JPS61277390A - Controlling method for induction motor - Google Patents

Controlling method for induction motor

Info

Publication number
JPS61277390A
JPS61277390A JP11618985A JP11618985A JPS61277390A JP S61277390 A JPS61277390 A JP S61277390A JP 11618985 A JP11618985 A JP 11618985A JP 11618985 A JP11618985 A JP 11618985A JP S61277390 A JPS61277390 A JP S61277390A
Authority
JP
Japan
Prior art keywords
phase
potential
control element
induction motor
power converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11618985A
Other languages
Japanese (ja)
Inventor
Yasuhiko Okada
岡田 靖彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP11618985A priority Critical patent/JPS61277390A/en
Publication of JPS61277390A publication Critical patent/JPS61277390A/en
Pending legal-status Critical Current

Links

Landscapes

  • Stopping Of Electric Motors (AREA)

Abstract

PURPOSE:To create an ideal curve and obtain the increasing brake force, by controlling a power converter in a range where the first phase potential and the third phase potential are higher than the second phase potential of an AC three-phase power source whose input is directed to the power converter. CONSTITUTION:So far as the power source waveforms of the first phase R, the second phase S, and the third phase T are concerned, in a range where the potential of the third phase T is higher than the potential of the first phase R and the second phase S, a control element TRCT is conducted to a control element TRCS. Also, in a range where the potential of the first phase R is higher than the potential of the second phase S and the third phase T, a control element TRCR is conducted to the control element TRCS.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は電圧変換器による誘導・1動機の一次電圧制御
を行う電動機駆動方法に係り、特に−次電圧を双方向性
三端子制御素子等を用いてなる電力変換器によりブレー
キトルク特性を得る誘導電動機の制御方法に関するもの
である。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a motor driving method for controlling the primary voltage of an induction/single motor using a voltage converter, and in particular, the present invention relates to a method for driving a motor that controls the primary voltage of an induction/single motor using a voltage converter. The present invention relates to a control method for an induction motor that obtains brake torque characteristics using a power converter using a power converter.

〔従来の技術〕[Conventional technology]

従来、双方向性三端子制御素子(以下単に制御素子と称
する)を用いた電力変換器により、誘導電動機(以下I
Mと称する)を−次′罐圧制御するモデルとして第3図
に示すものが知られている。
Conventionally, induction motors (hereinafter referred to as I
The model shown in FIG. 3 is known as a model for controlling the -order can pressure (referred to as M).

第3図はIM−次電圧制御の公知のモデル図で、R,S
、Tは三相交流’IC源の例えば第1相、第2m、第3
8、TRCa 、 Tl(ce 、 TRCT ハ2J
 1 a R。
Figure 3 is a known model diagram of IM-order voltage control, with R, S
, T are the 1st, 2m, and 3rd phases of a three-phase AC 'IC source, for example.
8, TRCa, Tl(ce, TRCT Ha2J
1aR.

第2相S、第3相Tに接続された電力変換機能を有する
制御素子である。
This is a control element connected to the second phase S and the third phase T and having a power conversion function.

かかる接続構成およびIMの速度制御駆動については周
知であるので、その詳細説明を割愛する。
Since such connection configuration and speed control driving of the IM are well known, a detailed explanation thereof will be omitted.

つぎに、IMI駆動におけるブレーキ特性を得る場合に
ついて、第4図を参照して説明する。
Next, the case of obtaining brake characteristics in IMI driving will be explained with reference to FIG. 4.

ここで、第4図(イ)は電源波形を示し、第4図(ロ)
は磁界のベクトルを示している。
Here, Fig. 4 (a) shows the power supply waveform, and Fig. 4 (b) shows the power supply waveform.
indicates the vector of the magnetic field.

さて、回転しているIMにブレーキ力を発生させる場合
、第1相R1第2相S、第3相Tの電源波形の区間2の
タイミングで制御素子TRCa 、 TRCaを導通さ
せると、IMの巻SWυ、 wv 、 Wwのうちの巻
線wU 、 Wvに一方方向に電流が流れ、この′1流
により発生する磁界φU、φVおよびそれらの合成磁界
φ、φ′、φ“は図示のベクトルとなる。ここで、合成
磁界φ、φ′、φ“はIM運転の低速域、中速域。
Now, when generating a braking force on the rotating IM, if the control elements TRCa and TRCa are made conductive at the timing of section 2 of the power waveforms of the first phase R1, the second phase S, and the third phase T, the winding of the IM A current flows in one direction through the windings wU and Wv of SWυ, wv, and Ww, and the magnetic fields φU and φV generated by this ′1 current and their combined magnetic fields φ, φ′, and φ” become the vectors shown in the figure. .Here, the composite magnetic fields φ, φ', φ'' are in the low speed range and medium speed range of IM operation.

高速域の場合の代表例として示している。This is shown as a typical example in the high speed range.

したかって、IMは直流制動がかかりブレーキ力を発生
することかできる。
Therefore, the IM can apply DC braking and generate braking force.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

一般に前述した如きブレーキトルクを得る従来の制御方
法によれば、そのトルク−スピード特性は第5図に示す
ものであった。
Generally, according to the conventional control method for obtaining the brake torque as described above, the torque-speed characteristic was as shown in FIG.

第5図は従来方法により得られるブレーキ特性を示すも
ので、縦軸はIMの回転数Nを、横軸は駆動トルク(+
τ)と制動トルク(−τ)を示している。
Figure 5 shows the braking characteristics obtained by the conventional method, where the vertical axis represents the rotational speed N of the IM, and the horizontal axis represents the driving torque (+
τ) and braking torque (-τ).

ここに、BCはブレーキ曲線である。Here, BC is the brake curve.

かようにして、ブレーキ曲#BCで表わされる如く回転
の高い領域ではトルクが激減するものとなっていた。
In this way, the torque was drastically reduced in the high rotation range as represented by brake tune #BC.

なお、これの対処として高速域ではブレーキ方式を切り
換える手法が知られているが、その場合には切換点が存
在するものとなることから、不連続点があるなど問題点
をもつものとなってしまう。
As a solution to this problem, there is a known method of switching the braking method in high-speed ranges, but in that case there is a switching point, which causes problems such as discontinuities. Put it away.

また、制御素子を付設することにより巻線WU、WVに
もつと大きな電流を流し、ブレーキトルクの増大を図る
手法によるものとすれば、電力索子追加のみにとどまら
ず素子駆動回路が複雑化して信頼性に欠け、コストアッ
プを生じるものとなっていた。
In addition, if a control element is attached to the windings WU and WV to cause a large current to flow in order to increase the brake torque, it will not only be necessary to add a power cord, but will also complicate the element drive circuit. This resulted in a lack of reliability and increased costs.

〔発明の構成〕[Structure of the invention]

本発明は上述したような点に着目しなされたもので、電
力素子等の付設を伴うことなく巧みにブレーキトルクを
増す手法を用いることより、簡便な装置を実現する方法
を提供するものである。以下、本発明を図面に基づいて
説明する。
The present invention has been made with attention to the above-mentioned points, and provides a method for realizing a simple device by skillfully increasing the brake torque without adding a power element or the like. . Hereinafter, the present invention will be explained based on the drawings.

第1図(イ)、 (r:4は本発明の技術思想の理解を
容易にするため第4図に類して表したもので、Zl *
 22は区間、φ!、φ2.φ1′、φ2′、φ1#、
φ−は合成磁界である。
Figure 1 (A), (r: 4 is shown similar to Figure 4 to facilitate understanding of the technical idea of the present invention, and Zl *
22 is the interval, φ! , φ2. φ1', φ2', φ1#,
φ- is the composite magnetic field.

図中第4図と同符号のものは同じ機能を有する部分を示
す。
In the figure, the same reference numerals as in FIG. 4 indicate parts having the same functions.

すなわち、これを第3図を参照しで述べると、第1相R
2第2相S、第3相Tの電源波形の区間z1で制御素子
TRCTと制御素子TRCsを、また電源波形の区間z
2では制御素子TRCRと制御素子TRCsを導通させ
るようにすることより、巻線WU。
That is, to describe this with reference to FIG. 3, the first phase R
2 Control element TRCT and control element TRCs in section z1 of the power waveform of the second phase S and third phase T, and in section z of the power waveform.
2, the winding WU is made conductive between the control element TRCR and the control element TRCs.

Wv 、 Wwに電流が流れて図示のように磁界φU、
φV。
When current flows through Wv and Ww, magnetic fields φU and
φV.

φWが発生する。φW occurs.

それゆえ、それぞれの合成磁界としてφ1とφ2.φ1
′とφ2.φXとφ2が得られるものとなる。
Therefore, as respective synthetic magnetic fields, φ1 and φ2. φ1
' and φ2. φX and φ2 are obtained.

したがってかくの如き第1図(イ)、 (c$に示され
るものは、第4図(イ)、(嗜と見比べてみても明白な
ように、はぼ一定の磁界の発生して区間およびIMの巻
線に流れる電流をともに増大でき、IMはブレーキ力が
増大したものを得ることができる。これを図示すれば第
2図の如くである。
Therefore, what is shown in Figures 1 (a) and (c$) is, as is clear from the comparison with Figure 4 (a) and (c), an area where an approximately constant magnetic field is generated. The current flowing through the winding of the IM can be increased, and the IM can obtain an increased braking force.This is illustrated in FIG. 2.

第2図は本発明により得られるブレーキ特性を表したト
ルク−スピード特性図で、BC’はブレーキ曲線である
。すなわちブレーキ曲線BC’においては、特に低速域
から高速領域への全てに互り大きな制動トルクが得られ
、高速域特性は従来特性に対して極めて大きなブレーキ
力を得るものである。
FIG. 2 is a torque-speed characteristic diagram showing the brake characteristics obtained by the present invention, and BC' is a brake curve. In other words, in the brake curve BC', a mutually large braking torque is obtained particularly from the low speed range to the high speed range, and the high speed range characteristic provides an extremely large braking force compared to the conventional characteristic.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、従来の回路構成を
もって理想的な曲線を画き増大したブレーキ力を得る格
別な方法を提供できる。
As explained above, according to the present invention, it is possible to provide an exceptional method of drawing an ideal curve and obtaining increased braking force using a conventional circuit configuration.

【図面の簡単な説明】 第1図と第2図は本発明の技術思想の理解を容易にする
ため表した電源波形および磁界ベクトルを示す図とトル
ク−スピード特性図、第3図はIM−成型圧制御を示す
公知のモデル図、第4図と第5図は従来方法による1圧
波形および磁界ベクトルを示す図とトルク−スピード特
性図である。 R,8,T・・・・・・三相交流電源の′141相、第
2相。 第3相、TRrCn 、 TRCs 、 TRCT・・
・・・・双方向性三端子制御素子(制御素子)、IM・
・・・・・誘導電動機、Z 。 zl、Z2・・・・・・区間、φ、φ’、φ″I ”’
 t ”21 ””Z ”21 φt’。 φ−・・・・・・合成磁界、BC,BC’・・・・・・
ブレーキ曲線。
[Brief Description of the Drawings] Figures 1 and 2 are diagrams showing power supply waveforms and magnetic field vectors and torque-speed characteristic diagrams, which are shown to facilitate understanding of the technical concept of the present invention, and Figure 3 is an IM- Known model diagrams showing molding pressure control, FIGS. 4 and 5 are diagrams showing a single pressure waveform and a magnetic field vector, and a torque-speed characteristic diagram according to a conventional method. R, 8, T...'141 phase, 2nd phase of three-phase AC power supply. Third phase, TRrCn, TRCs, TRCT...
・・・Bidirectional three-terminal control element (control element), IM・
...Induction motor, Z. zl, Z2... section, φ, φ', φ″I ”'
t ”21 ””Z ”21 φt'. φ-・・・Synthetic magnetic field, BC, BC'・・・・・・
brake curve.

Claims (1)

【特許請求の範囲】[Claims] 誘導電動機の一次電圧を電力変換器により調節して電動
機駆動を行う電動機駆動方法において、前記電力変換器
に入力する交流三相電源の第2相電位よりも第1相電位
および第3相電位が高位にある区間に該電力変換器を制
御することより、前記誘導電動機のブレーキトルクを得
るようにしたことを特徴とする誘導電動機の制御方法。
In a motor driving method in which the primary voltage of an induction motor is adjusted by a power converter to drive the motor, the first phase potential and the third phase potential are lower than the second phase potential of an AC three-phase power source input to the power converter. A method for controlling an induction motor, characterized in that the braking torque of the induction motor is obtained by controlling the power converter in a high-level section.
JP11618985A 1985-05-29 1985-05-29 Controlling method for induction motor Pending JPS61277390A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11618985A JPS61277390A (en) 1985-05-29 1985-05-29 Controlling method for induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11618985A JPS61277390A (en) 1985-05-29 1985-05-29 Controlling method for induction motor

Publications (1)

Publication Number Publication Date
JPS61277390A true JPS61277390A (en) 1986-12-08

Family

ID=14681029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11618985A Pending JPS61277390A (en) 1985-05-29 1985-05-29 Controlling method for induction motor

Country Status (1)

Country Link
JP (1) JPS61277390A (en)

Similar Documents

Publication Publication Date Title
EP3346590B1 (en) Double stator permanent magnet machine with magnetic flux regulation
US4039909A (en) Variable speed electronic motor and the like
US6661206B2 (en) Soft chopping for switched reluctance generators
JPH10505219A (en) Method and apparatus for minimizing torque ripple in a DC brushless motor using phase current overlap
IT9021751A1 (en) TORQUE ESTIMATOR FOR SWITCHED RELUCTANCE MACHINES.
US3784888A (en) Control for commutatorless motor
JPS6271485A (en) Brushless motor
Miller et al. Four-quadrant brushless reluctance motor drive
US3840790A (en) Electronically commutated motor
US5012148A (en) AC machine system with induced DC field
JPS62100191A (en) Drive system for multiplex-winding ac motor
JPS61277390A (en) Controlling method for induction motor
JPH0561877B2 (en)
JPH0993718A (en) Permanent magnet motor for electric vehicle
JP2876738B2 (en) Series-parallel switching rotary electric machine
JPH0534916B2 (en)
JPS58139697A (en) Drive device for motor
JP3578903B2 (en) Brushless DC motor and brushless DC motor drive control method
JPS6238959B2 (en)
JP2537882B2 (en) DC motor drive
US3302084A (en) Control circuits for hysteresis motors
JP2931164B2 (en) Drive circuit for brushless motor
JPS6243440B2 (en)
JPH01209984A (en) Drive circuit for dc brushless three-phase motor
Takeda et al. Commutatorless Motor of Armature-field Perpendicular Type