JPS61275695A - Fuel assembly for boiling water reactor - Google Patents

Fuel assembly for boiling water reactor

Info

Publication number
JPS61275695A
JPS61275695A JP60116516A JP11651685A JPS61275695A JP S61275695 A JPS61275695 A JP S61275695A JP 60116516 A JP60116516 A JP 60116516A JP 11651685 A JP11651685 A JP 11651685A JP S61275695 A JPS61275695 A JP S61275695A
Authority
JP
Japan
Prior art keywords
fuel
region
fuel assembly
boiling water
water reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60116516A
Other languages
Japanese (ja)
Inventor
和毅 肥田
律夫 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP60116516A priority Critical patent/JPS61275695A/en
Publication of JPS61275695A publication Critical patent/JPS61275695A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は熱的余裕を損なうことなく燃料経済性を向上さ
せた沸騰水型原子炉用燃料集合体C;関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a fuel assembly C for a boiling water reactor that improves fuel economy without impairing thermal margin.

[発明の技術的背景と七の問題点] 第2図(a)は従来の沸騰水型原子炉用燃料集合体の燃
料棒配置図の1例であり、第2図(b)は第2図(a)
の各燃料棒の軸方向濃縮度分布を示す図である。
[Technical background of the invention and seven problems] FIG. 2(a) is an example of a fuel rod arrangement diagram of a conventional boiling water reactor fuel assembly, and FIG. Diagram (a)
FIG. 3 is a diagram showing the axial enrichment distribution of each fuel rod in FIG.

図中1.2.3.4はそれぞれ装荷された核分裂性物質
の濃縮度が異なっている燃料棒を示し、A。
In the figure, 1.2.3.4 shows fuel rods with different enrichment degrees of fissile material loaded therein, and A.

B、C,Dは濃縮度を示す。濃縮度の大きさはA)B)
C)Dの順である。Gは可燃性毒物(ガドリニア使用)
入り燃料棒で、核分裂性物質の濃縮度は燃料棒2と同じ
である。これらの各燃料棒の核分裂性物質の濃縮度は軸
方向Cユおいて均一である。Wはウォータロッドを示し
ている。
B, C, and D indicate the degree of concentration. The degree of concentration is A) B)
C) In order of D. G is a burnable poison (using gadolinia)
The enrichment of fissile material is the same as in fuel rod 2. The enrichment of fissile material in each of these fuel rods is uniform in the axial direction C. W indicates a water rod.

第2図(a) C示したようC:、従来の沸騰水型原子
炉用燃料集合体では集合体横断面C:おいて中心部で濃
縮度が高く、周辺部で濃縮度が低くなっている。平均濃
縮度を一定I:保った1)ま濃縮度分布を変えて、中心
部で低く周辺部で高くしていくと、無限増倍率が増大す
ると同時に横断面での局所出力ピーキング係数が増大す
る。このような局所出力ピーキング係数と無限増倍率の
関係を第3図C:示す。第3図は無限増倍率がピークと
なる燃焼度での値を示したものである。同図Cユおいて
a点は第2図(a)C示す従来の燃料集合体の場合を示
し、b点は全燃料棒の濃縮度が同一である場合を示して
いる。
As shown in Figure 2 (a), in a conventional boiling water reactor fuel assembly, the enrichment is high in the center and low in the periphery in the cross section of the assembly. There is. If the average enrichment is kept constant (1) and the enrichment distribution is changed to make it lower in the center and higher in the periphery, the infinite multiplication factor increases and at the same time the local power peaking coefficient in the cross section increases. . The relationship between the local output peaking coefficient and the infinite multiplication factor is shown in FIG. 3C. Figure 3 shows the values at the burnup where the infinite multiplication factor reaches its peak. In FIG. 2C, point a shows the case of the conventional fuel assembly shown in FIGS. 2A and 2C, and point b shows the case where the enrichment of all fuel rods is the same.

第3図から明らかなように、燃料経済性を向上させるた
め(−はなるべく周辺部の濃縮度が高くなっている燃料
を使用すればよいが、同時(−局所出力ピーキング係数
が増大するので、熱的余裕としての最大線出力密度の増
大(−より原子炉の安全性が損なわれるととl二なる。
As is clear from Fig. 3, in order to improve fuel economy (-) it is best to use fuel that is enriched in the peripheral areas as much as possible; An increase in the maximum linear power density as a thermal margin (- will impair the safety of the reactor).

したがって燃料経済性の向上と炉安全性との両方を満足
させることは難しかった。
Therefore, it has been difficult to satisfy both the improvement of fuel economy and reactor safety.

[発明の目的] 本発明は上記情況(;鑑みてなされたもので、熱的余裕
を損なうことなく燃料経済性を向上させるよう1ユした
沸騰水温原子炉用燃料集合体を提供することを目的とす
るものである。
[Object of the Invention] The present invention was made in view of the above circumstances, and an object thereof is to provide a fuel assembly for a boiling water temperature nuclear reactor that is designed to improve fuel economy without impairing thermal margin. That is.

[発明の概要] 本発明はチャネルボックス内に複数本の燃料棒を格子状
に配列してなる沸騰水型原子炉用燃料集合体(−おいて
、該燃料集合体が軸方向に上部、中央部および下部の三
領域C:区分され、上部領域および下部領域の少なくと
も一方の領域シュおいて燃料棒の核分裂性物質含有蓋が
集合体横断面の中心部から周辺部へ向って増加するが、
変化しないか、ま九は前記中央部領域におけるよりも小
さな割合で減少しているようCニし、それによって熱的
余裕を損なうことなく燃料経済性を向上せしめた前記燃
料集合体(;関するものである。
[Summary of the Invention] The present invention relates to a fuel assembly for a boiling water reactor, which is formed by arranging a plurality of fuel rods in a lattice shape in a channel box. The fissile material-containing lid of the fuel rod increases from the center to the periphery of the cross section of the aggregate in at least one of the upper and lower regions.
The fuel assemblies (with respect to It is.

[発明の実施例コ 本発明の実施例を図面を参照して説明する。[Embodiments of the invention] Embodiments of the present invention will be described with reference to the drawings.

第1図(りは本発明の一実施例を示す燃料集合体の燃料
棒配置図であり、第1図(b)は81図(a)Cおける
燃料棒の核分裂性物質軸方向濃縮度分布な示す図である
。第1図(−)において1′〜4′はそれぞれ装荷され
友核分裂性物質の濃縮度が異なっている燃料棒を、G′
は可燃性毒物入り燃料棒な、セしてWはウォータロッド
を示している。燃料棒1′〜4′およびガドリニアnG
′に装荷された核分裂性物質の濃縮度は第1図(b)c
示すように軸方向において異なっている。すなわち各燃
料棒は軸方向1m、 3つが下部領域、上端より全長の
互の部分が上部領域。
FIG. 1 is a fuel rod arrangement diagram of a fuel assembly showing one embodiment of the present invention, and FIG. 1(b) is the fissile material axial enrichment distribution of the fuel rods in FIG. In FIG.
indicates a fuel rod containing burnable poison, and W indicates a water rod. Fuel rods 1'-4' and gadolinia nG
The enrichment degree of fissile material loaded in ' is shown in Figure 1(b)c.
As shown, they differ in the axial direction. That is, each fuel rod is 1 m in the axial direction, three of them are in the lower region, and the parts of the entire length from the upper end are in the upper region.

残りの中央部が中央部領域であり、中央部領域の濃縮度
分布は前記した第2図(a)の燃料集合体の濃縮度分布
と同じで、燃料棒l′〜4′の濃縮度がそれぞれA−D
、G’がBであるが、上部領域および下部領域では横断
面の濃縮度分布はすべて一様でEとなっている。
The remaining central region is the central region, and the enrichment distribution in the central region is the same as the enrichment distribution of the fuel assembly shown in FIG. A-D respectively
, G' are B, but the enrichment distribution in the cross section in the upper and lower regions is all uniform and E.

上記実施例の燃料集合体の軸方向出力分布を従来の燃料
集合体と比較して以下(−示し、本発明の燃料集合体の
燃料経済性の向上と熱的余裕との関係を説明する。
The axial power distribution of the fuel assembly of the above embodiment is compared with that of a conventional fuel assembly, and the relationship between the improvement in fuel economy and thermal margin of the fuel assembly of the present invention will be explained below.

前記したように燃料経済性を向上させる場合問題となる
のは最大線出力密度の増大C−より原子炉の安全性が損
われることである。そしてこの最大線出力密度が問題に
なるのは無限増倍率がピークとなるときであり、これは
運転サイクル末期における1サイクル目燃料のときであ
る。このlサイクル目燃料の軸方向の相対線出力密度分
布をM2図(a)の従来燃料Cユついて示すと第4図の
曲線Cのようになる。従来燃料と本実施例燃料とでは炉
心の出力分布に#まとんど差は生じないから、炉心のあ
る点の線出力密度はその点の局所出力ピーキング係数ニ
ー比例すると考えてよい。したがって、第4図の曲線C
に、その上部領域および下部領域において、刺縮度一様
燃料の局所出力ピーキング係数の従来燃料の局所出力ピ
ーキング係数に対する比(wcS図参照1図中横軸はこ
の比を表わす)を乗ずれば本実施例1二おける相対線出
力密度分布が得られる。第4図の曲線dはこのようCl
、て得られた分布曲線である。なお第5図では、1サイ
クル目燃料において軸方向位置ζ二よって燃焼度が異な
り局所出力ピーキング係数は燃焼Cユ伴なって変化する
ので、軸方向位置によって局所出力ビーキー   ング
係数の比が変化している。
As mentioned above, when improving fuel economy, the problem is that the safety of the nuclear reactor is impaired due to the increase in maximum linear power density C-. This maximum linear power density becomes a problem when the infinite multiplication factor reaches its peak, which is when the fuel is in the first cycle at the end of the operating cycle. When the relative linear power density distribution in the axial direction of this l-th cycle fuel is shown for the conventional fuel C in FIG. M2 (a), it becomes a curve C in FIG. 4. Since there is no difference in the power distribution of the core between the conventional fuel and the fuel of this example, it can be considered that the linear power density at a certain point in the core is proportional to the local power peaking coefficient at that point. Therefore, curve C in FIG.
is multiplied by the ratio of the local power peaking coefficient of the uniform sting degree fuel to the local power peaking coefficient of the conventional fuel in the upper and lower regions (see wcS diagram 1. The horizontal axis in Figure 1 represents this ratio). The relative linear power density distribution in Example 12 is obtained. The curve d in Figure 4 looks like this
This is the distribution curve obtained by . In addition, in Fig. 5, the burnup differs depending on the axial position ζ2 in the first cycle fuel, and the local power peaking coefficient changes with the combustion C, so the ratio of the local power peaking coefficient changes depending on the axial position. ing.

第4図の曲線dで明らかなよ55二、本実施例において
は上下端部の線出力密度は増大しているが、それが最大
線出力密度な悪化させるには至っていない。
As is clear from the curve d in FIG. 4, in this example, the linear power density at the upper and lower ends increases, but this does not cause the maximum linear power density to deteriorate.

本実施例1二おいて上下部領域の境界を上記したように
それぞれ全長の−および冴と定めたのは、た場合痕二は
最大線出力密度が従来燃料よりも悪化する事態が生ずる
。一般に上下両領域I:適用する娼縮度分布(上記実施
例では濃縮度一様)の局所出力ピーキング係数の中央領
域(すなわち従来の濃縮度分布)の局所出力ピーキング
係数C:対する比を1とすると、通常の軸方向出力が許
容最大値の1/j以下である領域を上部領域、下部領域
とした場合C:は、最大線出力密度は悪化しないことに
なる。炉心の実効増倍率を増大させるためにはなるべく
広い範囲(ユおいて局所出力ピーキング係数の大きい燃
料を使用したいわけであるが、広い範囲において局所ピ
ーキング係数が大でかつ最大線出力密度が悪化しないと
いう条件は上部および下部領域の長さをこのように制限
すること(−よって成り立つ。
In this embodiment 12, the boundaries of the upper and lower regions are defined as the minus and the bottom of the total length, respectively, as described above, because in this case, the maximum linear power density becomes worse than that of conventional fuel. Generally, the ratio of the local output peaking coefficient of the upper and lower regions I: the local output peaking coefficient of the applied foreshortening distribution (uniform enrichment distribution in the above example) to the local output peaking coefficient C of the central region (i.e., the conventional enrichment distribution) is set to 1. Then, if the upper region and the lower region are regions where the normal axial output is 1/j or less of the maximum allowable value, the maximum linear output density will not deteriorate in case C:. In order to increase the effective multiplication factor of the reactor core, we want to use fuel with a large local power peaking coefficient over a wide range (U), but we also want to use fuel with a large local power peaking coefficient over a wide range and without deteriorating the maximum linear power density. The condition holds if the lengths of the upper and lower regions are thus limited (-).

本冥施例シュおける炉心の実効増倍率の増加は次のよう
Cl、て求めることができる。丁なわち、実効増倍率K
offの増加分ΔKaffは、おおよそΔKoff :
 / P (Z) Δに、、 (z) d Z / /
 P (Z) d Z   (1)で表わされる。
The increase in the effective multiplication factor of the reactor core in this embodiment can be calculated using Cl as follows. In other words, the effective multiplication factor K
The increase in off ΔKoff is approximately ΔKoff:
/ P (Z) Δ,, (z) d Z / /
It is expressed as P (Z) d Z (1).

ここで2は軸方向位置を表し、p (z)は従来燃料の
位[Zでの出力、ΔKao(Z)は位置2での無限増倍
率の増加分である。積分は下端から上端までCユわたっ
て行なう。上式は特Cユ△KC,が小さいとき(ユよい
近似となる。
Here, 2 represents the axial position, p (z) is the power at position [Z] of the conventional fuel, and ΔKao (Z) is the increase in the infinite multiplication factor at position 2. Integration is performed over C from the bottom end to the top end. The above formula is a good approximation when the special C △KC is small (Y is a good approximation).

さて本実施例の場合Yこれを適用すると、横断面濃縮度
分布を一様とした上下両領域の無限増倍率と、濃縮度分
布を従来燃料どおりとじ念中央部領域の無限増倍率との
差は約1.5%Δにである(第3図参照)。また従来の
軸方向出力分布は第4図の曲線Cで表わされる。したが
ってこれらを上記(1)式(ユ適用すると、 ΔKsff ” 0.3 %Δに となり、これは約2%の燃料経済性向上ζユ相当する。
Now, in the case of this example, when this is applied, the difference between the infinite multiplication factor in both the upper and lower regions with a uniform cross-sectional enrichment distribution and the infinite multiplication factor in the central region with the enrichment distribution as conventional fuel. is approximately 1.5%Δ (see Figure 3). Further, the conventional axial power distribution is represented by curve C in FIG. Therefore, when these are applied to the above equation (1), ΔKsff ”0.3%Δ is obtained, which corresponds to an approximately 2% improvement in fuel economy.

以上、上記実施例(;基づいて本発明を説明したが、上
記の考え方(ニジたがって上部領域および下部領域の視
界を定めるならば、他の濃縮度分布の場合Cユも最大線
出力密度を悪化させることなく燃料経済性を向上させる
ことができる。さら:;最大線出力密度が制限値に対し
て余裕がある場合には上下領域をさらCユ拡張すること
が可能である。
The present invention has been explained above based on the above embodiment (;; however, if the visibility of the upper and lower regions is determined based on the above idea (2), then in the case of other concentration distributions, the maximum linear power density can also be determined. Fuel economy can be improved without deterioration.Furthermore, if the maximum linear power density has a margin with respect to the limit value, it is possible to further expand the upper and lower regions by C.

また上記実施例では上下両領域(−局所出力ピーキング
係数の大きい燃料を配置しているが、上部領域あるいは
下部領域のいずれか一方だけ(−これを適用してもよい
Further, in the above embodiment, fuel having a large local output peaking coefficient is placed in both the upper and lower regions (-), but it may be applied only to either the upper region or the lower region (-).

また、上記実施例では上下領域を除く中央部領域は1つ
の領域から構成されているが、軸方向出力分布を平担化
するため(ユ中央部領域がさら6二いくつかに区分され
ていてもよい。
In addition, in the above embodiment, the central region excluding the upper and lower regions is composed of one region, but in order to flatten the axial output distribution (the central region is further divided into 62 parts). Good too.

[発明の効果コ 以上述べ九ように、本発明は、燃料集合体(−おける核
分裂性物質の濃縮度分布を上、中、下の3領域において
異ならしめ、最大線出力密度を悪化させる可能性の低い
上下両領域(ユおいて従来よりも横断面局所出力ピーキ
ング係数が増大するような濃縮度分布をとること(−よ
り、熱的余裕を損なうことなく燃料経済性を向上させる
ことができる。
[Effects of the Invention] As stated above, the present invention makes the enrichment distribution of fissile material in the fuel assembly (-) different in the upper, middle, and lower regions, which may worsen the maximum linear power density. By adopting an enrichment distribution such that the cross-sectional local power peaking coefficient increases in both the upper and lower regions (U) with a lower value than in the conventional case, fuel economy can be improved without impairing the thermal margin.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(−)は本発明の一実施例を示す燃料集合体の燃
料搾配餘図、#I1図(b)は第1図(a)Jユおける
燃料棒の核分裂性物質軸方同濃縮度分布を示す図、第2
図(−)は従来の燃料集合体の燃料棒配置図、第2図(
b)は第2図(a)における燃料棒の核分裂性物質軸方
向濃縮度分布を示す図、第3図は局所出力ピーキング係
数と無限増倍率との関係を示す図、第4図は従来燃料と
本発明燃料の相対線出力密度の軸方向分布を示す図、第
5図は濃縮度一様燃料の局所出力ピーキング係数のjl
!2図(−) Eユ示す従来燃料の局所出力ピーキング
係数に対する比の軸方向分布を示す図である。 1’、 2’、 3’、 4’・・・燃料棒 G′・・
・ガドリニア棒W・・・ウォータロッド 代理人 弁理士 猪 股 祥 晃(疎か1名)第  1
  ′m  (α) 1234(7W 第  1  図 (b) 第  2  図 ((Z) /    l   J   4    cr、   、
v第  2  図 tb> t、o    t、t    tz    t、3  
   t、4    tA眉戸/rl二nh’−’tソ
ア銹(ダ。 第  3  図 o、o     a!s     tD     t、
!r第  4  図 4、l古   IJJD    /、詰   1..3
0    /、詰屓M、iニア]ヒ−Nン71糸数比 第5図
Figure 1 (-) is a fuel expansion diagram of a fuel assembly showing an embodiment of the present invention, and Figure #I1 (b) is a diagram showing the fissile material axis of the fuel rod in Figure 1 (a). Diagram showing enrichment distribution, 2nd
Figure (-) is a fuel rod layout diagram of a conventional fuel assembly, and Figure 2 (
b) is a diagram showing the axial enrichment distribution of fissile material in the fuel rod in Figure 2(a), Figure 3 is a diagram showing the relationship between the local power peaking coefficient and the infinite multiplication factor, and Figure 4 is a diagram showing the relationship between the local power peaking coefficient and the infinite multiplication factor. Figure 5 shows the axial distribution of the relative linear power density of the fuel of the present invention.
! FIG. 2(-) is a diagram showing the axial distribution of the ratio of the conventional fuel to the local power peaking coefficient shown in FIG. 1', 2', 3', 4'...Fuel rod G'...
・Gadolinia rod W...Waterod agent Patent attorney Yoshiaki Inomata (one person unknown) No. 1
'm (α) 1234 (7W Fig. 1 (b) Fig. 2 ((Z) / l J 4 cr, ,
vFigure 2 tb> t, o t, t tz t, 3
t, 4 tA eyebrow/rl 2 nh'-'t soar ko (da. Figure 3 o, o a!s tD t,
! r No. 4 Figure 4, l Old IJJD /, Tsume 1. .. 3
0 /, Filling M, i Near] He-N-71 Thread count ratio Figure 5

Claims (3)

【特許請求の範囲】[Claims] (1)チャネルボックス内に複数本の燃料棒を格子状に
配列してなる沸騰水型原子炉用燃料集合体において、該
燃料集合体が軸方向に上部、中央部および下部の三領域
に区分され、上部領域および下部領域の少なくとも一方
の領域において燃料棒の核分裂性物質含有量が集合体横
断面の中心部から周辺部へ向って増加するか、変化しな
いか、または前記中央部領域におけるよりも小さな割合
で減少していることを特徴とする沸騰水型原子炉用燃料
集合体。
(1) In a fuel assembly for a boiling water reactor in which a plurality of fuel rods are arranged in a grid in a channel box, the fuel assembly is divided into three regions in the axial direction: an upper region, a central region, and a lower region. and the fissile material content of the fuel rods in at least one of the upper and lower regions increases or does not change from the center to the periphery of the aggregate cross-section, or A fuel assembly for a boiling water reactor, characterized in that the amount of water is also reduced at a small rate.
(2)上部領域および下部領域は軸方向出力が許容最大
値X(中央部領域の局所出力ピーキング係数)/(上部
領域および下部領域の局所出力ピーキング係数)以下で
ある領域に設定される特許請求の範囲第1項記載の沸騰
水型原子炉用燃料集合体。
(2) A patent claim in which the upper region and the lower region are set in regions where the axial output is less than or equal to the allowable maximum value X (local output peaking coefficient of the central region)/(local output peaking coefficient of the upper region and the lower region) A fuel assembly for a boiling water reactor according to item 1.
(3)上部領域が全領域の6/24、下部領域が全領域
の1/24であり、上部領域および下部領域の核分裂性
物質の含有量がその横断面において変化していない特許
請求の範囲第2項記載の沸騰水型原子炉用燃料集合体。
(3) A claim in which the upper region is 6/24 of the total region, the lower region is 1/24 of the total region, and the content of fissile material in the upper region and the lower region does not change in the cross section thereof. The fuel assembly for a boiling water reactor according to item 2.
JP60116516A 1985-05-31 1985-05-31 Fuel assembly for boiling water reactor Pending JPS61275695A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116516A JPS61275695A (en) 1985-05-31 1985-05-31 Fuel assembly for boiling water reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116516A JPS61275695A (en) 1985-05-31 1985-05-31 Fuel assembly for boiling water reactor

Publications (1)

Publication Number Publication Date
JPS61275695A true JPS61275695A (en) 1986-12-05

Family

ID=14689077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116516A Pending JPS61275695A (en) 1985-05-31 1985-05-31 Fuel assembly for boiling water reactor

Country Status (1)

Country Link
JP (1) JPS61275695A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547490A (en) * 1979-09-28 1980-04-03 Hitachi Ltd Fuel assembly
JPS58179391A (en) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ Fuel flux having enrichment devided axially
JPS58186079A (en) * 1982-04-23 1983-10-29 株式会社日立製作所 Fuel assembly

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5547490A (en) * 1979-09-28 1980-04-03 Hitachi Ltd Fuel assembly
JPS58179391A (en) * 1982-03-22 1983-10-20 ゼネラル・エレクトリツク・カンパニイ Fuel flux having enrichment devided axially
JPS58186079A (en) * 1982-04-23 1983-10-29 株式会社日立製作所 Fuel assembly

Similar Documents

Publication Publication Date Title
JPS5829878B2 (en) fuel assembly
US4683113A (en) Nuclear fuel assembly
US4324615A (en) Construction of nuclear reactor core
JPS6129478B2 (en)
JPS61275695A (en) Fuel assembly for boiling water reactor
JPS58187891A (en) Fuel assembly
JP2798926B2 (en) Fuel assembly for boiling water reactor
US4562034A (en) Fast breeder
JP3485999B2 (en) Fuel assemblies for boiling water reactors
JP4354621B2 (en) Fuel assemblies for boiling water reactors
JPS6044637B2 (en) fuel assembly
JPH03107793A (en) Fuel assembly
JPS6228438B2 (en)
JPS6327671B2 (en)
JPS5895288A (en) Fuel assembly
JPH05215879A (en) Fuel assembly
JPS62299791A (en) Fast breeder reactor
JPS5824886A (en) Bwr type reactor
JPS6224183A (en) Plutonium fuel aggregate
JPS6316292A (en) Method of charging fuel to nuclear reactor
JPS62259088A (en) Fuel aggregate
JPS61196195A (en) Fast breeder reactor
JPH051914B2 (en)
JPH04215095A (en) Fuel assembly
JP2000314792A (en) Initial loading reactor core, and fuel assembly