JPS61276750A - Horizontal and continuous casting method for metal - Google Patents

Horizontal and continuous casting method for metal

Info

Publication number
JPS61276750A
JPS61276750A JP11748885A JP11748885A JPS61276750A JP S61276750 A JPS61276750 A JP S61276750A JP 11748885 A JP11748885 A JP 11748885A JP 11748885 A JP11748885 A JP 11748885A JP S61276750 A JPS61276750 A JP S61276750A
Authority
JP
Japan
Prior art keywords
solidified shell
molten metal
nozzle
cooled
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11748885A
Other languages
Japanese (ja)
Inventor
Toshimasa Sakamoto
敏正 坂本
Yuichi Ando
安堂 優一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11748885A priority Critical patent/JPS61276750A/en
Publication of JPS61276750A publication Critical patent/JPS61276750A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/045Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds for horizontal casting
    • B22D11/047Means for joining tundish to mould

Abstract

PURPOSE:To form the finer crystal grains and to prevent the internal cracking of an ingot by cooling a molten metal supplied into a water-cooled casting mold from a tundish in such a manner that said steel forms a solidified shell in the mold without forming the solidified shell in a feed nozzle. CONSTITUTION:The feed nozzle 1 of the horizontal and continuous casting method for steel consisting in supplying the molten steel from the tundish (not shown) onto the water-cooled casting mold 6 through the feed nozzle 1, cooling and solidifying the molten metal with a lubricating sleeve 4 and drawing the solidified shell obtd. in such a manner as the ingot 5 toward the arrow direction is constituted of a refractory heat insulating brick and a slit 2 is provided to the outside surface thereof to decrease the heat transmission area. The cooling of the molten metal in the nozzle 1 is thereby prevented by which the formation of the solidified shell is prevented. The molten metal is quickly cooled on the mold 6 and a solid/liquid boundary 3 is quickly raised to form the solidified shell. As a result, the finer crystal grains are formed and the grain boundary cracking is prevented. The ingot 5 having no internal cracks is thus obtd.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は金属の水平連続鋳造方法に関し、さらに詳しく
は、金属の水平連続鋳造において、鋳塊の内部割れを防
止することができる金属の水平連続il)遣方法に関す
る。
Detailed Description of the Invention [Industrial Application Field 1] The present invention relates to a method for horizontal continuous casting of metal, and more specifically, to a horizontal continuous casting method for metal, which can prevent internal cracking of an ingot in horizontal continuous casting of metal. Continuous use method.

[従来技術1 一般に、水平連続鋳造において燐脱酸銅S塊の割れは、
粗大に発達した柱状結晶粒界に発生する(参考図2 (
a)(b)の写真参照)。
[Prior art 1] In general, cracks in phosphorus-deoxidized copper S ingots occur during horizontal continuous casting.
It occurs at coarsely developed columnar grain boundaries (Reference Figure 2 (
(See photos in a) and (b)).

この結晶粒粗大化の理由は、水平連続鋳造において水冷
鋳型部分よりタンディツシュ寄りの冷却の弱いフィード
ノズルの部分から凝固殻が形成され、この部分の冷却速
度が小さいためである。
The reason for this coarsening of grains is that in horizontal continuous casting, a solidified shell is formed from the weakly cooled feed nozzle part closer to the tundish than the water-cooled mold part, and the cooling rate of this part is low.

即ち、第7図における金属の水平連続鋳造方法は、jン
ディッシュより供給された溶湯はフィードノズル1よQ
潤滑用スリーブ4上に至り、直ちに水冷鋳型6により冷
却されでII塊5となるのであるが、3′に示す冷却速
度が小さい領域の固/液界面凝固穀形成部で凝固殻が形
成されてから、3に示す冷却速度が大きい固/液界面に
移動するので、上記したように冷却の小さい部分で凝固
殻が形成され柱状結晶が粗大化するのである。
That is, in the horizontal continuous metal casting method shown in FIG.
It reaches the lubricating sleeve 4 and is immediately cooled by the water-cooled mold 6 to become the II lump 5, but a solidified shell is formed at the solid/liquid interface solidified grain forming part in the region 3' where the cooling rate is low. Then, it moves to the solid/liquid interface where the cooling rate is high as shown in 3. As mentioned above, a solidification shell is formed in the portion where the cooling is small and the columnar crystals become coarse.

これをさらに第8図により説明すると、凝固殻形成時の
冷却速度が小さい場合には、鋳塊の結晶粒は凝固殻部近
傍において粗大化していることがわかる。
To further explain this with reference to FIG. 8, it can be seen that when the cooling rate during solidified shell formation is low, the crystal grains of the ingot become coarse in the vicinity of the solidified shell.

そして、この柱状結晶の粒径は凝固殻形成時の冷却速度
によって定まる核生成数によって定まるものであり、第
9図(a)のように冷却速度が小さい場合にはX印の核
生成が不活発で粗い結晶粒となり、これとは逆に、第9
図(b)のように冷却速度が大きい場合にはX印の核の
生成が活発であって微細な結晶粒となる。
The grain size of the columnar crystals is determined by the number of nucleations determined by the cooling rate during solidification shell formation, and if the cooling rate is small as shown in Figure 9(a), no nucleation will occur as indicated by the X mark. The grains become active and coarse;
When the cooling rate is high as shown in Figure (b), the nuclei marked with X are actively generated, resulting in fine crystal grains.

従来において、金属の水平連続鋳造における凝固殻形成
時の冷却速度を大きくするために、凝固殻形成部の奪熱
能を大きくすることを考え、第10図に示すように、タ
ンディツシュより供給された金属溶湯がフィードノズル
1から流れて潤滑用スリーブ4に接する所に冷却用ノズ
ル7により冷却してから、直ちに該スリーブ4を介して
水冷鋳型6に接するようにして1Qi5とするのである
が、この場合も、第7図で説明したと同じような固/液
界面となり、凝固殻形成部がさらにフィード7ズル1の
タンディツシュ側に単に移動するだけであり、冷却速度
向上の効果が得られず、さらに、長い薄い凝固殻が鋳塊
5の引抜時に亀裂が入1           0表面
性状を損なうことになる。
In the past, in order to increase the cooling rate when forming a solidified shell in horizontal continuous casting of metal, it was considered to increase the heat absorption ability of the solidified shell forming part, and as shown in Fig. 10, metal supplied from a tanditshu was The molten metal flows from the feed nozzle 1 and is cooled by the cooling nozzle 7 where it comes into contact with the lubricating sleeve 4, and then immediately comes into contact with the water-cooled mold 6 through the sleeve 4, resulting in 1Qi5. In this case, the solid/liquid interface becomes similar to that explained in Fig. 7, and the solidified shell forming part simply moves further to the tundish side of the feed 7 nozzle 1, and the effect of improving the cooling rate cannot be obtained. In this case, the long thin solidified shell cracks when the ingot 5 is pulled out, damaging the surface quality.

[発明が解決しようとする問題点] 本発明は上記しこ説明したよう1こ従来1こおける水平
連続鋳造方法の種々の問題点に鑑みなされたらのであり
、本発明者は金属の水平連続鋳造において粒界割れの発
生は、結晶粒が微細な程軽減或いは消滅することを知見
し、金属溶湯の冷却の弱い部分における核生成の不活発
な凝固殻の生成を防止することができる金属の連続鋳造
方法を開発したのである。
[Problems to be Solved by the Invention] The present invention was made in view of the various problems of the conventional horizontal continuous casting method as explained above. It has been found that the occurrence of grain boundary cracking is reduced or eliminated as the crystal grains become finer, and that the formation of solidified shells in which nucleation is inactive in areas where the molten metal is cooled can be prevented. He developed a casting method.

E問題点を解決するための手段1 本発明に係る金属の水平連続鋳造方法の特徴とするとこ
ろは、 金属の連続鋳造において、タンディツシュから供給され
る溶湯をフィードノズルにおいて凝固殻を形成させずに
、水冷鋳型において凝固殻を形成させるように冷却する
こと にある。
Means for Solving Problem E 1 The feature of the horizontal continuous metal casting method according to the present invention is that in continuous metal casting, the molten metal supplied from the tundish is passed through the feed nozzle without forming a solidified shell. , cooling to form a solidified shell in a water-cooled mold.

本発明に係る金属の水平連続鋳造方法について以下図面
に示す例により詳細に説明する。
The method for horizontal continuous casting of metal according to the present invention will be explained in detail below using examples shown in the drawings.

@1図は、タンディツシュ寄りの冷却速度の遅い部分に
おける凝固殻の発生を防止するため、耐火断熱煉瓦製ノ
ズル1を潤滑用スリーブ4(鋳塊51こ潤滑性を付与す
るために、例えば、黒鉛製スリーブ)を介して水冷鋳型
6に装着した場合を示すが、この耐火断熱煉瓦製ノズル
1を装着しただけでは水冷鋳型6による該ノズル1部に
おける冷却を防止することかで外ないので、熱伝導面積
を小さくするために図に示すように該ノズル外表面にス
リット2を設ける。そして、固/液界面3よりみて溶湯
は効果的に冷却されていることがわかる。
Figure 1 shows a refractory insulating brick nozzle 1 with a lubricating sleeve 4 (ingot 51) in order to prevent the formation of solidified shells in the part near the tundish where the cooling rate is slow. The case is shown in which the nozzle 1 is attached to the water-cooled mold 6 through a sleeve made of fireproof and insulating brick, but it cannot be removed by simply attaching the nozzle 1 made of fireproof and insulating brick because it prevents the nozzle 1 from being cooled by the water-cooled mold 6. In order to reduce the conduction area, a slit 2 is provided on the outer surface of the nozzle as shown in the figure. It can be seen from the solid/liquid interface 3 that the molten metal is effectively cooled.

主た、この第1図に示す装置により得られた鋳塊は、参
考図1 (a)(L+)の写真1こ示すように、柱状の
結晶粒が微細(細い)となってお1)、粒界割れが防止
されていることがわかる。
Mainly, the ingot obtained by the apparatus shown in Fig. 1 has fine (thin) columnar crystal grains as shown in the photograph 1 of Reference Fig. 1 (a) (L+). , it can be seen that grain boundary cracking is prevented.

第2図はデンドライトアームスベーシング(DAS)か
ら求めた冷却速度分布であり、凝固殻形成部の冷却速度
が向上していることを示している。
Figure 2 shows the cooling rate distribution obtained from the dendrite arms basing (DAS), and shows that the cooling rate of the solidified shell forming part is improved.

第3図は、第1図におけるスリットの部分にヒーター9
を設けたもので、加熱温度は鋳造する金属の融点より5
〜10℃以上高い温度とするのが適当である。即ち、耐
火断熱煉瓦製ノズル1の水冷鋳型6に近い部分が高温で
あるので、この部分における凝固殻形成はなく、金属溶
湯は水冷鋳型6において急冷されるという大トな冷却速
度であるので結晶粒は微細化している。これは、固/液
界面が3のように該ノズル先端から急に上昇しているこ
とからも明らかである。
Figure 3 shows a heater 9 in the slit area in Figure 1.
The heating temperature is 5° below the melting point of the metal to be cast.
It is appropriate to set the temperature to 10°C or more higher. That is, since the part of the refractory insulating brick nozzle 1 near the water-cooled mold 6 is at a high temperature, there is no solidification shell formation in this part, and since the molten metal is rapidly cooled in the water-cooled mold 6 at a rapid cooling rate, crystals do not form. The grains have become finer. This is also clear from the fact that the solid/liquid interface rises suddenly from the tip of the nozzle as shown in 3.

第4図は、第1図の潤滑用スリーブを除き、潤滑剤を供
給するために耐火断熱煉瓦製ノズル1のオーバーハング
部12の一部をポーラ人煉瓦11を設け、また、該ノズ
ル1の外周面にスリ7)が°あり水冷鋳型6との断熱面
積を小さくしである。
FIG. 4 shows that a part of the overhang part 12 of the nozzle 1 made of refractory and insulating bricks is provided with a polar brick 11 in order to supply lubricant, except for the lubricating sleeve shown in FIG. There is a slit 7) on the outer peripheral surface to reduce the insulation area with the water-cooled mold 6.

そして、ポンプPよI)の潤滑剤は潤滑剤留10からポ
ーラ人煉瓦°11を通して水冷鋳型6に達するので、金
属溶湯は効果的に冷却されることになる。
Then, the lubricant from the pumps P to I) reaches the water-cooled mold 6 from the lubricant reservoir 10 through the Polar brick 11, so that the molten metal is effectively cooled.

固/液界面も潤滑剤供給ボーラズ煉瓦11から急に上昇
していることからも冷却が大きいことがわかる。
The fact that the solid/liquid interface also rises suddenly from the lubricant supplying Bolas brick 11 indicates that the cooling is large.

第5図は、耐火断熱煉瓦製ノズル1のオーバーハング部
が往々にして損傷することがあるので、該ノズル1外周
面にスリットを設けて水冷鋳型6との断熱面積を小さく
し、かつ、オーバーハング部をポーラス煉瓦11とし、
潤滑用スリーブ4を介して水冷鋳型6と接しており、気
体源Mよりの加圧された気体を気体留13を介してポー
ラス煉瓦11より供給して、溶湯と該ノズル1との接触
を防止する。この時の気体圧力は、タンディツシュ内の
溶湯圧力に充分抗するもので、最低圧は溶湯圧力相当圧
である。この場合も、固/液界面3からみて溶湯の冷却
速度は大きいものである。
In FIG. 5, since the overhang part of the nozzle 1 made of fireproof and insulating bricks is often damaged, a slit is provided on the outer circumferential surface of the nozzle 1 to reduce the heat insulation area with the water-cooled mold 6, and the overhang part is often damaged. The hanging part is made of porous brick 11,
It is in contact with the water-cooled mold 6 via the lubricating sleeve 4, and pressurized gas from the gas source M is supplied from the porous brick 11 via the gas reservoir 13 to prevent contact between the molten metal and the nozzle 1. do. The gas pressure at this time is sufficient to resist the molten metal pressure in the tundish, and the lowest pressure is equivalent to the molten metal pressure. In this case as well, the cooling rate of the molten metal is high when viewed from the solid/liquid interface 3.

第6図は、水冷鋳型6内に電磁ピンチコイル14を装置
し、外周にスリットを設けた耐火断熱煉瓦製ノズル1の
先端に、潤滑剤供給装置15を潤滑用スリーブ4を介し
て水冷鋳型6と接するように設けである。固/液界面か
らみて溶湯は急速に冷却されていることがわかり、さら
に、電磁透導により金属溶湯中に流れが発生するので結
晶粒、;            は非常に微細になる
という効果ら同時に得られる。
In FIG. 6, an electromagnetic pinch coil 14 is installed in a water-cooled mold 6, and a lubricant supply device 15 is connected to the tip of a nozzle 1 made of refractory heat-insulating brick with a slit provided on the outer periphery through a lubricating sleeve 4 to the water-cooled mold 6. It is set so that it is in contact with the It can be seen that the molten metal is rapidly cooled when viewed from the solid/liquid interface, and at the same time, since a flow is generated in the molten metal due to electromagnetic conduction, the crystal grains become extremely fine.

[発明の効果1 以上説明したように、本発明に係る金属の水平連続鋳造
方法は上記の構成を有しているので、得られる′gJy
Lは結晶粒が微細化されており、かつ、粒界割れの発生
がない極めて優れたものである。
[Effect of the invention 1 As explained above, since the method for horizontal continuous casting of metal according to the present invention has the above configuration, the obtained ′gJy
L has fine crystal grains and is extremely excellent in that grain boundary cracks do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第6図は本発明に係る金属の連続鋳造方法を説
明するための図、第7図〜第10図は従来の金属の水平
連続鋳造方法を説明するための図である。 1・・耐火断熱煉瓦製ノズル、3・・固/液界面、4・
・潤滑スリーブ、5・・鋳塊、6・・水冷鋳型、9・・
ヒーター、11・・ポーラス煉瓦、14・・電磁ピンチ
コイル。 牙7図 タンフンツレλ 矛8図 矛9図
1 to 6 are diagrams for explaining the continuous metal casting method according to the present invention, and FIGS. 7 to 10 are diagrams for explaining the conventional horizontal continuous casting method for metal. 1. Fireproof insulation brick nozzle, 3. Solid/liquid interface, 4.
・Lubricating sleeve, 5. Ingot, 6. Water-cooled mold, 9.
Heater, 11...porous brick, 14...electromagnetic pinch coil. Fang 7 figure Tanfunzre λ Spear 8 figure Spear 9 figure

Claims (1)

【特許請求の範囲】[Claims] 金属の連続鋳造において、タンディッシュから供給され
る溶湯をフィードノズルにおいて凝固殻を形成させずに
、水冷鋳型において凝固殻を形成させるように冷却する
ことを特徴とする金属の水平連続鋳造方法。
A horizontal continuous casting method for metals, characterized in that the molten metal supplied from a tundish is cooled to form a solidified shell in a water-cooled mold without forming a solidified shell in a feed nozzle.
JP11748885A 1985-05-30 1985-05-30 Horizontal and continuous casting method for metal Pending JPS61276750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11748885A JPS61276750A (en) 1985-05-30 1985-05-30 Horizontal and continuous casting method for metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11748885A JPS61276750A (en) 1985-05-30 1985-05-30 Horizontal and continuous casting method for metal

Publications (1)

Publication Number Publication Date
JPS61276750A true JPS61276750A (en) 1986-12-06

Family

ID=14712957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11748885A Pending JPS61276750A (en) 1985-05-30 1985-05-30 Horizontal and continuous casting method for metal

Country Status (1)

Country Link
JP (1) JPS61276750A (en)

Similar Documents

Publication Publication Date Title
JP2008260021A (en) Mold for continuous casting of copper and copper alloy, and continuous casting method using the same
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
JPS61276750A (en) Horizontal and continuous casting method for metal
JP4248085B2 (en) Hollow billet casting core and method for hot top continuous casting of hollow billet using the core
JPH08279B2 (en) Manufacturing method of steel forgings
JPS5850167A (en) Prevention for clogging of sprue
JPS63149056A (en) Continuous casting method for non-ferrous metal
JPS58196146A (en) Continuous casting method of square casting ingot
JPS63126646A (en) Dam for twin roll type continuous casting
JPH04178247A (en) Continuous casting method of steel by casting mold having electromagnetic field
KR960004416B1 (en) Horizontal continuous casting method and its device
JPH07115131B2 (en) Twin roll casting machine
JPS61169139A (en) Continuous casting device
JPH07227653A (en) Method and device for reducing shrinkage hole in continuous casting
JPH02175049A (en) Method for continuously casting metal pipe
JP3134135B2 (en) Semi-continuous casting mold
JPS63112043A (en) Manufacture of ingot in electron beam dissolution
JPS6281252A (en) Continuous casting method
JPS6153143B2 (en)
JPH0217260B2 (en)
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JPS61245949A (en) Continuous casting method
JPH01237051A (en) Method for continuously casting hoop-state cast slab
JPH01278944A (en) Heating mold for continuous casting
JPH1110285A (en) Mold for continuous casting and continuous casting method