Polyamide resin composition and conductive shaft-like molding |
Also Published As
Publication number | Publication date |
---|---|
JPH0468348B2 (en) | 1992-11-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2610671B2 (en) | Fiber reinforced thermoplastic resin composition | |
EP2209845B1 (en) | Thermally conductive plastic resin composition | |
KR101288565B1 (en) | Multi-functional resin composite and molded product using the same | |
JPS62227952A (en) | Electrically conductive polyamide resin composition | |
US20090152491A1 (en) | Thermally conductive resin compositions | |
JP2000037723A (en) | Fiber-reinforced tbermoplastic resin molded article with excellent appearance | |
JP4160138B2 (en) | Thermoplastic resin molded product, material for molded product, and method for producing molded product | |
JP6002464B2 (en) | Long glass fiber reinforced flame retardant polyamide resin composition and molded article | |
JP2005533909A (en) | Static dissipative thermoplastic polymer composition | |
JPS61278566A (en) | Electrically conductive thermoplastic resin composition | |
JPS6367503B2 (en) | ||
JP2004519549A (en) | Polymer resin for ion beam or ion implantation treatment to impart conductivity to the surface | |
KR100622710B1 (en) | Polyester Resin Compositions with Excellent Heat Resistance and Surface Finish | |
CN114292510B (en) | PC-ABS alloy material and preparation method thereof | |
JPH0449873B2 (en) | ||
JP2002322366A (en) | Conductive thermoplastic resin composition | |
JP2007284647A (en) | Resin molded product for painting | |
WO2013094686A1 (en) | Resin molded body for electrostatic coating | |
JP2723330B2 (en) | Lightweight lamp reflector | |
JP2008074992A (en) | Carbon fiber reinforced thermoplastic resin composition and molded product | |
JPH11172101A (en) | Nylon resin composition | |
JP2000290514A (en) | Conductive resin composition and manufacture thereof | |
JPH0267358A (en) | Thermoplastic resin composition | |
JPH05226092A (en) | Electrostatic diffusion resin complex | |
JPS63272536A (en) | Manufacture of conductive resin molded product |