JPS61276901A - Production of porous magnet - Google Patents
Production of porous magnetInfo
- Publication number
- JPS61276901A JPS61276901A JP11921485A JP11921485A JPS61276901A JP S61276901 A JPS61276901 A JP S61276901A JP 11921485 A JP11921485 A JP 11921485A JP 11921485 A JP11921485 A JP 11921485A JP S61276901 A JPS61276901 A JP S61276901A
- Authority
- JP
- Japan
- Prior art keywords
- porous
- substance
- volatilizable
- magnetizable
- powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Powder Metallurgy (AREA)
- Manufacturing Cores, Coils, And Magnets (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
従来の技術
従来より多孔性磁石の製造法として特別に確立した技術
を見出すことは出来ないものであるが、従来より知られ
ている粉末冶金技術を応用して多孔性磁石を製造するこ
とは可能である。その1例として特開昭55−8166
1号公報の明細書第5頁に見出すことが出来る。[Detailed Description of the Invention] Industrial Field of Application Conventional Technology Although it is not possible to find any particularly established technology as a method for manufacturing porous magnets, conventionally known powder metallurgy technology can be used to produce porous magnets. It is possible to apply this method to produce porous magnets. One example is JP-A-55-8166.
It can be found on page 5 of the specification of Publication No. 1.
発明が解決しようとする問題点
従来より知られている粉末冶金技術は、粉体が持つ物理
的性質の流動性、分割性及び移動性などの特性による成
形の容易さを利用してこれを加工し、強度又は切削加工
性を、一般に知られている熔ユク成形金属にいかに近つ
けるかを目的さしたけ多くの制限がある。これが粉末冶
金技術を利用して多孔性磁石を製造する場合の欠点とな
っている。f11多孔性磁石の空隙量によって異なるが
、使用される粒径を限定する必要がある。(2)粒形が
円形若しくは円に近い形状であることを要する。(3)
空隙量のコントロールが困難である等の欠点を有してい
る。fl+については、粉末冶金法の場合粒径にバラツ
キがある。と、粒径の比較的大きな粒子によって構成さ
れた空隙部に微細な粒子が入り空隙部を埋める結果とな
る。(2)は粒形が多角形を成していると、角部が空隙
を埋める結果となり、特に鋭角を成す角部を有するか、
粒子が偏平状を成す場合、空隙部の成生は非常に困難で
ある。(3)は一定の粒径を選択し、更に粒径を円形に
した場合において、成形圧力は必ず一定量以」―の圧力
を必要とし、その場合にのみ強度を有する有形金属を得
ることが出来るもので、単に空隙量を大きくするだめに
成形圧力を少さくすることは仕」−り金属が脆くなり使
用に耐えない有形金属を製造することになるのである。Problems to be Solved by the Invention Conventionally known powder metallurgy techniques utilize the physical properties of powder, such as fluidity, divisibility, and mobility, to facilitate molding. However, there are many limitations to the extent that the strength or machinability can be brought close to that of generally known melt-formed metals. This is a drawback when producing porous magnets using powder metallurgy techniques. Although it depends on the amount of voids in the f11 porous magnet, it is necessary to limit the particle size used. (2) The particle shape must be circular or close to a circle. (3)
It has drawbacks such as difficulty in controlling the amount of voids. Regarding fl+, there is variation in particle size in the case of powder metallurgy. As a result, fine particles enter the voids formed by the relatively large particles and fill the voids. In (2), if the grain shape is polygonal, the corners will fill the voids, and if the grains have particularly acute corners,
When particles have a flat shape, it is very difficult to create voids. (3) When a certain particle size is selected and the particle size is made circular, the molding pressure must be a certain amount or more, and only in that case can a tangible metal with strength be obtained. However, reducing the molding pressure simply to increase the amount of voids will make the metal brittle and result in the production of a tangible metal that cannot withstand use.
従って従来の粉末冶金技術を用いて理想的な多孔性磁石
を製造するにはあまりにもコストが高過ぎる結果となる
。Therefore, it would be too expensive to manufacture ideal porous magnets using conventional powder metallurgy techniques.
問題点を解決するだめの手段
本発明は従来技術における欠点を除去し、粒径及び粒形
には一切限定されず、しかも成る範囲(2%〜30%)
内であれは自由に空隙量を選択する物体に着磁して磁石
を得る多孔性磁石の製造方法で、更に詳述すれば、磁化
可能な粉体にはフェライト鉄、又はモノフェライト鉄若
しくは希土類が用いられ、これ等の粒子形状については
一切限定されず、あらゆる形状のものが使用可能であり
、又複数の形状(例えば円形、多角形、偏平状など)が
混合することも充分可能である。一方粒径についても特
に限定はされないものであるか、成形される多孔性磁石
の最小寸法より犬であることは好ましくなく、使用され
る粉体中段も大きな粒子の粒径の最大寸法が希望する多
孔性磁石の最小寸法の/4以下の寸法であることが最も
望寸しい結果を得ることか出来るO
ので、物質の形態か液状又はコロイド状若しくは個体状
の1種もしくは2種以−hを混合して用いることが可能
であるか、望ましくは液状と個体状又はコロイド状と個
体状の組合せで用いた場合に良好な結果を期待すること
が出来るめ一方常温常圧で気化する気化物質を用いて単
に多孔性金属を成生ずることは可能なものであるが、該
物質が気化して形成された空隙部に、該物質の成分が残
留し、2次加工(薬物の含浸等)の妨げとなり、事前に
これを除去しなければならず、製造工程が繁雑となる欠
点を有している。更に個体状を成す気化物質を用いる場
合は、可能な限り粒径を小さくすることが望ましく、最
大粒子の大径が少なくとも成形する多孔性磁石の最小寸
法のン8以下であることが望ましい。Means for Solving the Problems The present invention eliminates the drawbacks in the prior art and is not limited in any way to particle size and shape, but within a range (2% to 30%).
This is a porous magnet production method in which a magnet is obtained by magnetizing an object in which the amount of voids can be freely selected.More specifically, the magnetizable powder includes ferrite iron, monoferrite iron, or rare earth. The shape of these particles is not limited at all, and any shape can be used, and it is also possible to mix a plurality of shapes (for example, circular, polygonal, oblate, etc.). . On the other hand, the particle size is not particularly limited, or it is not preferable that it be smaller than the minimum size of the porous magnet to be molded, and it is desirable that the middle stage of the powder used be the maximum size of large particles. The most desirable result can be obtained if the size is less than /4 of the minimum dimension of the porous magnet. On the other hand, it is possible to use a vaporized substance that vaporizes at room temperature and normal pressure, since good results can be expected when it is used in a mixture, or preferably in a combination of a liquid and a solid or a colloid and a solid. However, components of the substance remain in the voids formed by vaporization, which may hinder secondary processing (drug impregnation, etc.). Therefore, it has to be removed in advance, which has the disadvantage of complicating the manufacturing process. Furthermore, when using a solid vaporized substance, it is desirable to make the particle size as small as possible, and it is desirable that the diameter of the largest particle is at least 8 times smaller than the minimum dimension of the porous magnet to be molded.
以上のような構成より成る各素材(磁化可能な粉体及び
気化物質)を希望する空隙量に合わせた比率で混合して
、各部分の混合比が均一になるように攪拌し、該混合物
を加圧成形機を用いて希望する形状に成形するもので、
その際に、成形する形状や成形圧力の限定は一切必要が
なく、特に成形圧力に関しては従来の粉末冶金法と異な
り、圧力調節の必要は一切なく、成形機の有する最大圧
力で成形すれば充分足るものである。このようにして成
る成形物を焼成炉に投入して気化物質を気化させて多孔
性金属を得、該多孔性金属に着磁して多孔性磁石とする
ものである。The materials (magnetizable powder and vaporized substance) having the above configuration are mixed in a ratio that matches the desired amount of voids, stirred so that the mixing ratio of each part is uniform, and the mixture is It is molded into the desired shape using a pressure molding machine.
At that time, there is no need to limit the shape to be molded or the molding pressure.In particular, unlike conventional powder metallurgy methods, there is no need to adjust the pressure at all, and molding at the maximum pressure of the molding machine is sufficient. It is sufficient. The molded product thus formed is placed in a firing furnace to vaporize the vaporized substance to obtain a porous metal, and the porous metal is magnetized to form a porous magnet.
実施例
第1実施例、粒度250メツシユ以下のフェライト鉄粉
80部、350メツシユ以下の結晶セルローズ(商品名
アビセル、旭化成工業製)20部、水5部(いづれも体
積比)を均一に混合攪拌し、加圧成形機を用いて直径8
厘、厚さ3.5 mmに成形、これを焼成炉において約
1200°Cの温度で焼成して空隙率16%の多孔性金
属を得、該多孔性金属に着磁して磁束密度630Gの多
孔性磁石を得ることが出来た。Example 1: 80 parts of ferrite iron powder with a particle size of 250 mesh or less, 20 parts of crystalline cellulose (trade name Avicel, manufactured by Asahi Kasei Industries) with a particle size of 350 mesh or less, and 5 parts of water (all by volume) were uniformly mixed and stirred. Then, using a pressure molding machine, a diameter of 8
This was molded to a thickness of 3.5 mm and fired in a firing furnace at a temperature of about 1200°C to obtain a porous metal with a porosity of 16%.The porous metal was magnetized to have a magnetic flux density of 630G. We were able to obtain a porous magnet.
第2実施例、粒度250メツシユ以下の希土類粉80部
とした以外は第1実施例と同様な工程を径で磁束密度9
80Gの多孔性磁石を得ることが出来だ。The second example was the same process as the first example except that 80 parts of rare earth powder with a particle size of 250 mesh or less was used, but the magnetic flux density was 9 in diameter.
We were able to obtain an 80G porous magnet.
第3実施例、300メツシユ以下のモノフェライト鉄粉
80部、350メツシユのポリエチレン樹脂粉20部、
変性アルコール7部(体積比)を均一に混合攪拌し、加
圧成形機を用いて直径6馴、厚さ2,5m2〃に成形、
乾燥炉に投入して予じめ変性アルコールを完全に揮発さ
せた後、・焼吠炉において約600°Cの温度て焼成し
て空隙率18%の多孔性金属を得、これに着磁して磁束
密度、750Gの多孔性磁石を得ることが出来た。3rd example, 80 parts of monoferrite iron powder of 300 mesh or less, 20 parts of polyethylene resin powder of 350 mesh,
7 parts (volume ratio) of denatured alcohol were mixed and stirred uniformly, and molded using a pressure molding machine to a diameter of 6cm and a thickness of 2.5m2.
After putting it into a drying oven and completely volatilizing the denatured alcohol in advance, it was fired in a baking oven at a temperature of about 600°C to obtain a porous metal with a porosity of 18%, which was then magnetized. As a result, a porous magnet with a magnetic flux density of 750G was obtained.
発明の効果
以」二詳述したように従来の粉末冶金法とは異なり、粒
径及び粒度分布、若しくは粒子の形状には一切関係々く
、特殊な結合剤を用いる必要もなく更には成形圧加の調
節をも要せず、非常に秀れた多孔性磁石の製造が可能で
あり、希望する空隙率は単に磁化可能な粉体と気化物質
の混合比を変えることによって容易に得ることが出来、
又磁化可能な粉体が同一種で、かつ空隙率が同一な場合
、磁化可能な粉体の粒子を小さくする程磁束密度Gを大
きくすることが可能である。Effects of the Invention As described in detail in 2, unlike the conventional powder metallurgy method, there is no need to use a special binder, and there is no need to use a special binder, and there is no need to use molding pressure. It is possible to produce highly porous magnets without the need for additional adjustment, and the desired porosity can be easily obtained simply by changing the mixing ratio of magnetizable powder and vaporized substance. Done,
Further, when the magnetizable powders are of the same type and have the same porosity, it is possible to increase the magnetic flux density G by making the particles of the magnetizable powder smaller.
本発明は以」二のように実施可能であり、高度々技術は
一切必要とせず、従って低コストで非常に秀れた多孔性
磁石を製造出来る有用な発明である。The present invention can be carried out as described below, does not require any advanced technology, and is therefore a useful invention that can produce excellent porous magnets at low cost.
Claims (4)
る気化物質を混合して一定の形状に成形し、これを焼成
して気化物質を気化させ、多孔質物体を形成するもので
、該物体に着磁して磁石を得ることを特徴とした多孔質
磁石の製造法。(1) A porous object is formed by mixing magnetizable powder with a vaporized substance that vaporizes at a temperature of 100°C or higher, molding it into a certain shape, and firing it to vaporize the vaporized substance. A method for producing a porous magnet, which comprises obtaining a magnet by magnetizing the object.
の範囲第1項記載の多孔質磁石の製造法。(2) A method for producing a porous magnet according to claim 1, in which ferrite iron is used as the magnetizable powder.
第1項記載の多孔質磁石の製造法。(3) A method for producing a porous magnet according to claim 1, wherein a rare earth element is used as the magnetizable powder.
請求の範囲第1項記載の多孔質磁石の製造法。(4) A method for producing a porous magnet according to claim 1, wherein monoferrite iron is used as the magnetizable powder.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11921485A JPS61276901A (en) | 1985-05-31 | 1985-05-31 | Production of porous magnet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11921485A JPS61276901A (en) | 1985-05-31 | 1985-05-31 | Production of porous magnet |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61276901A true JPS61276901A (en) | 1986-12-06 |
Family
ID=14755765
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11921485A Pending JPS61276901A (en) | 1985-05-31 | 1985-05-31 | Production of porous magnet |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61276901A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016098525A1 (en) * | 2014-12-19 | 2016-06-23 | Ntn株式会社 | Green compact and method for producing same |
CN106660131A (en) * | 2014-06-16 | 2017-05-10 | 国立大学法人大阪大学 | Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5365206A (en) * | 1976-11-25 | 1978-06-10 | Hitachi Cable Ltd | Preparation of porous metal |
JPS5581661A (en) * | 1978-12-15 | 1980-06-19 | Hitachi Metals Ltd | Magnet for medical treatment |
-
1985
- 1985-05-31 JP JP11921485A patent/JPS61276901A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5365206A (en) * | 1976-11-25 | 1978-06-10 | Hitachi Cable Ltd | Preparation of porous metal |
JPS5581661A (en) * | 1978-12-15 | 1980-06-19 | Hitachi Metals Ltd | Magnet for medical treatment |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106660131A (en) * | 2014-06-16 | 2017-05-10 | 国立大学法人大阪大学 | Method for synthesizing silver particles, silver particles, method for manufacturing electroconductive paste, and electroconductive paste |
JPWO2015194536A1 (en) * | 2014-06-16 | 2017-05-18 | 国立大学法人大阪大学 | Method for synthesizing silver particles, silver particles, method for producing conductive paste, and conductive paste |
US10201852B2 (en) | 2014-06-16 | 2019-02-12 | Osaka University | Silver particle synthesizing method, silver particles, conductive paste producing method, and conductive paste |
WO2016098525A1 (en) * | 2014-12-19 | 2016-06-23 | Ntn株式会社 | Green compact and method for producing same |
JP2016117926A (en) * | 2014-12-19 | 2016-06-30 | Ntn株式会社 | Green compact and method for producing the same |
CN107000055A (en) * | 2014-12-19 | 2017-08-01 | Ntn株式会社 | Powder pressed compact and its manufacture method |
CN107000055B (en) * | 2014-12-19 | 2019-10-22 | Ntn株式会社 | Powder green compact and its manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111118464B (en) | Preparation method and application of nanocrystalline high-entropy oxide film | |
EP0523658B1 (en) | Method for making injection molded soft magnetic material | |
JPS61276901A (en) | Production of porous magnet | |
JPH05222483A (en) | Production of iron nitride based high density sintered compact | |
US2929787A (en) | Ferrite with constricted magnetic hysteresis loop | |
US3036007A (en) | Process for the manufacture of nickel zinc ferrites | |
US2828264A (en) | Manufacture process of permanent magnets from sintered mixtures of oxides | |
JPH0521220A (en) | Method for producing injection-molded pure iron-sintered soft magnetic material with high residual magnetic flux density | |
US3291739A (en) | Ferromagnetic materials and methods of fabrication | |
JP2999968B2 (en) | Oxide permanent magnet and method of manufacturing the same | |
JP3467838B2 (en) | Ferrite resin and method for producing ferrite resin | |
JP2545603B2 (en) | Method for manufacturing anisotropic sintered magnet | |
JP2003193174A (en) | METHOD FOR MANUFACTURING Fe-Si SOFT MAGNETIC SINTERED MATERIAL WITH HIGH DENSITY AND EXCELLENT MAGNETIC PERMEABILITY | |
JPH06172810A (en) | Production of tungsten alloy sintered compact | |
JPH01238109A (en) | Manufacture of composite magnetic substance | |
JPS589566A (en) | Forming member for magnetic path for stepping motor | |
JPH0248611B2 (en) | ||
GB740894A (en) | Improvements in or relating to ferromagnetic material or ferromagnetic bodies and methods of manufacturing such material | |
JP2008308758A (en) | Composite soft magnetic iron powder for producing composite soft magnetic material with high specific resistance and low core loss | |
CN108779035A (en) | Ferrite Material, composite magnetic body, coil component and supply unit | |
SU1005198A1 (en) | Method of manufacturing manganese-containing ferrites with rectangular hysteresis loop | |
JPH04254313A (en) | Manufacture of rare earth magnet | |
JP2003293003A (en) | HYDRIDE-COATED Fe POWDER AND MANUFACTURING METHOD | |
JPS55140203A (en) | Manufacture of permanent-magnet alloy | |
JPH0826734A (en) | Magnetic ca-v garnet oxide powder |