JPH01237051A - Method for continuously casting hoop-state cast slab - Google Patents

Method for continuously casting hoop-state cast slab

Info

Publication number
JPH01237051A
JPH01237051A JP6313988A JP6313988A JPH01237051A JP H01237051 A JPH01237051 A JP H01237051A JP 6313988 A JP6313988 A JP 6313988A JP 6313988 A JP6313988 A JP 6313988A JP H01237051 A JPH01237051 A JP H01237051A
Authority
JP
Japan
Prior art keywords
band
molten metal
continuous casting
rotary mold
structure according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6313988A
Other languages
Japanese (ja)
Inventor
Atsumi Ono
大野 篤美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OCC Co Ltd
Original Assignee
OCC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OCC Co Ltd filed Critical OCC Co Ltd
Priority to JP6313988A priority Critical patent/JPH01237051A/en
Publication of JPH01237051A publication Critical patent/JPH01237051A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/06Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
    • B22D11/0611Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a single casting wheel, e.g. for casting amorphous metal strips or wires

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To reduce temp. variation of heating and cooling and molten metal pressure at outlet of molten metal supplying nozzle and to enable continuous casting for cast slab by making the molten metal surface in a molten metal holding vessel for supplying the molten metal into the mold almost upper end level or less in a rotary mold. CONSTITUTION:A nozzle 3 is positioned at upstream side from the upper end of the rotary mold 1 and the molten metal flowed from the nozzle 3 is stuck to the rotary mold 1, and after exceeding the upper end of the rotary mold, the molten metal is cooled from free surface thereof with cooling spray 9. By this method, the crystal in the cast slab is grown at priority to longitudinal direction of the cast slab and the cast slab 10 composing of unidirectionally solidified structure can be obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は加工性にすぐれた一方向凝固組織i織からなる
帯状鋳塊の連続鋳造法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a continuous casting method for a band-shaped ingot made of a unidirectionally solidified weave having excellent workability.

より詳しくは、鋳造金属の凝固温度以上に加熱された回
転鋳型の周表面に鋳造金属溶湯を供給し、その鋳造金属
の自由表面を冷却することによって、加工性にすぐれた
一方向凝固組織からなる帯状鋳塊を連続的に鋳造するこ
とのできる方法に関する。
More specifically, by supplying molten cast metal to the circumferential surface of a rotary mold that has been heated above the solidification temperature of the cast metal and cooling the free surface of the cast metal, a unidirectionally solidified structure with excellent workability is formed. The present invention relates to a method capable of continuously casting band-shaped ingots.

最近電子工業の急速な発展に伴い、使用される機器が小
型化、精密化の一途を辿るようになり、それにつれて用
いられる金属材料もより薄肉で且つ幅細になり、品質に
対しても過酷な要求がなされるようになった。すなわち
、内部に巣や気泡がなく、また不純物の集積しやすい結
晶粒界のない、一方向凝固組織の素材から作られた、よ
り細い線や薄い板や箔が要求されるようになった。
Recently, with the rapid development of the electronics industry, the equipment used has become smaller and more precise, and as a result, the metal materials used have also become thinner and narrower, making them more demanding on quality. demands began to be made. In other words, thinner wires, thinner plates and foils made from materials with a unidirectionally solidified structure, without internal cavities or bubbles, and without grain boundaries where impurities tend to accumulate, have become required.

−aに金属鋳塊に、冷間加工を施す時は、加工硬化を起
こし、やがて凝固時に形成されたいわゆる一次の結晶粒
界から破壊しやすいことが知られている。したがって、
極細線や極薄肉の板や箔の素材としての金属鋳塊の組織
は、前記した加工により亀裂発生の起源となりやすい一
次の結晶粒界のないものであることがきわめて望ましい
It is known that when a metal ingot is subjected to cold working, it undergoes work hardening and is likely to eventually break at the so-called primary grain boundaries formed during solidification. therefore,
It is extremely desirable that the structure of the metal ingot used as the material for ultra-fine wires, ultra-thin plates and foils be free of primary grain boundaries, which are likely to cause cracks during the above-described processing.

〔従来の技術〕[Conventional technology]

従来、一方向凝固組織からなる鋳塊の連続鋳造法として
は、本発明者の発明になる加熱鋳型を用いた鋳塊の連続
鋳造法(特許第1049146号)があった、この方法
は一方向凝固組織や単結晶からなる鋳塊をうるにきわめ
てすぐれた方法である。ただ唯一の欠点は鋳造速度が遅
く、そのために、従来の連続鋳造法に比べて生産性が低
いので、一般に広く使用されるに至らず、わずかに信号
伝送用の電導材料の製造に使用されている状態である。
Conventionally, as a continuous casting method for an ingot having a unidirectional solidification structure, there was a continuous casting method for an ingot using a heated mold (Patent No. 1049146), which was invented by the present inventor. This is an excellent method for producing ingots consisting of solidified structures and single crystals. The only drawback is that the casting speed is slow, resulting in lower productivity than traditional continuous casting methods, so it has not been widely used in general, and is only used in the production of electrically conductive materials for signal transmission. It is in a state of being.

本発明者は、第1図の如き連続鋳造装置を用い一方向凝
固組織を存する帯状鋳塊を高速で鋳造できる方法を見出
す目的で多くの実験を行った。
The present inventor conducted a number of experiments with the aim of finding a method of casting a strip-shaped ingot having a unidirectionally solidified structure at high speed using a continuous casting apparatus as shown in FIG.

その結果、回転鋳型■の鋳型周表面からの結晶の核生成
を阻止するために、鋳造金属の凝固温度以上の温度にガ
スバーナーの如き加熱装置■によって加熱した回転鋳型
周表面上に給湯ノズル■から7容湯■を供給し、下’1
itIIIAにおいて鋳造金属の自由表面を強制的に冷
却スプレー■によって冷却する時は、一方向凝固組織か
らなる帯状鋳塊0が得られることを知り、特11160
−254956号を出願した。
As a result, in order to prevent crystal nucleation from the circumferential surface of the rotary mold, a hot water nozzle is placed on the circumferential surface of the rotary mold, which is heated by a heating device such as a gas burner to a temperature higher than the solidification temperature of the cast metal. Supply 7 capacity hot water from
In itIIIA, we learned that when the free surface of a cast metal is forcibly cooled by cooling spray ■, a band-shaped ingot consisting of a unidirectionally solidified structure is obtained.
-254956 was filed.

〔発明の解決しようとする問題点〕[Problem to be solved by the invention]

しかしながら、特@60−254956号の技術を実施
するにあたっては、さらに解決しなければならない問題
の存在することが明らかとなったその第1は、回転鋳型
■が加熱冷却の繰り返しによって変形や破壊するために
、加熱冷却による回転鋳型Φ周表面の温度変化の幅を可
能なかぎり小さくしなければならないこと、第2は回転
鋳型■周表面に供給される溶湯が、給湯ノズル■と回転
鋳型Φ周表面との間隙の不規則な変動によって、ブレー
クアウトを起こしやすいので、給湯ノズル■先端の溶湯
圧をできるだけ小さくしなければならないこと、この2
点を解決しないかぎり、回転加熱鋳型による帯状鋳塊の
連続鋳造の実用化はきわめて困難であることを知った。
However, in implementing the technology of Special @60-254956, it has become clear that there are further problems that need to be solved.The first problem is that the rotary mold ■ is deformed or destroyed by repeated heating and cooling. Therefore, the width of the temperature change on the circumferential surface of the rotary mold due to heating and cooling must be made as small as possible, and the second is that the molten metal supplied to the circumferential surface of the rotary mold must be connected to the hot water supply nozzle ■ and the circumferential surface of the rotary mold. Breakouts are likely to occur due to irregular fluctuations in the gap with the surface, so the molten metal pressure at the tip of the hot water supply nozzle must be kept as low as possible.
We learned that unless these issues are solved, it will be extremely difficult to put continuous casting of strip-shaped ingots into practical use using rotary heating molds.

〔発明の目的〕[Purpose of the invention]

本発明は、回転鋳型の加熱冷却の温度変化を小さくし、
なおかつ、給湯ノズル出口における溶湯圧を小さくして
、回転加熱鋳型による帯状鋳塊の連続鋳造を可能ならし
める、改良された連続鋳造法を提供するものである。
The present invention reduces temperature changes during heating and cooling of a rotary mold,
Furthermore, the present invention provides an improved continuous casting method that enables continuous casting of strip-shaped ingots using a rotary heating mold by reducing the molten metal pressure at the outlet of the hot water supply nozzle.

〔発明の構成〕[Structure of the invention]

このような本発明の目的は、溶湯供給位置を回転鋳型の
上端より上流側におき、鋳型へ溶湯を供給するための溶
湯保持炉すわちタンプシュ内の溶湯の湯面が、回転鋳型
のほぼ上端またはそれ以下のレベルになるようにするこ
とによって達成される。
An object of the present invention is to place the molten metal supply position upstream from the upper end of the rotary mold, so that the surface of the molten metal in the molten metal holding furnace, that is, the tamp, for supplying the molten metal to the mold is almost at the upper end of the rotary mold. or lower level.

本発明を以下に実施例によって説明する。The invention will be explained below by way of examples.

第2図において、■は黒鉛または耐火物、または高融点
の金属からなる回転鋳型で■の抵抗発熱体を内蔵してお
り、この抵抗発熱体に一般的方法によって外部より電流
を流すことによって、鋳塊の冷却に際して鋳型面の温度
低下を防ぎ溶湯と接する鋳型周表面は常に鋳造金属の凝
固温度以上に保持されるようになっている。さらに回転
鋳型は矢印の方向に一定速度で回転するようになってい
る。■は回転鋳型に溶湯を供給するためのノズルで溶湯
保持容器■に連結している。■はノズル■を加熱するた
めの発熱体で電気抵抗発熱体または高周波コイルからな
る。ノズル■の出口は常に鋳造金属の凝固温度以上に加
熱保持さている。■はノズル■の上流側で回転鋳型■の
周表面の加熱のためのガスバーナーの如き加熱装置で、
抵抗発熱体または高周波コイル、または電子ビームを用
いることもできる。■は溶湯で溶湯保持容器■から連続
的にノズル■内に供給されるようになっている。■は溶
湯の湯面間wjv装置で、これを降下させることによっ
て溶湯はノズル■を通して回転鋳型上に送られる。ノズ
ル■は、回転鋳型■の上端より上流側に位置し、ノズル
■を出る溶湯が回転鋳型■に付着して回転鋳型の上端を
越して後、■の水冷スプレーの如き冷却スプレーによっ
て、溶湯の自由表面から冷却される。冷却材としては、
冷却ガス、油、または霧などを用いることもできる。
In Fig. 2, ■ is a rotary mold made of graphite, refractories, or high-melting-point metal, and has a built-in resistance heating element (■), and by passing an electric current through this resistance heating element from the outside using a general method, During cooling of the ingot, the temperature of the mold surface is prevented from decreasing, and the peripheral surface of the mold in contact with the molten metal is always maintained at a temperature higher than the solidification temperature of the cast metal. Furthermore, the rotary mold rotates at a constant speed in the direction of the arrow. (2) is a nozzle for supplying molten metal to the rotary mold and is connected to the molten metal holding container (2). (2) is a heating element for heating the nozzle (2), which consists of an electric resistance heating element or a high-frequency coil. The outlet of the nozzle ■ is always kept heated above the solidification temperature of the cast metal. ■ is a heating device such as a gas burner for heating the peripheral surface of the rotary mold ■ on the upstream side of the nozzle ■.
Resistive heating elements or high frequency coils or electron beams can also be used. The molten metal (2) is continuously supplied from the molten metal holding container (2) into the nozzle (2). (2) is a molten metal WJV device, and by lowering it, the molten metal is sent onto the rotary mold through the nozzle (2). The nozzle ■ is located upstream from the upper end of the rotary mold ■, and after the molten metal leaving the nozzle ■ adheres to the rotary mold ■ and passes the upper end of the rotary mold, the molten metal is sprayed with a cooling spray such as the water cooling spray of ■. Cooled from the free surface. As a coolant,
Cooling gas, oil, fog, etc. can also be used.

冷却の開始によって、溶湯は凝固し、以後は凝固した帯
状鋳塊0と溶湯との凝固界面■においてのみ凝固は進行
する。溶湯保持容器Φ内の溶湯の湯面は鋳型のほぼ上端
またはそれより低いレベルに保持しつつ鋳造される。
Upon the start of cooling, the molten metal solidifies, and thereafter solidification progresses only at the solidification interface (1) between the solidified band-shaped ingot 0 and the molten metal. The surface of the molten metal in the molten metal holding container Φ is maintained at a level substantially at or lower than the upper end of the mold during casting.

いま、回転鋳型■を矢印の方向に回転せしめつつ、鋳型
に内蔵した発熱体■及び加熱装置■によって、回転鋳型
Φ周表面を鋳造金属の凝固温度以上になるように加熱す
る。ノズル■からの溶湯を回転鋳型■周表面上に供給し
、冷却スプレー■で冷却する時は、鋳塊の結晶は帯状鋳
塊の長さ方向に優先的に成長し、一方向凝固組織からな
る帯状鋳塊0をうることができる。
Now, while rotating the rotary mold (2) in the direction of the arrow, the heating element (2) and heating device (2) built into the mold heat the peripheral surface of the rotary mold (Φ) to a temperature higher than the solidification temperature of the cast metal. When the molten metal from the nozzle ■ is supplied onto the circumferential surface of the rotary mold ■ and cooled by the cooling spray ■, the crystals of the ingot grow preferentially in the length direction of the band-shaped ingot and are composed of a unidirectional solidification structure. 0 strip-shaped ingots can be obtained.

本発明の方法においては回転鋳型周表面の加熱によって
、回転鋳型周表面での新たな結晶の核生成が完全に阻止
されるために、帯状鋳塊を構成する結晶の数は、帯状鋳
塊の鋳造が進むにつれて、成長競争によって減少し、つ
いには単結晶になる傾向を有する。したがって、本発明
は、・単に一方向凝固組織を有する帯状鋳塊を得るに通
した方法を提供するのみでなく、単結晶からなる帯状鋳
塊を容易に製造することのできる方法を提供するもので
ある。さらに、共晶組成の合金の連続鋳造においては、
柱状共晶が一方向に整列した単一共晶からなる組織の帯
状鋳塊を容易に製造することができる。
In the method of the present invention, nucleation of new crystals on the circumferential surface of the rotary mold is completely prevented by heating the circumferential surface of the rotary mold. As casting progresses, it tends to decrease due to growth competition and eventually become a single crystal. Therefore, the present invention not only provides a method for obtaining a band-shaped ingot having a unidirectional solidification structure, but also provides a method for easily producing a band-shaped ingot made of a single crystal. It is. Furthermore, in continuous casting of alloys with eutectic composition,
It is possible to easily produce a band-shaped ingot having a structure consisting of a single eutectic in which columnar eutectics are aligned in one direction.

本発明を実施するにあたっては溶湯は結晶の核生成の機
会をあたえないように、加熱したノズルの下面は回転鋳
型周表面にできるだけ接近させ、溶湯が上流側に漏れな
いようにしなければならない、さらに、帯状鋳塊の凝固
先端の回転鋳型周表面の温度が鋳造金属の凝固温度以上
になるように鋳型の加熱と帯状鋳塊の冷却の程度を調整
しなければならない。
In carrying out the present invention, the lower surface of the heated nozzle must be placed as close as possible to the peripheral surface of the rotary mold so that the molten metal does not have a chance of crystal nucleation, and the molten metal must not leak to the upstream side. The degree of heating of the mold and cooling of the strip ingot must be adjusted so that the temperature of the peripheral surface of the rotary mold at the solidified tip of the strip ingot is equal to or higher than the solidification temperature of the cast metal.

本発明の方法を実施するために用いられる回転鋳型周表
面の材料は、錫、または鉛合金の如き低融点の帯状鋳塊
の鋳造のためには、耐熱ゴム、黒鉛、耐火物(例えばセ
ラミクス)、またはステンレス鋼の如き耐熱金属で、溶
湯と反応しない材料を選択して使用できる。またアルミ
ニウム、銅、または鉄合金の如き融点の高い帯状鋳塊の
鋳造のためには、シリコンカーバイド、シリコンナイト
ライド、ボロンナイトライド、アルミナ、マグネシア、
ジルコニアの如き耐火物のなかから、帯状鋳塊を構成す
る金属の酸化物と反応しない耐火物を選んで使用すれば
よい0回転鋳型は下地を金属にして表面に溶湯と反応し
ない耐火物を被覆して用いることができる。
The material for the peripheral surface of the rotary mold used to carry out the method of the present invention may be heat-resistant rubber, graphite, or refractory material (e.g., ceramics) for casting low-melting-point strip ingots such as tin or lead alloys. Alternatively, a heat-resistant metal such as stainless steel that does not react with the molten metal can be selected and used. For casting high melting point strip ingots such as aluminum, copper, or iron alloys, silicon carbide, silicon nitride, boron nitride, alumina, magnesia,
From among refractories such as zirconia, you can select and use a refractory that does not react with the metal oxides that make up the band-shaped ingot.A zero-turn mold uses a metal base and coats the surface with a refractory that does not react with the molten metal. It can be used as

また融点の高い帯状鋳塊の製造のためには、金属の溶解
及び溶湯の供給時の酸化を防止するために必要に応じて
無酸化雰囲気にするが、さらにノズルをアルゴンまたは
窒素の如き不活性、または水素、−酸化炭素の如き還元
性ガス雰囲気で保護することが好ましい。
In addition, in order to produce strip-shaped ingots with a high melting point, a non-oxidizing atmosphere is created as necessary to prevent oxidation during the melting of the metal and the supply of molten metal. It is preferable to protect in a reducing gas atmosphere such as , hydrogen, or carbon oxide.

ノズル及び回転鋳型の加熱のためには、錫、亜鉛、鉛の
如き低融点金属やアルミニウムの帯状鋳塊に対してはニ
クロム線、シリコンカーバイドの如き低い抵抗発熱体を
用いることができるが、融点の高い金属のためには、タ
ンタル、タングステン、モリブデン、白金、シリコンカ
ーバイドの如き融点の高い抵抗発熱体を用いることがで
きる。
To heat the nozzle and rotary mold, a low resistance heating element such as nichrome wire or silicon carbide can be used for low melting point metals such as tin, zinc, lead, or aluminum strip ingots; For metals with high melting points, high melting point resistance heating elements such as tantalum, tungsten, molybdenum, platinum, silicon carbide can be used.

また加熱手段としては高周波誘導加熱コイルやガスバー
ナー、電子ビームヒーターなどを用いることもできる。
Further, as the heating means, a high frequency induction heating coil, a gas burner, an electron beam heater, etc. can also be used.

また、本発明の方法によって、得られる一方向凝固組織
からなる帯状鋳塊の凝固先端は、回転鋳型周表面の温度
を凝固温度以上に維持することによって、回転鋳型周表
面上での結晶の核生成が阻止される結果、&fl織は完
全な一方向凝固組織となり、微細な巣、ガス泡、マクロ
的な溶質偏析のような欠陥のない高品質の帯状鋳塊をう
ろことができるので、本発明は磁性材料の如く一方向凝
固組織を必要とする材料や掻薄箔や橿細線用素材を簡単
な操作で、しかも高速で製造できるii期的な方法であ
る。
Furthermore, by maintaining the temperature of the circumferential surface of the rotary mold above the solidification temperature, the solidified tip of the band-shaped ingot composed of a unidirectionally solidified structure obtained by the method of the present invention is formed by crystal nuclei on the circumferential surface of the rotary mold. As a result, the &fl weave becomes a completely unidirectionally solidified structure and can pass through a high-quality strip ingot free of defects such as microscopic voids, gas bubbles, and macroscopic solute segregation. The invention is an advanced method that can produce materials such as magnetic materials that require a unidirectional solidification structure, thin foils, and materials for thin wires with simple operations and at high speed.

本発明の方法によれば、巣や気泡の如き従来の鋳造法で
は、避けがたい鋳造欠陥を容易に除くことができるが、
溶湯中に存在する非金属介在物はそのまま帯状鋳塊の中
に捕捉されてしまうので、介在物のない高品質材料をう
るためには、凝固以前の段階でこれを除去しなければな
らない、そのためには、ノズル内またはノズルに供給さ
れる以前の段階で溶湯を耐熱性金属網または多孔性セラ
ミクスフィルターを通過させることが必要である。
According to the method of the present invention, casting defects that are unavoidable in conventional casting methods, such as cavities and bubbles, can be easily eliminated.
Nonmetallic inclusions present in the molten metal are trapped in the band-shaped ingot, so in order to obtain a high-quality material without inclusions, they must be removed before solidification. It is necessary to pass the molten metal through a heat-resistant metal mesh or porous ceramic filter in the nozzle or before being supplied to the nozzle.

ノズルに溶湯を供給する際に、溶湯保持容器で予め溶解
し一定温度に保持した溶湯を適当な方法で加圧または減
圧して供給量を一定に調節しつつ連続的に供給すること
ができるが、場合によりノズル内に金属を粉粒または線
の形で供給し、ノズル内で溶解した後回転鋳型周表面上
に供給することもできる。
When supplying molten metal to the nozzle, it is possible to continuously supply the molten metal, which has been previously melted in a molten metal holding container and maintained at a constant temperature, by pressurizing or depressurizing it using an appropriate method and adjusting the supply amount to a constant level. Optionally, the metal can also be fed into the nozzle in the form of powder or wire, melted in the nozzle and then fed onto the peripheral surface of the rotary mold.

また帯状鋳塊の幅及び厚さは、ノズル開口端の幅は、溶
湯保持容器内?8湯の湯面の高さ、回転鋳型の回転速度
をかえることによって、自由にかえることができる。
Also, what is the width and thickness of the band-shaped ingot, the width of the nozzle opening end, and the inside of the molten metal holding container? 8.It can be changed freely by changing the height of the hot water level and the rotation speed of the rotary mold.

本発明の実施例を以下に示す。Examples of the present invention are shown below.

実施例1 表面に、幅30mm、深さ3m輪の溝を有する、径40
0m−の鋳鉄製回転ホイルを用いる第1図の如き装置を
用い、665℃に加熱した先端が30m5X2.−の水
平スリット型のアルミナノズルにA1溶湯を供給し、予
め表面を661℃に加熱された回転ホイルの溝表面に、
ノズルの先端が回転鋳型上端より上流側に位置するよう
にノズルを水平に設置し、回転ホイルを1000+s/
ll1inの周速度で冷却装置方向に回転せしめた。そ
のさい、回転ホイル上面に、ノズルから帯状に流出した
溶湯表面に鋳型の上端より下流側において冷却水を、ノ
ズルの反対方向に向かうように斜めに吹きつけた。
Example 1 A groove with a diameter of 40 mm and a width of 30 mm and a depth of 3 m on the surface.
Using a device as shown in Fig. 1 using a 0 m cast iron rotating foil, the tip heated to 665°C was heated to 30 m5 x 2. - A1 molten metal was supplied to the horizontal slit-type alumina nozzle, and the groove surface of the rotating foil was heated to 661°C in advance.
Install the nozzle horizontally so that the tip of the nozzle is located upstream from the upper end of the rotary mold, and rotate the rotary foil at 1000 + s/
It was rotated in the direction of the cooling device at a circumferential speed of 1/1 inch. At this time, cooling water was sprayed obliquely onto the surface of the molten metal flowing out from the nozzle in a band on the upper surface of the rotating foil, downstream from the upper end of the mold, in a direction opposite to the nozzle.

得られた厚さ21111、幅30■■ののAffi帯状
鋳塊の表面の腐食組織を観察したところ、完全な一方向
凝固組織からなっており、且つ得られたA1帯状鋳塊を
30ミクロンの厚さまで圧延したところ、耳割れの発生
がまったくなく、さらに、容易に圧延することが可能で
、本発明が帯状の金属箔用素材を連続的に製造するにき
わめてすぐれた方法であることを示した。
When we observed the corrosion structure on the surface of the obtained Affi strip ingot with a thickness of 21111 mm and a width of 30 mm, we found that it consisted of a completely unidirectionally solidified structure. When the material was rolled to the desired thickness, no edge cracking occurred, and furthermore, it was possible to roll it easily, indicating that the present invention is an extremely excellent method for continuously manufacturing strip-shaped materials for metal foil. Ta.

本発明は、一定方向に回転する回転鋳型周表面上に、溶
湯を供給するという、きわめて単純な操作によって、溶
湯から加工性のよい薄肉の金属帯状鋳塊を直接うろこと
ができる方法で、省エネルギー、省力化の点からもきわ
めて工業的に価値のある画期的方法である。
The present invention is an energy-saving method that allows a thin-walled metal strip ingot with good workability to be directly poured from the molten metal by an extremely simple operation of supplying the molten metal onto the peripheral surface of a rotary mold that rotates in a constant direction. This is an innovative method that is extremely valuable industrially from the point of view of labor saving.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の方法の一実施例の要部縦断面正面図、第
2図は本発明の方法の一実施例の要部縦断面正面図であ
る。 1、回転鋳型 2.抵抗発熱体 3.給湯用ノズル 4
.78場保持容器 51発熱体 6.加熱装置 7.溶
湯 8.湯面制御装置 9.冷却スプレー 10.帯状
鋳塊 11. a固界面誇1171 +2■
FIG. 1 is a longitudinal cross-sectional front view of a main part of an embodiment of the conventional method, and FIG. 2 is a longitudinal cross-sectional front view of a main part of an embodiment of the method of the present invention. 1. Rotary mold 2. Resistance heating element 3. Hot water nozzle 4
.. 78 Field holding container 51 Heating element 6. Heating device 7. Molten metal 8. Hot water level control device 9. Cooling spray 10. Band-shaped ingot 11. a solid surface pride 1171 +2■

Claims (1)

【特許請求の範囲】 1、鋳造金属の凝固温度以上に加熱された回転鋳型上端
より上流側の周表面に鋳造金属溶湯を供給し、回転鋳型
上端より下流側において回転方向に移動する鋳造金属の
自由表面を強制的に冷却する帯状鋳塊の連続鋳造法にお
いて、鋳型に溶湯を供給する溶湯保持容器内の溶湯の湯
面が、回転鋳型のほぼ上端またはそれ以下のレベルにあ
ることを特徴とする、一方向凝固組織からなる帯状鋳塊
の連続鋳造法。 2、回転鋳型の加熱は鋳型内に内蔵されたる発熱体によ
ることを特徴とする、請求項1記載の一方向凝固組織か
らなる帯状鋳塊の連続鋳造法。 3、回転鋳型の給湯位置より上流側において鋳型周表面
を、ガスバーナー、電気抵抗発熱体、電子ビームまたは
高周波誘導コイルによって加熱することを特徴とする、
請求項1記載の一方向凝固組織からなる帯状鋳塊の連続
鋳造法。 4、回転鋳型周表面が耐火物、金属、黒鉛からなること
を特徴とする請求項1記載の一方向凝固組織からなる帯
状鋳塊の連続鋳造法。 5、回転鋳型が少なくとも一つの溝型であることを特徴
とする、請求項1記載の一方向凝固組織からなる帯状鋳
塊の連続鋳造法。 6、回転鋳型に溶湯を供給するノズルを設け、その出口
の温度が鋳造金属の凝固温度以上に加熱されていること
を特徴とする、請求項1記載の一方向凝固組織からなる
帯状鋳塊の連続鋳造法。 7、回転鋳型と接する帯状鋳塊の凝固先端における回転
鋳型表面温度が鋳造金属の凝固温度以上に保たれている
ことを特徴とする、請求項1記載の一方向凝固組織から
なる帯状鋳塊の連続鋳造法。 8、溶湯が無酸化性ガス雰囲気内にあることを特徴とす
る、請求項1記載の一方向凝固組織からなる帯状鋳塊の
連続鋳造法。 9、帯状鋳塊が単結晶からなることを特徴とする、請求
項1記載の一方向凝固組織からなる帯状鋳塊の連続鋳造
法。 10、溶湯があらかじめ異物除去用フィルターを通過し
ていることを特徴とする、請求項1記載の一方向凝固組
織からなる帯状鋳塊の連続鋳造法。 11、ノズルの加熱に高周波誘導コイルを用いることを
特徴とする、請求項1記載の一方向凝固組織からなる帯
状鋳塊の連続鋳造法。 12、ノズルと回転鋳型が溶湯と反応しない耐熱材料で
作られていることを特徴とする、請求項1記載の一方向
凝固組織からなる帯状鋳塊の連続鋳造法。
[Scope of Claims] 1. Molten casting metal is supplied to the circumferential surface upstream from the upper end of the rotary mold that is heated to a temperature higher than the solidification temperature of the cast metal, and the cast metal moves in the rotational direction downstream from the upper end of the rotary mold. In a continuous casting method for band-shaped ingots in which the free surface is forcibly cooled, the surface of the molten metal in the molten metal holding container that supplies the molten metal to the mold is at a level substantially at or below the upper end of the rotary mold. A continuous casting method for band-shaped ingots consisting of a unidirectionally solidified structure. 2. The continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the rotary mold is heated by a heating element built into the mold. 3. The peripheral surface of the mold is heated upstream of the hot water supply position of the rotary mold by a gas burner, an electric resistance heating element, an electron beam, or a high-frequency induction coil.
A continuous casting method for a band-shaped ingot having the unidirectionally solidified structure according to claim 1. 4. The method for continuous casting of a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the peripheral surface of the rotary mold is made of refractory, metal, or graphite. 5. The method for continuous casting of a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the rotary mold is of at least one groove type. 6. A band-shaped ingot having a unidirectionally solidified structure according to claim 1, characterized in that the rotary mold is provided with a nozzle for supplying the molten metal, and the temperature at the exit of the nozzle is heated to a temperature higher than the solidification temperature of the cast metal. Continuous casting method. 7. A band-shaped ingot having a unidirectional solidification structure according to claim 1, wherein the surface temperature of the rotary mold at the solidified tip of the band-shaped ingot in contact with the rotary mold is maintained at a temperature higher than the solidification temperature of the cast metal. Continuous casting method. 8. The continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the molten metal is in a non-oxidizing gas atmosphere. 9. The continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the band-shaped ingot is made of a single crystal. 10. The continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, characterized in that the molten metal has passed through a filter for removing foreign matter in advance. 11. A continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, characterized in that a high-frequency induction coil is used for heating the nozzle. 12. The continuous casting method for a band-shaped ingot having a unidirectionally solidified structure according to claim 1, wherein the nozzle and the rotary mold are made of a heat-resistant material that does not react with the molten metal.
JP6313988A 1988-03-18 1988-03-18 Method for continuously casting hoop-state cast slab Pending JPH01237051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6313988A JPH01237051A (en) 1988-03-18 1988-03-18 Method for continuously casting hoop-state cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6313988A JPH01237051A (en) 1988-03-18 1988-03-18 Method for continuously casting hoop-state cast slab

Publications (1)

Publication Number Publication Date
JPH01237051A true JPH01237051A (en) 1989-09-21

Family

ID=13220632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6313988A Pending JPH01237051A (en) 1988-03-18 1988-03-18 Method for continuously casting hoop-state cast slab

Country Status (1)

Country Link
JP (1) JPH01237051A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564489A (en) * 1993-03-05 1996-10-15 Wieland-Werke Ag Casting device for the continuous manufacture of metal strip

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5564489A (en) * 1993-03-05 1996-10-15 Wieland-Werke Ag Casting device for the continuous manufacture of metal strip

Similar Documents

Publication Publication Date Title
KR910000575B1 (en) Process for continuous casting of metal ribbon
JPH03243247A (en) Horizontal type continuous casting method for hoop cast metal and apparatus thereof
US4665970A (en) Method of producing a metallic member having a unidirectionally solidified structure
CN100406161C (en) Oriented freezing cast method
JPH01237051A (en) Method for continuously casting hoop-state cast slab
JPS6072646A (en) Method and device for horizontal and continuous casting of metallic molding consisting of unidirectionally solidified structure
JPS6257418B2 (en)
JPH0399757A (en) Twin roll type strip continuous casting method
JPS6333167A (en) Dropping type casting method
JPS61209758A (en) Continuous casting method for copper or copper alloy
JP3398608B2 (en) Continuous casting method and mold for continuous casting
JPH03264143A (en) Continuous casting method and mold thereof
JPS62130744A (en) Method and mold for casting ingot
JPH0217260B2 (en)
JPH0243569B2 (en)
JPS60248833A (en) Production of metallic bar having unidirectionally solidified structure
JPH05131B2 (en)
JP4216636B2 (en) Continuous casting method and continuous casting apparatus
JPH02175049A (en) Method for continuously casting metal pipe
JPS60234740A (en) Continuous casting method of copper ingot having mirror finished surface
Lee et al. Morphological Transition of Rapidly Solidified Al-Cu Eutectic Ribbons with the Variation of Cooling Capacity of the Rotating Wheel.
JPH0569090A (en) Method and apparatus for horizontal continuous casting
JPS62124068A (en) Production of unidirectionally solidified ingot
JPS60245733A (en) Production of metallic bar having unidirectionally solidified structure
JPH04333350A (en) Casting device for horizontally continuous casting