JPS61276265A - Insulated gate type field-effect transistor - Google Patents

Insulated gate type field-effect transistor

Info

Publication number
JPS61276265A
JPS61276265A JP60117121A JP11712185A JPS61276265A JP S61276265 A JPS61276265 A JP S61276265A JP 60117121 A JP60117121 A JP 60117121A JP 11712185 A JP11712185 A JP 11712185A JP S61276265 A JPS61276265 A JP S61276265A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor
drain
source
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60117121A
Other languages
Japanese (ja)
Inventor
Shigetaka Kumashiro
熊代 成孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60117121A priority Critical patent/JPS61276265A/en
Publication of JPS61276265A publication Critical patent/JPS61276265A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/201Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys
    • H01L29/205Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds including two or more compounds, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To inhibit the generation of impact ionization of an insulated gate type field-effect transistor and the generation of a parasitic bipolar effect with the generation of the impact ionization by constituting a section between a source and a drain and a section between a drain and a substrate by a semiconductor having predetermined forbidden band width and electron affinity. CONSTITUTION:A P-type semiconductor is used as a substrate 1 while a semiconductor having forbidden band width smaller than the substrate 1 and electron affinity larger than the substrate is employed as a source 2 and a semiconductor having forbidden band width larger than the substrate 1 and electron affinity smaller than the substrate is used as a drain 3, and high-concentration N-type regions are constituted. On the other hand, a region 4 connecting the substrate 1 and the drain 3 is composed of a semiconductor, forbidden band width of which changes continuously and monotonously. The combination of substances such as Ga0.28IN0.72P0.4As0.6 as the substrate 1, substances such as Ga0.47IN0.53As as the source 2 section, substances such as InP as the drain 3 section and substances such as GaxIn1-xPyAs1-y(0<=x<=0.28,0<=y<=0.4,y=1.429x) is possible as said each semiconductor, and these semiconductors are formed through a method such as a selective epitaxial growth method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は絶縁ゲート型電界効果トランジスタに関し、特
に衝突電離の発生およびそnに伴なう寄生バイポーラ効
果の発生を抑止した絶縁ゲート型電界効果トランジスタ
に関する0 〔従来の技術〕 絶縁ゲート型電界効果トランジスタは、シリコン等の半
導体基板上に基板又はウェルと逆の導電型不純物を導入
してソース・ドレインの領域を形成する一方、基板の主
面上に絶縁層を形成しこの上にゲート電極を形成した構
成となっている。したがって、この種のトランジスタで
はソース・ドレイン領域は必然的に基板と同一の半導体
で構成さnることになる0 〔発明が解決しようとする問題点〕 上述したように、これまでの絶縁ゲート型電界効果トラ
ンジスタはソース・ドレイン領域上基板と同一の半導体
で構成することが当然のこととして考えらnてきている
が、このトランジスタは高いドレイン電圧を印加すると
ドレイン基板接合空乏層内で衝突電離を生じ、電子正孔
対を発生せしめ、この発生キャリアによって基板内部の
電位が上昇し、ソースΦ基板接合が順バイアスさ扛て寄
生バイポーラ降伏を生じさせるという問題がめる0この
現象は例えば、S、M、Sze著、 John −Wi
 ley & Son社出版の” Physics o
f Sem1conductorDevices 5e
cond Edition ’のP2S5〜483に記
述されている。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to an insulated gate field effect transistor, and in particular to an insulated gate field effect transistor that suppresses the occurrence of impact ionization and the parasitic bipolar effect that accompanies it. 0 Related to Transistors [Prior Art] In an insulated gate field effect transistor, impurities of a conductivity type opposite to that of the substrate or well are introduced into a semiconductor substrate such as silicon to form source/drain regions. It has a structure in which an insulating layer is formed thereon and a gate electrode is formed thereon. Therefore, in this type of transistor, the source and drain regions are necessarily made of the same semiconductor as the substrate. [Problems to be solved by the invention] As mentioned above, the conventional insulated gate type It has been taken for granted that field-effect transistors are constructed of the same semiconductor as the upper and lower substrates of the source and drain regions, but when a high drain voltage is applied to these transistors, impact ionization occurs within the drain-substrate junction depletion layer. This phenomenon causes the problem that the potential inside the substrate increases due to the generated carriers, and the source Φ substrate junction becomes forward biased, causing parasitic bipolar breakdown. , by Sze, John-Wi
“Physics o” published by Ley & Son.
f Sem1conductorDevices 5e
It is described in P2S5-483 of cond Edition'.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の絶縁ゲート型電界効果トランジスタは、基板よ
りも禁制帯幅が小さくかつ電子親和力の太き々半導体で
ソース部金構成し、逆に禁制帯幅が大きくかつ電子親和
力の小さな半導体でドレイン部を構成し、更に基板とド
レイン部とを禁制帯幅が連続かつ単調に変化する半導体
で構成したものである。
In the insulated gate field effect transistor of the present invention, the source portion is made of a semiconductor with a narrower bandgap width and a much larger electron affinity than the substrate, and the drain portion is made of a semiconductor with a wider bandgap width and smaller electron affinity than the substrate. Further, the substrate and the drain portion are made of a semiconductor whose forbidden band width changes continuously and monotonically.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の一実施例を模式的に示す縦断面図であ
シ、1は半導体基板、2,3は夫々ソース、ドレイン鎖
酸、4は基板lとドレイン3を接続するための領域であ
る。そして、本例では基板1にP型半導体を用いると共
に、ソース2には基板lよりも禁制帯幅が小さくφ)電
子親和力の大きい半導体を用い、またドレイン3には基
板lよりも禁制帯幅が大きくかつ電子親和力の小さい半
導体を用いて高濃度n型領域全構成している。一方、基
板1とドレイン3を接続する領域4は禁制帯幅が連続か
つ単調に変化する半導体で構成している。図中、8はゲ
ート電極、9は絶縁膜、10゜11はソース、ドレイン
の各電極、12は基板電極である。
FIG. 1 is a vertical cross-sectional view schematically showing an embodiment of the present invention, in which 1 is a semiconductor substrate, 2 and 3 are source and drain chain acids, respectively, and 4 is a semiconductor substrate for connecting the substrate 1 and the drain 3. It is an area. In this example, a P-type semiconductor is used for the substrate 1, a semiconductor with a smaller forbidden band width (φ) and a larger electron affinity than the substrate 1 is used for the source 2, and a semiconductor with a larger forbidden band width φ) than the substrate 1 is used for the drain 3. The entire high-concentration n-type region is constructed using a semiconductor having a large electron affinity and a small electron affinity. On the other hand, the region 4 connecting the substrate 1 and the drain 3 is made of a semiconductor whose forbidden band width changes continuously and monotonically. In the figure, 8 is a gate electrode, 9 is an insulating film, 10° and 11 are source and drain electrodes, and 12 is a substrate electrode.

前記各半導体としては、例えば基板1にGa0.28I
n O,72Po、4 As0.6 、  ソース2部
分にGa0.47InO,53As、ドレイン3部分に
InP、ドレイン・基板間接続部分4にGax In 
1−x PyAs 1−y (0≦X≦0.28,0≦
y≦Q、4 、 y==1.429x)の組合せが考え
らnlこnらは例えば選択エピタキシャル成長法によっ
て形成さnる。勿論三〜四元混晶全組合せfLは他の構
成も考えら詐る。
As each of the semiconductors, for example, Ga0.28I is used on the substrate 1.
nO, 72Po, 4 As0.6, Ga0.47InO, 53As in the source 2 part, InP in the drain 3 part, Gax In in the drain-substrate connection part 4.
1-x PyAs 1-y (0≦X≦0.28, 0≦
Considering the combination of y≦Q, 4, y==1.429x, these are formed by, for example, selective epitaxial growth. Of course, other configurations of all combinations fL of ternary to quaternary mixed crystals cannot be considered.

第2因は前記第1図の半導体装置の絶縁膜基板界面にそ
った線上におけるドレイン電圧印加時のエネルギ帯構造
図である。図において、B1は基板lのバンド構造を示
し、以下同様に82はソース2のバンド構造、BSはド
レイン3のバンド構造、B4はドレイン3と基板1の接
続部分4のバンド構造を示す。また、D、はソース・基
板間空乏層を、B6は中電界ドリフト領域を%D?はド
レイン・基板間空乏層を夫々示している。更に、E、B
S ”to l EfmB(yc)は夫々基板1、ソー
ス2、ドレイン3.基板・ドレイン接続部4の各半導体
の禁制帯幅全示し、特にEfゆ(ロ)は位置Xによって
連続的に変化する。
The second factor is the energy band structure diagram when a drain voltage is applied on a line along the insulating film substrate interface of the semiconductor device shown in FIG. 1. In the figure, B1 indicates the band structure of the substrate 1, 82 indicates the band structure of the source 2, BS indicates the band structure of the drain 3, and B4 indicates the band structure of the connecting portion 4 between the drain 3 and the substrate 1. Also, D is the depletion layer between the source and substrate, and B6 is the medium electric field drift region, %D? indicate the depletion layer between the drain and the substrate, respectively. Furthermore, E, B
S ” to l EfmB(yc) indicates the entire forbidden band width of each semiconductor of the substrate 1, source 2, drain 3, and substrate/drain connection portion 4, and in particular, Ef(b) continuously changes depending on the position X. .

こnから判るように、ゲート電極8に正の電圧が印加さ
nるとソース・基板間空乏層り、に障壁電位が低減し、
拡散によってソース2から基板lに電子が注入さnる。
As can be seen from this figure, when a positive voltage is applied to the gate electrode 8, the barrier potential in the source-substrate depletion layer decreases,
Electrons are injected from the source 2 into the substrate l by diffusion.

この電子はソースφドレイン間の横方向電界により中電
界ドリフト領域D6をドレイン側に向かって移動する。
These electrons move toward the drain side through the medium electric field drift region D6 due to the lateral electric field between the source and the drain.

そして、電子がドレイン・基板間空乏層り、に到達する
と、同部分の高い電界により急激に加速さnてドレイン
3に到達する。このとき、ゲート電圧、ドレイン電圧を
変化させるとソース・基板間空乏層り、にががる障壁電
位および中電界ドリフト領域り、のエネルギ帯の傾きが
変化し、ソース−ドレイン間の電流が変化する。
When the electrons reach the depletion layer between the drain and the substrate, they are rapidly accelerated by the high electric field in the same region and reach the drain 3. At this time, when the gate voltage and drain voltage are changed, the slope of the energy band of the source-substrate depletion layer, the bitter barrier potential, and the medium electric field drift region changes, and the current between the source and drain changes. do.

第3図囚、■)は夫々基板lの半導体と、ドレイン30
半導体と全接触させる前(同図(A))と接触させた後
(同図■)のエネルギ帯構造を示す。図において、XB
*Xoは夫々基板、ドレインの各半導体の電子親和力、
以下同様にECM、ECDは伝導帯下端、Erg p 
EFDは7工ルミ準位、Ef!1*EfDは禁止帯幅、
Eyl s EyDは価電子帯上端を示す。
Figure 3 (2) shows the semiconductor of the substrate 1 and the drain 30, respectively.
The energy band structure is shown before full contact with the semiconductor ((A) in the same figure) and after (■ in the same figure). In the figure, XB
*Xo is the electron affinity of each semiconductor of the substrate and drain, respectively.
Similarly, ECM and ECD are the lower end of the conduction band, Erg p
EFD is the 7-Eluminum level, Ef! 1*EfD is forbidden band width,
Eyl s EyD indicates the upper end of the valence band.

また、 EFは基板1とドレイン3を接触させた場合の
フェルミ準位、△Xは基板1にもドレイン3と同じ半導
体を用いた場合における接触電位の差である。更に、同
図中入は基板lにドレイン3と同じ半導体を用いたとき
の伝導体下端、Bは本発明における異なる半導体を用い
たときの伝導体下端である。
Further, EF is the Fermi level when the substrate 1 and the drain 3 are in contact with each other, and ΔX is the difference in contact potential when the same semiconductor as the drain 3 is used for the substrate 1 as well. Furthermore, the box in the figure is the lower end of the conductor when the same semiconductor as the drain 3 is used for the substrate l, and B is the lower end of the conductor when a different semiconductor according to the present invention is used.

こ扛らの図から判るように、基板とドレインで形成さn
るPN接合両端で電子が感じる障壁電位は、こnまでの
AよりもΔXだけ小さくなっている。この状況はPn接
合の両端に電圧を印加した場合も全く同じであり、特に
逆バイアスをnmした場合には誠の寄与の分だけ内部電
圧が低下することになる。こnに対し、本発明のように
基板とドレインと全禁制帯幅が連続かつ単調に変化する
半導体で接続した場合には、同図におけるBのように伝
導帯下端の段差が生じないため、電子が空乏層中を運動
する際にΔXだけ障壁電位が減少する効果が徐々に加わ
p1電子が移動し易くなる効果をもたらす。ΔXの値は
近似的に次式で与えらnる。
As you can see from these figures, the n
The barrier potential felt by electrons at both ends of the PN junction is smaller than A so far by ΔX. This situation is exactly the same when a voltage is applied across the Pn junction, and especially when the reverse bias is set to nm, the internal voltage decreases by the amount of the positive contribution. On the other hand, when the substrate and drain are connected by a semiconductor whose total forbidden band width changes continuously and monotonically as in the present invention, there is no step at the lower end of the conduction band as shown in B in the figure. When electrons move in the depletion layer, the effect of reducing the barrier potential by ΔX gradually adds to the effect of making it easier for p1 electrons to move. The value of ΔX is approximately given by the following equation.

Δx=Eyo−Era 一方、電子が高電界を受けて加速さn衝突電離を生ずる
には電子が所要のしきい値エネルギ以上のエネルギを持
たねばならないが、このしきい値エネルギと禁制帯#A
は正の相関関係があpl一般に禁制帯幅が大きい程衝突
電離は生じに<<、また電界が低い程衝突電離は生じに
くい。したがって、前述した本発明の構成を用いtば、
ドレイン側で禁制帯幅が大きくなり、ドレインと同じ半
導体全基板に用いた場合よりもドレイン・基板接合内の
電界が減少して衝突電離が生じにくくなる。
Δx=Eyo-Era On the other hand, in order for electrons to be accelerated by a high electric field and cause impact ionization, the electrons must have energy greater than the required threshold energy, but this threshold energy and forbidden band #A
In general, the larger the forbidden band width, the more likely impact ionization will occur, and the lower the electric field, the less likely impact ionization will occur. Therefore, if the configuration of the present invention described above is used,
The forbidden band width becomes larger on the drain side, and the electric field within the drain-substrate junction is reduced compared to when the same semiconductor substrate as the drain is used, making it difficult for impact ionization to occur.

次にソース2の半導体に基板1よりも禁制帯幅が小さく
、かつ電気親和力の大きいものを使用することが寄生バ
イポーラ効果の抑制に有効であることを説明する。
Next, it will be explained that it is effective to suppress the parasitic bipolar effect by using a semiconductor for the source 2 that has a narrower forbidden band width and greater electric affinity than the substrate 1.

第2図の場合、衝突電離で生じた正孔は発生量が多いと
きには、基板1の83部分のソース側に蓄積し始め、ソ
ース・基板接合金順バイアスの方向へ向ける。ここで、
ソース・基板接合の電子電流と正孔電流の比は次式で与
えら扛る。
In the case of FIG. 2, when the amount of holes generated by impact ionization is large, they begin to accumulate on the source side of the portion 83 of the substrate 1 and are directed in the direction of the source-substrate bond forward bias. here,
The ratio of electron current to hole current at the source-substrate junction is given by the following equation.

但し、Dn二基板半導体中の電子拡散係数):ソース部
分の半導体中の正孔拡散係数 Ln:基板半導体中の電子拡散長 Lp二ソース部分の半導体中の正孔拡散長Pl:基板半
導体中の熱平衡時正孔濃度Ns:ソース部分の半導体中
の熱平衡時電子濃度 mpl :基板半導体中の正孔の有効質量rnlB :
基板半導体中の電子の有効質鏡m、8:ソース部分の半
導体中の正孔の有効質量 mn3 :ソース部分の半導体中の電子の有効質量 R:ボルツマン定数 T :温度 rの値を決定する主要なパラメータはN31Pal・E
yB  EyBであり、N3 e Pal fe与えら
nたものとすと、rの値はEyB−Eysでほば決定さ
fる。前述した本発明の構成の場合s Efs  bf
B<Oであるのでγく1である0したがって、たとえソ
ース・基板間のPn接合が順バイアスさ牡ても流nる電
流の殆んどは正孔電流であり、電子は殆んど基板へ注入
さnない。こnによハ導′lt率変調や注入押nた電子
による衝突電離の増加が抑えらn、寄生バイポーラ効果
によるブレークダウンが生じにくくなる。
However, Dn (electron diffusion coefficient in the substrate semiconductor): Hole diffusion coefficient in the semiconductor of the source portion Ln: Electron diffusion length Lp in the substrate semiconductor Two hole diffusion length Pl in the semiconductor of the source portion: Hole concentration at thermal equilibrium Ns: Electron concentration at thermal equilibrium in the semiconductor of the source portion mpl: Effective mass of holes in the substrate semiconductor rnlB:
Effective mass of electrons in the substrate semiconductor mirror m, 8: Effective mass of holes in the semiconductor of the source portion mn3: Effective mass of electrons in the semiconductor of the source portion R: Boltzmann constant T: Key factor that determines the value of temperature r The parameters are N31Pal・E
Assuming that yB EyB and N3 e Pal fe are given, the value of r is approximately determined by EyB - Eys. In the case of the configuration of the present invention described above, s Efs bf
Since B<O, γ is 1.0 Therefore, even if the Pn junction between the source and the substrate is forward biased, most of the current that flows is a hole current, and most of the electrons are Do not inject. This suppresses conductivity rate modulation and increase in impact ionization due to injected electrons, making breakdown due to parasitic bipolar effects less likely to occur.

なお、前例ではnチャネル表面伝導型の例について述べ
たが、本発明はPチャネル型やバルク伝導型の絶縁ゲー
ト型トランジスタにも同様に適用できる。また、半導体
の部分全等価なエネルギ準位差を有する超格子又は歪超
格子を単層づつ横方向に積層した構造で置き換えること
もできる。
Note that although the example of an n-channel surface conduction type was described in the previous example, the present invention can be similarly applied to a P-channel type or a bulk conduction type insulated gate transistor. Further, it is also possible to replace the semiconductor with a structure in which a single layer of a superlattice or a strained superlattice having an equivalent energy level difference in all parts is laminated in the lateral direction.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、基板に用いる半導体より
も禁制帯幅が小さく、かつ電子親和力の大きい半導体で
ソースを構成し、逆に禁制帯幅が大きくかつ電子親和力
の小さな半導体でドレインを構成し、更にドレインと基
板との間を禁制帯幅が連続かつ単調に変化する半導体で
構成しているので、絶縁ゲート型電界効果トランジスタ
の衝突電離の発生およびこnに伴なう寄生バイポーラ効
果の発生を抑制する効果がある。
As explained above, in the present invention, the source is made of a semiconductor that has a smaller bandgap and larger electron affinity than the semiconductor used for the substrate, and the drain is made of a semiconductor that has a larger bandgap and smaller electron affinity than the semiconductor used for the substrate. Furthermore, since the gap between the drain and the substrate is made of a semiconductor whose forbidden band width changes continuously and monotonically, collision ionization of an insulated gate field effect transistor and the parasitic bipolar effect associated with this are avoided. It has the effect of suppressing the occurrence.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一笑施例全模式的に示す縦断面図、第
2図は第1図のトランジスタの絶縁膜基板弁面にそった
線上におけるドレイン電圧印加時のエネルギ帯構造図、
第3図■、(B)は夫々基板半導体とドレイン半導体と
を接触させる前と接触後の各エネルギ帯構造図である。 1・・・・・・基板、2・・・・・・ソース、3・・・
・・・ドレイン、4・・・・・・基板・ドレイン接続部
、8・−・・・・ゲート電極、9・・・・・・絶縁膜、
10・・・・・・ソース電極、11・・・・・・ドレイ
ン電極。 代理人 弁理士  内  原    晋。 痔 第3WJ A:埴ネ91クドレイ詞幣ケγ同り一半磐り■いた謳略
含めイテ二格−Lママ11;メ害i
FIG. 1 is a longitudinal sectional view schematically showing an entire embodiment of the present invention, FIG. 2 is a diagram of the energy band structure when drain voltage is applied on a line along the valve surface of the insulating film substrate of the transistor of FIG. 1,
FIGS. 3(B) and 3(B) are diagrams of the energy band structure before and after the substrate semiconductor and drain semiconductor are brought into contact, respectively. 1...Substrate, 2...Source, 3...
...Drain, 4...Substrate/drain connection part, 8...Gate electrode, 9...Insulating film,
10... Source electrode, 11... Drain electrode. Agent: Susumu Uchihara, patent attorney. Hemorrhoids 3rd WJ A: Hanne 91 Kudrei words Hei Ke γ same one and a half ■ Ite 2 case including the prostration - L mama 11; Me harm i

Claims (1)

【特許請求の範囲】[Claims] 1、一の半導体からなる基板に、この半導体よりも禁制
帯幅が小さくかつ電子親和力の大きい半導体でソースを
形成し、また前記一の半導体よりも禁制帯幅が大きくか
つ電子親和力の小さい半導体でドレインを形成し、更に
基板とドレインとを禁制帯幅が連続かつ単調に変化する
半導体で接続したことを特徴とする絶縁ゲート型電界効
果トランジスタ。
1. A source is formed on a substrate made of the semiconductor of 1 with a semiconductor having a narrower bandgap width and larger electron affinity than the semiconductor, and a source is formed of a semiconductor with a larger bandgap width and smaller electron affinity than the semiconductor of 1. An insulated gate field effect transistor characterized by forming a drain and further connecting the substrate and the drain with a semiconductor whose forbidden band width changes continuously and monotonically.
JP60117121A 1985-05-30 1985-05-30 Insulated gate type field-effect transistor Pending JPS61276265A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60117121A JPS61276265A (en) 1985-05-30 1985-05-30 Insulated gate type field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60117121A JPS61276265A (en) 1985-05-30 1985-05-30 Insulated gate type field-effect transistor

Publications (1)

Publication Number Publication Date
JPS61276265A true JPS61276265A (en) 1986-12-06

Family

ID=14703947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60117121A Pending JPS61276265A (en) 1985-05-30 1985-05-30 Insulated gate type field-effect transistor

Country Status (1)

Country Link
JP (1) JPS61276265A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052817C (en) * 1994-09-13 2000-05-24 株式会社东芝 Insulated-gate device (IG device) having narrowbandgap-source structure and method of manufacturing the same
FR2868207A1 (en) * 2004-03-25 2005-09-30 Commissariat Energie Atomique FIELD EFFECT TRANSISTOR WITH SUITABLE SOURCE, DRAIN AND CHANNEL MATERIALS AND INTEGRATED CIRCUIT INCLUDING A SUCH TRANSISTOR
JP2008511171A (en) * 2004-08-24 2008-04-10 フリースケール セミコンダクター インコーポレイテッド Semiconductor transistor having components made of different materials and method of forming the same
US8330143B2 (en) 2005-06-16 2012-12-11 Qunano Ab Semiconductor nanowire transistor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052817C (en) * 1994-09-13 2000-05-24 株式会社东芝 Insulated-gate device (IG device) having narrowbandgap-source structure and method of manufacturing the same
FR2868207A1 (en) * 2004-03-25 2005-09-30 Commissariat Energie Atomique FIELD EFFECT TRANSISTOR WITH SUITABLE SOURCE, DRAIN AND CHANNEL MATERIALS AND INTEGRATED CIRCUIT INCLUDING A SUCH TRANSISTOR
WO2005093812A1 (en) * 2004-03-25 2005-10-06 Commissariat A L'energie Atomique Transistor with adapted source, drain and channel materials and integrated circuit comprising same
US7566922B2 (en) 2004-03-25 2009-07-28 Commissariat A L'energie Atomique Field effect transistor with suitable source, drain and channel materials and integrated circuit comprising same
JP2008511171A (en) * 2004-08-24 2008-04-10 フリースケール セミコンダクター インコーポレイテッド Semiconductor transistor having components made of different materials and method of forming the same
JP4777987B2 (en) * 2004-08-24 2011-09-21 フリースケール セミコンダクター インコーポレイテッド Semiconductor transistor having components made of different materials and method of forming the same
US8330143B2 (en) 2005-06-16 2012-12-11 Qunano Ab Semiconductor nanowire transistor
US8344361B2 (en) 2005-06-16 2013-01-01 Qunano Ab Semiconductor nanowire vertical device architecture

Similar Documents

Publication Publication Date Title
JP3039967B2 (en) Semiconductor device
JP3608456B2 (en) Manufacturing method of SOI structure MIS field effect transistor
JP2547663B2 (en) Semiconductor device
US4825274A (en) Bi-CMOS semiconductor device immune to latch-up
US5751036A (en) Floating gate type non-volatile semiconductor memory device
US4831422A (en) Field effect transistor
US6563193B1 (en) Semiconductor device
JPS61276265A (en) Insulated gate type field-effect transistor
JPH01186683A (en) Semiconductor device
JPH01268171A (en) Semiconductor device
US5378923A (en) Semiconductor device including a field effect transistor
US5504360A (en) Vertical type semiconductor device provided with an improved construction to greatly decrease device on-resistance without impairing breakdown
US6049097A (en) Reliable HEMT with small parasitic resistance
JPH0116023B2 (en)
JP3198766B2 (en) Conductivity modulation type transistor
JPH02280371A (en) Semiconductor device
JPH04313242A (en) Manufacture of thin-film semiconductor device
JPH0750785B2 (en) Method for suppressing short channel effect in field effect transistor
US5523601A (en) High-breakdown-voltage MOS transistor
JPS6123669B2 (en)
JPS6271274A (en) Mos semiconductor device
JPS61116875A (en) Semiconductor device
US3500138A (en) Bipolar mos field effect transistor
JP2688678B2 (en) Field effect transistor and method of manufacturing the same
JPH07263691A (en) Carrier injection transistor