JPS61276222A - X-ray exposure alignment - Google Patents

X-ray exposure alignment

Info

Publication number
JPS61276222A
JPS61276222A JP60117118A JP11711885A JPS61276222A JP S61276222 A JPS61276222 A JP S61276222A JP 60117118 A JP60117118 A JP 60117118A JP 11711885 A JP11711885 A JP 11711885A JP S61276222 A JPS61276222 A JP S61276222A
Authority
JP
Japan
Prior art keywords
ray
single crystal
rays
ray mask
scintillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60117118A
Other languages
Japanese (ja)
Other versions
JPH0421333B2 (en
Inventor
Hiroshi Nozue
野末 寛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP60117118A priority Critical patent/JPS61276222A/en
Publication of JPS61276222A publication Critical patent/JPS61276222A/en
Publication of JPH0421333B2 publication Critical patent/JPH0421333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7003Alignment type or strategy, e.g. leveling, global alignment
    • G03F9/7023Aligning or positioning in direction perpendicular to substrate surface
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F9/00Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically
    • G03F9/70Registration or positioning of originals, masks, frames, photographic sheets or textured or patterned surfaces, e.g. automatically for microlithography
    • G03F9/7073Alignment marks and their environment
    • G03F9/7076Mark details, e.g. phase grating mark, temporary mark

Abstract

PURPOSE:To easily enable the formation of the alignment mark of the X-ray mask and the alignment mark of the semiconductor substrate as well as to obtain an X-ray exposure align ment method with a superior alignment precision by a method wherein parallel X-rays of a single wavelength are respectively projected on the single crystal to be formed in the internal side of the X-ray mask and the single crystal to be formed in the semiconductor substrate, the refracted X-rays from the single crystals are made incident in the scintillator, the positions of the single crystals are detected by the scintillations from the scintillator and the positioning of the X-ray mask to the semiconductor substrate and the adjustment of the interval between the X-ray mask and the substrate are conducted. CONSTITUTION:Parallel X-rays 9; which are fine, are emitted at an interval narrowed in a dimension enough to make a first single crystal 4 bathed completely in the X-rays and have a single wavelength in wavelength; are projected on the first single crystal 4; which is formed in the internal side of the X-ray mask consisting of an X-ray transmitting film 1 and X-ray absorbers 2 and has a diameter of several nm or less; in such a way that the first single crystal 4 is completely bathed in the X-rays, refracted X-rays 11 to correspond to the specific reflection indexes (h), (k) and (l) from the first single crystal 4 are made to incide in a scintillator 134 and the position of the X-ray mask is detected by the scintillations from the scintillator 13.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明uX線露光アライメント方法に関し、特に、X線
マスクと半導体基板とのアライメント方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a uX-ray exposure alignment method, and particularly to a method for aligning an X-ray mask and a semiconductor substrate.

〔従来の技術〕[Conventional technology]

従来、X線露光に於いて、X線マスクと半導体基板との
アライメント方法としてフレネル拳ゾーンープレートに
よる方法が知られ、例えば、ジャーナル・オブ・バキュ
ーム・サイエンス・アンド・チクノロシイ(Tourn
al of Vacuum 5cienceand T
echnology) IG 19巻、第4号、頁12
24(1981)にM、Feldman等が発表しテイ
ル。コノ方法にマスク、ウェーハ上にそれぞれ円型フレ
ネル−ゾーン・プレート・マークを形成し、このマーク
にレーザ光を照射し、マスク、ウェーハそれぞれからの
反射スポラトラ一致させ、マスク、つ工−ハ間のアライ
メント方法なう方法である。
Conventionally, in X-ray exposure, a method using a Fresnel zone plate has been known as a method for aligning an X-ray mask and a semiconductor substrate.
al of Vacuum 5 science and T
technology) IG Volume 19, Issue 4, Page 12
24 (1981), M., Feldman et al. published the tale. In this method, a circular Fresnel zone plate mark is formed on the mask and the wafer, and a laser beam is irradiated onto this mark to match the reflection sporatra from the mask and the wafer, and between the mask and the wafer. This is an alignment method.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述した従来のX線露光アライメント法ではX線マスク
及び半導体基板上に同心円パターンであるフレネル・シ
ー70プレート・マーク全形成しなければならない。X
Iw!マスクの作製には、精度的な要求から電子ビーム
1描あるいに集束イオンビームが用いられる。しかしな
がら電子ビーム直描あるいは集束イオンビームを用いた
描画ではビームt−X、Yの直交する2万回にしか走査
する事が出来ない。このため、円型パターンを描画する
ためには、円を小さな矩形の集合による近似パターンと
して描画しなければならない。円を小さな矩形の集合に
近似すると、描画時のデータ数が膨大になり、データ取
り扱いが複雑になるばかりか、描画I/c要する時間も
莫大なものになってしまうという欠点がある。また、フ
レネルゾーン・プレート・マークが近似パターンとなる
ためマスク、ウェーハ間のアライメント精度が劣化する
という欠点がある。
In the conventional X-ray exposure alignment method described above, a Fresnel Sea 70 plate mark, which is a concentric pattern, must be completely formed on the X-ray mask and the semiconductor substrate. X
Iw! To manufacture the mask, a single electron beam or a focused ion beam is used due to accuracy requirements. However, in direct writing with an electron beam or writing using a focused ion beam, it is possible to scan only 20,000 times with the beams t-X and Y perpendicular to each other. Therefore, in order to draw a circular pattern, the circle must be drawn as an approximate pattern by a collection of small rectangles. Approximating a circle to a set of small rectangles has the drawback that the amount of data required during drawing becomes enormous, which not only complicates data handling but also requires an enormous amount of time for drawing I/C. Furthermore, since the Fresnel zone plate mark becomes an approximate pattern, there is a drawback that alignment accuracy between the mask and the wafer deteriorates.

本発明は、アライメントマークを容易に形成でき、かつ
アライメント精度の優れtX線露光アライメント方法を
提供することを目的とする。
An object of the present invention is to provide a tX-ray exposure alignment method that allows alignment marks to be easily formed and has excellent alignment accuracy.

〔問題点を解決するための手段〕 本発明のX線露光アライメント方法は、X線マスク内に
形成した直径数■以下の第1の単結晶に対し、細くかつ
前記8I!1の単結晶が完浴する寸法に絞っt単一波長
の平行X線を前記第一の単結晶が完浴する様照射し、前
記第1の単結晶からのある特定の指数(hkl)に対応
する回折xit−シンチレータ−によって位置検出し、
更に、半導体基板内に形成された直径数置以下の第2の
単結晶に対し前記X線を照射し、前記第2の単結晶から
の特定の指数(h’ k’ t’ )に対応する回折X
線を前記シンチレーターに1って位置検出し、X線マス
ク及び半導体基板間の位置合わせ5間隔調整を行なうこ
とにより構成される。
[Means for Solving the Problems] The X-ray exposure alignment method of the present invention is applicable to a first single crystal formed in an X-ray mask and having a diameter of several square meters or less, and which is thin and has the diameter of 8I! Parallel X-rays of a single wavelength are irradiated to a size that completely bathes the first single crystal, and a certain index (hkl) from the first single crystal is irradiated. The position is detected by a corresponding diffraction xit-scintillator,
Furthermore, a second single crystal having a diameter of several orders of magnitude or less formed in the semiconductor substrate is irradiated with the X-rays, and a second single crystal corresponding to a specific index (h'k't' ) from the second single crystal is irradiated with the X-ray. Diffraction
The method is constructed by detecting the position of a line using the scintillator and adjusting the positioning interval between the X-ray mask and the semiconductor substrate.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

wX1図は本発明の一実施例を説明するための原理図で
ある。
Figure wX1 is a principle diagram for explaining one embodiment of the present invention.

第1図に示すように、X線マスクに露光波長領域のX線
を透過する膜であるシリコン窒化膜1、露光すべきパタ
ーンに対応しtX線全吸収するX線吸収体である金パタ
ーン2及びこれらを支持するための支持部3工9構取さ
れている。X線マスクに通常8i基板を加ニレ作製これ
る。即ち、Si基板上にシリコン窒化膜1及び金パター
ン2が形成された後、SN基板に支持部3を残してエツ
チング除去される。このSt基板のエツチング除去時、
SN基板の一部を適当な方法により残し、アライメント
マーク4t−形成する。アライメントマーク4は、アラ
イメントに用いるX線強度により適当な大きさに選択す
るが通常100〜1000μ慣程度である。又、アライ
メントマーク4は露光時、障害とならない様にシリコン
窒化膜1に対し、金パターン2の裏側に配置する。アラ
イメントマーク4は1枚のX線マスクに3ケ所以上ある
のが望ましい。半導体基板5にはエツチング処理に工っ
で、Si単結晶のアライメントマーク6が形成されてい
る。アライメントはまずアライメントマーク4にアライ
メントマーク4が完浴する寸法にコリメートされた単一
波長のX線9を照射する。単結晶に単一波長のX線全照
射するとブラッグの条件を満足する方向に反射が生じる
。本実施例ではアライメントマーク4の結晶方位は、半
導体基板を利用しているため半導体基板と同じで既知で
あり反射が生じる方向に計算に工9すでにわかっている
。ゆえに適当な反射11t−選び、シンチレータ−13
1Cより測定する。X線マスク上の3点のアライメント
マークについて、この反射を測定すれば3次元的な位置
が求まる。次にウェーハについてもX線マスクと同様に
X線10を1ライメントマーク61C照射し、適当な反
射12t−シンチレータ131Cより測定する。これ七
ウェーハ上3点について行ない3次元的な位[−決定す
る。以上エフ、X線マスクとウェーハとの位置関係を測
定し、最適の位置及び間隔になる様アライメント精度な
う。
As shown in FIG. 1, an X-ray mask includes a silicon nitride film 1, which is a film that transmits X-rays in the exposure wavelength range, and a gold pattern 2, which is an X-ray absorber that completely absorbs t-X-rays, corresponding to the pattern to be exposed. There are also three support sections and nine structures to support them. An 8i substrate is usually fabricated as an X-ray mask. That is, after a silicon nitride film 1 and a gold pattern 2 are formed on the Si substrate, they are etched away leaving the support portion 3 on the SN substrate. When removing this St substrate by etching,
A part of the SN substrate is left by an appropriate method, and an alignment mark 4t is formed. The alignment mark 4 is selected to have an appropriate size depending on the X-ray intensity used for alignment, but is usually about 100 to 1000 microns. Further, the alignment mark 4 is arranged on the back side of the gold pattern 2 with respect to the silicon nitride film 1 so as not to become an obstacle during exposure. It is desirable that one X-ray mask has alignment marks 4 at three or more locations. Si single crystal alignment marks 6 are formed on the semiconductor substrate 5 by etching. For alignment, first, the alignment mark 4 is irradiated with a single wavelength X-ray 9 that is collimated to a size that completely covers the alignment mark 4. When a single crystal is fully irradiated with X-rays of a single wavelength, reflection occurs in a direction that satisfies Bragg's condition. In this embodiment, since a semiconductor substrate is used, the crystal orientation of the alignment mark 4 is known as is the same as that of the semiconductor substrate, and the direction in which reflection occurs is already known by calculation. Therefore, select an appropriate reflection 11t, and select a scintillator 13.
Measure from 1C. By measuring the reflections of the three alignment marks on the X-ray mask, the three-dimensional positions can be determined. Next, the wafer is also irradiated with one alignment mark 61C of X-rays 10 in the same manner as the X-ray mask, and measured using an appropriate reflection 12t-scintillator 131C. This is done for three points on seven wafers to determine the three-dimensional position. As mentioned above, the positional relationship between the X-ray mask and the wafer is measured, and the alignment accuracy is adjusted to obtain the optimum position and spacing.

なお、アライメントマークは単結晶であれば材質になん
でもよく、さらに5本実施例でにアライメントマークを
ウェーハ裏面に形成したが、表面に形成しても同様の効
果がある。
Note that the alignment mark may be made of any material as long as it is a single crystal, and in the fifth embodiment, the alignment mark was formed on the back surface of the wafer, but the same effect can be obtained even if it is formed on the front surface.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に本発明に工れば、アライメントマーク
形成に於いて複雑かつ膨大なデータの取り扱い、莫大な
時間を要することなく、まt1近似アライメントマーク
によるアライメント精度の劣化がなく単純な工程vcよ
る単純なアライメントマーク形成により、高精匿のアラ
イメントが行なわれる。従って製造工程の作業性が向上
し、高品質の半導体上安価に提供できるという効果があ
る。
As explained above, if the present invention is implemented, it will not be necessary to handle complicated and enormous amounts of data in forming alignment marks, and it will not take a huge amount of time, and there will be no deterioration in alignment accuracy due to t1 approximate alignment marks, and the process will be simple. High precision alignment can be achieved by simply forming alignment marks. Therefore, the workability of the manufacturing process is improved, and high quality semiconductors can be provided at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のX線露光アライメント方法を説明する
ための原浬図である。 1・・・・・・X線透過膜(シリコン窒化膜)、2・・
・・・・X線吸収体(金パターン)、3・・・・・・支
持部、4・・・・・・マスク側アライメントマーク、5
・・・・・・半導体基板、6・・・・・・半導体基板側
アライメントマーク、7・・・・・・X線透過膜、訃・
・・・・X線感光膜、9・・・・・・X@、10・・・
・・・X線、11・・・・・・回折X線、12・・・・
・・回折X1fIjA113・・・・・・シンチレータ
−0 ¥−1狐 手続補正書(自発)
FIG. 1 is an original drawing for explaining the X-ray exposure alignment method of the present invention. 1... X-ray transparent film (silicon nitride film), 2...
... X-ray absorber (gold pattern), 3 ... Support part, 4 ... Mask side alignment mark, 5
... Semiconductor substrate, 6 ... Semiconductor substrate side alignment mark, 7 ... X-ray transparent film,
...X-ray photosensitive film, 9...X@, 10...
...X-ray, 11...Diffraction X-ray, 12...
...Diffraction X1fIjA113...Scintillator-0 ¥-1 Fox procedural amendment (voluntary)

Claims (1)

【特許請求の範囲】[Claims] X線マスク内に形成した直径数mm以下の第1の単結晶
に対し、細くかつ前記第1の単結晶が完浴する寸法に絞
った単一波長の平行X線を前記第一の単結晶が完浴する
様照射し、前記第1の単結晶からのある特定の指数(h
kl)に対応する回折X線をシンチレーターによって位
置検出し、更に、半導体基板内に形成された直径数mm
以下の第2の単結晶に対し前記X線を照射し、前記第2
の単結晶からの特定の指数(h′k′l′)に対応する
回折X線を前記シンチレーターによって位置検出し、X
線マスク及び半導体基板間の位置合わせ、間隔調整を行
なうことを特徴とするX線露光アライメント方法。
A first single crystal with a diameter of several mm or less formed in an X-ray mask is irradiated with parallel X-rays of a single wavelength narrowed to a size that completely bathes the first single crystal. is irradiated to complete the bath, and a certain index (h
A scintillator detects the position of the diffracted X-ray corresponding to
The following second single crystal is irradiated with the X-ray, and the second single crystal is
The scintillator detects the position of the diffracted X-ray corresponding to a specific index (h'k'l') from the single crystal of
An X-ray exposure alignment method characterized by aligning and adjusting the spacing between a ray mask and a semiconductor substrate.
JP60117118A 1985-05-30 1985-05-30 X-ray exposure alignment Granted JPS61276222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60117118A JPS61276222A (en) 1985-05-30 1985-05-30 X-ray exposure alignment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60117118A JPS61276222A (en) 1985-05-30 1985-05-30 X-ray exposure alignment

Publications (2)

Publication Number Publication Date
JPS61276222A true JPS61276222A (en) 1986-12-06
JPH0421333B2 JPH0421333B2 (en) 1992-04-09

Family

ID=14703870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60117118A Granted JPS61276222A (en) 1985-05-30 1985-05-30 X-ray exposure alignment

Country Status (1)

Country Link
JP (1) JPS61276222A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282817A (en) * 1988-05-10 1989-11-14 Canon Inc Exposure device
JPH04247613A (en) * 1991-02-01 1992-09-03 Soltec:Kk Method and apparatus for x-ray mask alignment and x-ray mask used for the method and the apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148285A (en) * 1977-05-26 1978-12-23 Siemens Ag Method of relatively positioning projecting mask and semiconductor wafer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53148285A (en) * 1977-05-26 1978-12-23 Siemens Ag Method of relatively positioning projecting mask and semiconductor wafer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01282817A (en) * 1988-05-10 1989-11-14 Canon Inc Exposure device
JPH04247613A (en) * 1991-02-01 1992-09-03 Soltec:Kk Method and apparatus for x-ray mask alignment and x-ray mask used for the method and the apparatus
JPH0797551B2 (en) * 1991-02-01 1995-10-18 株式会社ソルテック X-ray mask alignment method and apparatus

Also Published As

Publication number Publication date
JPH0421333B2 (en) 1992-04-09

Similar Documents

Publication Publication Date Title
US5553110A (en) X-ray mask structure, process for production thereof, apparatus and method for X-ray exposure with the X-ray mask structure, and semiconductor device produced by the X-ray exposure method
CA1093297A (en) Plate aligning
CN101339962A (en) Radiation detector, method of manufacturing a radiation detector and lithographic apparatus comprising a radiation detector
US3984680A (en) Soft X-ray mask alignment system
US4187431A (en) Method for the adjustment of a semiconductor disc relative to a radiation mask in X-ray photolithography
US4176281A (en) Method for adjusting a semiconductor disk relative to a radiation mask in x-ray photolithography
US4939052A (en) X-ray exposure mask
JP2002231620A (en) Alignment mark and system and method for exposure alignment using the same
JP2751718B2 (en) Exposure mask
US5375157A (en) X-ray mask structure and a production method thereof, an exposure method using the X-ray mask structure, and a device fabricated by using the X-ray mask structure
JPS61276222A (en) X-ray exposure alignment
JPH0694401A (en) Micrometer optically read by reflection of light and manufacture thereof
JP2614863B2 (en) X-ray reduction projection exposure equipment
JP3051099B2 (en) Mark substrate, method of manufacturing mark substrate, electron beam writing apparatus, and method of adjusting optical system of electron beam writing apparatus
JPH0311613A (en) Blind device
JP2890588B2 (en) Method of measuring film thickness
JPH053148A (en) X-ray mask, manufacture of x-ray mask and exposure method using x-ray mask
JPH0719742B2 (en) Mask alignment method
JPS6229139A (en) Pattern transfer mask and application thereof
JPH0274804A (en) Alignment apparatus
JPS61185929A (en) X-ray exposure mask
JPH07130645A (en) Mask for x-ray exposure and x-ray aligner using same
RU34744U1 (en) Device for determining the presence of elastic deformations in single-crystal plates
JPS6259253B2 (en)
JPS60214531A (en) Aligning method