JPS61275468A - Treatment of carbon fiber - Google Patents

Treatment of carbon fiber

Info

Publication number
JPS61275468A
JPS61275468A JP11208585A JP11208585A JPS61275468A JP S61275468 A JPS61275468 A JP S61275468A JP 11208585 A JP11208585 A JP 11208585A JP 11208585 A JP11208585 A JP 11208585A JP S61275468 A JPS61275468 A JP S61275468A
Authority
JP
Japan
Prior art keywords
carbon fibers
treatment
carbon fiber
aqueous solution
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11208585A
Other languages
Japanese (ja)
Inventor
高井 敏明
徹 平松
樋口 富壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP11208585A priority Critical patent/JPS61275468A/en
Publication of JPS61275468A publication Critical patent/JPS61275468A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は炭素繊維の処理方法、特にコンポジット引張強
度に優れた補強用炭素繊維を与える炭素繊維の処理方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for processing carbon fibers, and particularly to a method for processing carbon fibers to provide reinforcing carbon fibers having excellent composite tensile strength.

[従来技術] 従来、炭素繊維のマトリックス樹脂に対する接着性を改
良するために、炭素繊維を陽極として電解処理する方法
は、例えば、特公昭47−26999号公報、特公昭5
6−17468号公報、特開昭56−128362号公
報、特開昭59−116469N公報等によって公知で
あるが、これらの電解処理においては、該炭素繊維の表
面に官能基を形成し、マトリックス樹脂に対する接着性
を向上させるものであって、炭素繊維そのものの強度あ
るいはコンポジットの引張強度を改良、向上させるもの
ではなく、電vN処理条件を強化すると、かえって炭素
繊維の強度が低下することが知られていた。
[Prior Art] Conventionally, in order to improve the adhesion of carbon fibers to matrix resin, methods of electrolytically treating carbon fibers using carbon fibers as anodes have been described, for example, in Japanese Patent Publications No. 47-26999 and Japanese Patent Publication No. 5
6-17468, JP-A-56-128362, JP-A-59-116469N, etc., in these electrolytic treatments, functional groups are formed on the surface of the carbon fiber, and matrix resin It is not intended to improve or improve the strength of the carbon fiber itself or the tensile strength of the composite, and it is known that strengthening the electric vN treatment conditions will actually reduce the strength of the carbon fiber. was.

また特開昭47−32195号公報には、電解処理時間
の短縮を図るために、クロム酸塩またはマンガン酸塩の
水溶液を電解質として炭素繊維を電解処理する方法が提
案されているが、この方法は処理時間を短縮する効果は
あるとしても、格別炭素繊維そのものの強度を向上させ
るものではなかった。
In addition, JP-A-47-32195 proposes a method of electrolytically treating carbon fibers using an aqueous solution of chromate or manganate as an electrolyte in order to shorten the electrolytic treatment time. Although it had the effect of shortening the processing time, it did not particularly improve the strength of the carbon fiber itself.

更に、特開昭54−59497@公報、特公昭52−3
5796号公報、及び特開昭58−214527号公報
等には、炭素繊維あるいは該炭素i&li維を補強繊維
とするコンポジットの引張強度を改良、向上させる処理
方法として、炭素繊維を無機酸濃厚水溶液に浸漬して炭
素繊維表面を除去、即ちエツチングしたのち、高温の不
活性雰囲気中で加熱して前記酸処理によって発生した繊
維表面の官能基を除去することが知られているが、これ
らの処理方法は、高温・高濃度の無機酸水溶液中で長時
間の処理を行うために9.炭素繊維の生産性が低下して
工業的には実施可能性が小さく、しかもその処理自体が
苛酷であるため、かえって処理された炭素繊維束の形態
の乱れ、あるいは糸切れや毛羽が発生したり、また炭素
繊維の構造が特に繊維の表層部のみならず繊維の内層部
まで酸化されるため、不活性化処理によっても繊維の内
層部まで十分に官能基を除去することが困難であり、必
ずしも該炭素繊維そのもの、あるいは該炭素繊維を補強
繊維とするコンポジットの引張強度向上には奇与しなか
った。
Furthermore, JP-A-54-59497@publication, JP-A-52-3
No. 5796 and Japanese Patent Application Laid-open No. 58-214527, etc., disclose a treatment method for improving and increasing the tensile strength of a composite using carbon fibers or carbon i&li fibers as reinforcing fibers, in which carbon fibers are treated with a concentrated aqueous solution of an inorganic acid. It is known that the carbon fiber surface is removed by immersion, that is, etched, and then heated in a high-temperature inert atmosphere to remove the functional groups on the fiber surface generated by the acid treatment. In order to carry out long-term treatment in a high-temperature, high-concentration inorganic acid aqueous solution, 9. The productivity of carbon fibers decreases, making it impractical from an industrial perspective, and the treatment itself is harsh, which may result in the processed carbon fiber bundles becoming irregularly shaped, broken, or fluffed. In addition, since the structure of carbon fiber is particularly oxidized not only to the surface layer of the fiber but also to the inner layer of the fiber, it is difficult to sufficiently remove functional groups to the inner layer of the fiber even with inactivation treatment. This did not significantly improve the tensile strength of the carbon fibers themselves or of composites using the carbon fibers as reinforcing fibers.

更に無りa酸によるエツチング処理したのち、不活性化
処理に供される炭素繊維は、炭素繊維そのものの引張強
度が大きくなるに従い該処理による炭素繊維そのもの、
あるいは該゛炭素繊維を補強用繊維とするコンポジット
の引張強度の向上l〕は小さくなる傾向にあり、かつ処
理された炭素繊維のコンポジット引張強度がマトリック
ス樹脂の種類によって相違する、即ち樹脂依存性が大き
い傾向にあることが判明し、せっかく炭素繊維そのもの
の引張強度が向上してもその引張強度がマトリックス樹
脂によって大きく相違し、複合材料に十分反映されない
という欠点があり、必ずしも前記処理によって炭素繊維
の強度が改良、向上するものではなかった。
Furthermore, the carbon fibers subjected to the inactivation treatment after being etched with acetic acid are
Alternatively, the improvement in tensile strength of composites using carbon fibers as reinforcing fibers tends to be small, and the tensile strength of composites of treated carbon fibers differs depending on the type of matrix resin, that is, resin dependence Even if the tensile strength of the carbon fiber itself is improved, the tensile strength varies greatly depending on the matrix resin and is not reflected sufficiently in the composite material. The strength was not improved or improved.

[発明が解決しようとする問題点] 本発明の目的は、上記従来技術の問題点を解消し、処理
時間が短く、連続処理が可能なために。
[Problems to be Solved by the Invention] An object of the present invention is to solve the problems of the above-mentioned prior art, to shorten the processing time, and to enable continuous processing.

工業的実施可能性に優れ、しかも炭素繊維の内部構造が
実質的に損傷されず、かつ表層部が不活性化された炭素
lli雑の表面改質処理方法、特に炭素繊維そのもの乃
至該繊維を補強繊維とするコンポジットの引張強度を顕
著に改良し得る処理方法を提供するものである。
A method for surface modification of carbon fibers, which has excellent industrial feasibility, does not substantially damage the internal structure of carbon fibers, and inactivates the surface layer, especially reinforcing carbon fibers themselves or the fibers. The present invention provides a processing method that can significantly improve the tensile strength of composites made into fibers.

また他の目的は、従来の炭素繊維の処理に使用される無
@酸順に比し、操作時の安全性に優れた処理方法を提供
するものである。
Another object of the present invention is to provide a treatment method that is safer in operation than the conventional acid-free treatment method used in the treatment of carbon fibers.

[問題点を解決するための手段] 本発明の上記目的は、電解液として有機酸あるいはその
塩の水溶液を用い、炭素繊維を陽極として2強電解処理
し、次いで該炭素繊維の表面を不活性化処理することに
よって達成できる。
[Means for Solving the Problems] The above-mentioned object of the present invention is to perform two-strong electrolytic treatment using an aqueous solution of an organic acid or its salt as an electrolyte, and then to make the surface of the carbon fiber inert. This can be achieved by chemical treatment.

以下、本発明の構成を具体的に説明する。Hereinafter, the configuration of the present invention will be specifically explained.

本発明における電解質としての有機酸あるいはその塩は
、脂肪族、ならびに脂環族のカルボン酸あるいはその塩
であり、例えば蟻酸、蓚酸、酒石酸、リンゴ酸、マロン
酸、マレイン酸、イタコン酸、ヘキサヒドロ安息香酸、
蟻酸アンモニウム。
Organic acids or salts thereof as electrolytes in the present invention include aliphatic and alicyclic carboxylic acids or salts thereof, such as formic acid, oxalic acid, tartaric acid, malic acid, malonic acid, maleic acid, itaconic acid, and hexahydrobenzoic acid. acid,
Ammonium formate.

蓚酸アンモニウム等が挙げられるが、これらのうち特に
蟻酸、蓚酸、酒石酸等のように酸性が強く。
Examples include ammonium oxalate, but among these, formic acid, oxalic acid, tartaric acid, etc. are particularly strongly acidic.

かつ炭素数10程度以下の比較的低級な酸がより好まし
い。
A relatively lower acid having about 10 carbon atoms or less is more preferable.

なお、有機酸の金属塩を用いた場合には強電解処理後、
水洗、乾燥、及び不活性化処理を行なって1qられた処
理炭素繊維に金属が残存しやすいので、金属イオンが存
在しない有機酸あるいはその塩を用いることがより好ま
しい。
In addition, when using a metal salt of an organic acid, after strong electrolytic treatment,
It is more preferable to use an organic acid or a salt thereof that does not contain metal ions, since metals tend to remain in the treated carbon fibers that have been subjected to water washing, drying, and deactivation treatment.

該有機酸あるいはその塩は、電解質の温度として特に制
限を受けるものではないが、通常0.1%から数10%
の範囲で、水溶液として使用される。若し有機酸あるい
はその塩の電解質濃度が極端に低いと、後述する電解処
理条件によって炭素繊維表面を有効に酸化することが難
しくなる。
The organic acid or its salt is not particularly limited by the temperature of the electrolyte, but it usually ranges from 0.1% to several tens of%.
used as an aqueous solution. If the electrolyte concentration of the organic acid or its salt is extremely low, it becomes difficult to effectively oxidize the carbon fiber surface under the electrolytic treatment conditions described below.

一方、有機酸あるいはその塩の水溶液の濃度の上限に関
しては、電解質の種類により異なるが、該電解質の溶解
度の上限を越えると水溶液から電解質が析出するなど、
プロセスが不安定となるため溶解度の上限より低濃度で
あることが好ましい。
On the other hand, the upper limit of the concentration of an aqueous solution of an organic acid or its salt varies depending on the type of electrolyte, but if the upper limit of the solubility of the electrolyte is exceeded, the electrolyte may precipitate from the aqueous solution.
Since the process becomes unstable, the concentration is preferably lower than the upper limit of solubility.

また有機酸あるいはその塩の水溶液の温度は、少なくと
も30℃、好ましくは40〜100℃で処理するのがよ
い。温度が30℃より低い場合には処理効果が少なく、
一方沸点以上の高温では電解液が不安定となり、プロセ
ス性が悪くなるため好ましくない。
Further, the temperature of the aqueous solution of the organic acid or its salt is preferably at least 30°C, preferably 40 to 100°C. When the temperature is lower than 30℃, the treatment effect is small,
On the other hand, a high temperature higher than the boiling point is not preferable because the electrolyte becomes unstable and processability deteriorates.

かかる有機酸あるいはその塩は、炭素繊維を陽極として
強電解処理する際に、炭素w4維表面を酸化、乃至エツ
チングする機能を有しており、また容易に、かつ任意の
濃度の水溶液とすることができ、ざらに有機酸あるいは
そのや硫酸等の無機酸に比べて、S原溶液においても危
険性が少なく。
Such an organic acid or its salt has the function of oxidizing or etching the surface of carbon W4 fibers when subjected to strong electrolytic treatment using carbon fibers as an anode, and can be easily made into an aqueous solution of any concentration. Compared to organic acids or inorganic acids such as sulfuric acid, it is less dangerous even in S stock solution.

比較的低価格で、かつ水溶液としての浸蝕性が小さいた
めに、処理設備が簡略化できるなどの面で有利である。
It is advantageous in that it is relatively inexpensive and has low corrosiveness as an aqueous solution, so treatment equipment can be simplified.

上記有Fj1酸あるいはその塩の水溶液による強電解処
理条件としては、炭素繊維1g当り少なくとも50クー
ロン、好ましくは100〜700クーロンの電気量で、
処理時間0.05〜10分間。
The conditions for the strong electrolytic treatment using the aqueous solution of the Fj1 acid or its salt include an amount of electricity of at least 50 coulombs, preferably 100 to 700 coulombs per gram of carbon fiber,
Processing time 0.05-10 minutes.

好ましくは0.1〜3分間の条件下に処理するのがよい
。電気量が50クーロン/1Q炭素繊維よりも小さくな
ると、処理が不十分となり、−万雷気量が700クーロ
ン/IC]炭素繊維よりも大きくなると、処理が強すぎ
て、かえって炭素繊維の強度が低下し好ましくない。
Preferably, the treatment is carried out for 0.1 to 3 minutes. If the amount of electricity is less than 50 coulombs/1Q carbon fiber, the treatment will be insufficient, and if the amount of electricity is greater than 700 coulombs/IC carbon fiber, the treatment will be too strong and the strength of the carbon fiber will be reduced. This is not desirable.

また電解処理の電流密度は、有機酸あるいはその塩の水
溶液中の炭素繊維の表面積1m2当り。
The current density of the electrolytic treatment is per 1 m2 of the surface area of the carbon fiber in the aqueous solution of the organic acid or its salt.

少なくとも1.5アンペア、好ましくは3〜1000ア
ンペアで処理するのがよい。電流密度が1゜5アンペア
/m2よりも小さいと、炭素繊維表面を有効に酸化する
ことが難しくなり、処理に長時間を要するため好ましく
ない。−万雷流密度の上限に関しては、有機酸あるいは
その塩や炭素繊維の種類によって異なるが、陽極に印加
された炭素繊維と有機酸あるいはその塩の水溶液中に配
置した陰極間の電圧が極端に高くなって安全性が損われ
ない範囲内に設定する必要があり、例えば電流密度で1
000A/m2以下であることが好ましい。
It is preferred to operate at least 1.5 amps, preferably between 3 and 1000 amps. If the current density is less than 1.5 amperes/m2, it is difficult to effectively oxidize the carbon fiber surface and the treatment takes a long time, which is not preferable. -The upper limit of the lightning current density varies depending on the type of organic acid or its salt or carbon fiber, but if the voltage between the carbon fiber applied to the anode and the cathode placed in an aqueous solution of the organic acid or its salt is extremely It is necessary to set the current density within a range that does not impair safety.
000 A/m2 or less is preferable.

これらの電解処理条件は、それぞれ個別に設定するもの
ではなく、本発明の目的とする炭素繊維の表面を酸化す
るが、炭素繊維の内部構造は実質的に酸化することのな
い範囲で適宜上記範囲内で組合せるべきである。
These electrolytic treatment conditions are not set individually, and are set appropriately within the above range so long as the surface of the carbon fiber, which is the object of the present invention, is oxidized, but the internal structure of the carbon fiber is not substantially oxidized. should be combined within

次に上記の電解処理によって酸化された炭素繊維は、引
続いて不活性化処理、即ち、窒素、ヘリュウム、アルゴ
ン等の不活性気体中で、少なくとも400℃、好ましく
は600〜900℃の温度で、約0.1〜10分間、好
ましくは0.2〜5分間加熱処理し、前記電解処理によ
って繊維表面に生じた官能基を除去する必要がある。
The carbon fibers oxidized by the above electrolytic treatment are then subjected to a deactivation treatment, i.e. at a temperature of at least 400°C, preferably from 600 to 900°C, in an inert gas such as nitrogen, helium or argon. It is necessary to perform a heat treatment for about 0.1 to 10 minutes, preferably 0.2 to 5 minutes, to remove the functional groups generated on the fiber surface by the electrolytic treatment.

すなわち、前記強電解処理によって形成された繊維表面
の官能基がそのまま残存すると、得られた繊維を強化繊
維とするコンポジットは、その引張強度が低く、実質的
に実用性能を失うことになる。このため本発明において
は強電解処理後の炭素繊維に対して前記不活性化処理が
不可欠となり、これにより初めて本発明の目的とする炭
素繊維の高強度化が達成できることになる。
That is, if the functional groups on the surface of the fibers formed by the strong electrolytic treatment remain as they are, a composite using the resulting fibers as reinforcing fibers will have low tensile strength and will substantially lose its practical performance. Therefore, in the present invention, the above-mentioned inactivation treatment is indispensable for the carbon fibers after the strong electrolytic treatment, and it is only through this that the high strength of the carbon fibers, which is the objective of the present invention, can be achieved.

不活性化処理温度が400℃よりも低いと2強電解処理
によって繊維表面に生じた官能基を十分に除去すること
ができず好ましくない。一方処理温度が900°Cより
高いと、かえって炭素繊維の強度が低下するので好まし
くない。
If the deactivation treatment temperature is lower than 400° C., it is not preferable because the functional groups generated on the fiber surface by the two-strong electrolytic treatment cannot be sufficiently removed. On the other hand, if the treatment temperature is higher than 900°C, the strength of the carbon fibers will decrease, which is not preferable.

なお、本発明における炭素繊維としては、特に限定され
るものではなく、各種の炭素繊維を用いることができる
が、好ましくはアクリロニ1〜リル系繊維をプリカーサ
とし、この繊維を酸化性雰囲気中で加熱、酸化した後、
不活性雰囲気中でより高温下に加熱して炭化することに
よって得られる炭素繊維もしくは黒鉛繊維である。
The carbon fiber in the present invention is not particularly limited, and various carbon fibers can be used. Preferably, an acryloni-1-lyl fiber is used as a precursor, and this fiber is heated in an oxidizing atmosphere. , after oxidation,
Carbon fibers or graphite fibers obtained by carbonization by heating at higher temperatures in an inert atmosphere.

[発明の効果] 上記本発明の処理条件から明らかなように、本発明によ
って炭素繊維の表面は、有機酸あるいはその塩の水溶液
中で電気を介して酸化されるが、その際、繊維表面全体
の均一な処理と、繊維表面の欠陥部に対する選択的酸化
乃至除去が行なわれ、しかもその処理時間が著しく短い
ために、繊維の内部構造は実質的に保有される。このた
め本発明に従えば、炭素繊維の強度特性、特にコンポジ
ット引張強度が著しく向上するばかりでなく、コンポジ
ットの強度がそれを構成するマトリックス樹脂の種類に
よって左右されないという特徴が付与される。しかも炭
素繊維の処理方法としては、従来知られている無機酸類
による処理方法に比べて。
[Effects of the Invention] As is clear from the processing conditions of the present invention described above, according to the present invention, the surface of carbon fibers is oxidized via electricity in an aqueous solution of an organic acid or its salt. Because the uniform treatment and selective oxidation or removal of defects on the fiber surface are carried out, and the treatment time is extremely short, the internal structure of the fiber is substantially retained. Therefore, according to the present invention, not only the strength characteristics of carbon fibers, particularly the composite tensile strength, are significantly improved, but also the strength of the composite is not influenced by the type of matrix resin constituting it. Moreover, the method for treating carbon fibers is different from the previously known treatment methods using inorganic acids.

生産性が良く、かつ連続的処理が可能であり、またその
際、電解液が有機酸あるいはその塩の水溶液であるため
、高濃度であってもその取扱いが安全であるなど、工業
的に極めて顕著な効果を奏する。
It has high productivity and can be processed continuously, and since the electrolyte is an aqueous solution of an organic acid or its salt, it is safe to handle even at high concentrations, making it extremely industrially effective. It has a remarkable effect.

以下、実施例により本発明の効果を具体的に説明する。EXAMPLES Hereinafter, the effects of the present invention will be specifically explained with reference to Examples.

実施例1 アクリロニトリル系繊維をプリカーサとして得られた炭
素lli維[東しく株)製“トレカ”T−300−3K
]を80℃に加熱したジメチルホルムアミド(DMF)
中に2時間浸漬し、ざらにアセトン中に2時間浸漬した
後、乾燥してサイジング剤を除去した。
Example 1 Carbon lli fiber obtained using acrylonitrile fiber as a precursor [Trading Card] T-300-3K manufactured by Toshiku Co., Ltd.
] in dimethylformamide (DMF) heated to 80°C.
After soaking in acetone for 2 hours, the sizing agent was removed by drying.

上記脱サイジングした炭素繊維をテフロン製ガイドロー
ラを備えた処理槽中に、該ガイドローラを介して該処理
槽中に満たした@度り0℃、&度5.0%の蟻酸水溶液
に浸漬し、糸速1.Om/分で連続的に走行させると共
に、処理槽の直前に配置した金属製ガイドローラを介し
て該炭素繊維に陽電圧を印加し、処理液中に配置した白
金製の陰極板と該炭素繊維との間に1.65Aの電流を
流した。処理槽中の炭素繊維の浸漬長は約0.5m1酸
化電解処理時間は約0.5分、電圧は15゜OV、電流
密度は50A#、炭素繊維10当りの電気量は500ク
ーロンであった。
The desized carbon fibers were immersed in a formic acid aqueous solution with a temperature of 0°C and 5.0%, which was filled into the tank through the guide rollers in a treatment tank equipped with a Teflon guide roller. , yarn speed 1. While running the carbon fiber continuously at a speed of 0m/min, a positive voltage was applied to the carbon fiber via a metal guide roller placed just before the treatment tank, and a platinum cathode plate placed in the treatment solution and the carbon fiber were placed in the treatment solution. A current of 1.65A was passed between the two. The immersion length of the carbon fibers in the treatment tank was approximately 0.5 m, the oxidation electrolytic treatment time was approximately 0.5 minutes, the voltage was 15° OV, the current density was 50 A#, and the amount of electricity per 10 carbon fibers was 500 coulombs. .

次いで、上記酸化電解処理した炭素繊維を十分に水洗し
、約200℃の加熱空気中で乾燥した後、700℃の窒
素雰囲気中で約2分間加熱し、不活性化処理した。
Next, the oxidized electrolytically treated carbon fibers were thoroughly washed with water, dried in heated air at about 200° C., and then heated for about 2 minutes in a nitrogen atmosphere at 700° C. to be inactivated.

得られた処理炭素繊維について、JIS−R−7601
に規定する試験法により、樹脂含浸ストランド引張物性
を測定した。その結果を第1表に示す。
Regarding the obtained treated carbon fiber, JIS-R-7601
The tensile properties of the resin-impregnated strands were measured by the test method specified in . The results are shown in Table 1.

ここで、樹脂含浸ストランド試験は、次の樹脂処方の異
なるA法及びB法の2水準について測定した。
Here, the resin-impregnated strand test was measured for the following two levels, method A and method B, which have different resin formulations.

樹脂処方A:“′チッソノックス”221/三フツ化ホ
ウ素モノエチルアミン(BF3・MEA)/アセトン=
100/3/4部をよく混合し、この混合液を炭素繊維
に含浸し、得られた含浸ストランドを130℃で30分
間加熱し、硬化させた。
Resin formulation A: “'Chissonox” 221/Boron trifluoride monoethylamine (BF3・MEA)/Acetone=
100/3/4 parts were thoroughly mixed, this liquid mixture was impregnated into carbon fibers, and the obtained impregnated strand was heated at 130° C. for 30 minutes to cure it.

樹脂処方B:゛エピコート” 82B/N、N。Resin formulation B: ``Epicoat'' 82B/N, N.

N−、N−−テトラグリシジルアミノジフェノニルメタ
ン:住友化学工業(株)製“”ELM”434/“′エ
ビクロン゛’152/4.4′−ジアミノジフェニルス
ルホン/BF3・MEA=35/35/30/3210
.5部の565%メチルエチルケトン溶液を該炭素繊維
に含浸し、得られた含浸ストランドを60℃の真空乾燥
機中で約6時間脱溶媒した後、180℃で2時間加熱し
て硬化させた。
N-,N--tetraglycidylaminodiphenonylmethane: manufactured by Sumitomo Chemical Co., Ltd. "ELM"434/"'Eviclon'152/4.4'-diaminodiphenylsulfone/BF3・MEA=35/35 /30/3210
.. The carbon fibers were impregnated with 5 parts of a 565% methyl ethyl ketone solution, and the resulting impregnated strands were desolvated in a vacuum dryer at 60° C. for about 6 hours and then heated at 180° C. for 2 hours to cure.

実施例2〜10、比較例1〜8 実施例1で用いた脱サイジング“トレカ″T−300−
3に炭素繊維と、電解質として蟻酸を使用し、第2表に
示すように酸化電解処理/不活性化処理の条件を変更し
たほか、実施例1と同様にして処理した。その結果を第
2表に示す。
Examples 2 to 10, Comparative Examples 1 to 8 Desizing “Trading Card” T-300- used in Example 1
Example 3 was treated in the same manner as in Example 1 except that carbon fibers were used and formic acid was used as the electrolyte, and the conditions of the oxidation electrolytic treatment/inactivation treatment were changed as shown in Table 2. The results are shown in Table 2.

実施例11〜13 実施例1で用いた脱サイジング“トレカtt T−30
0−3に炭素繊維を使用し、第3表に示す電解液と、電
解処理/不活性化処理条件としたほか。
Examples 11 to 13 Desizing “Toraycatt T-30” used in Example 1
Carbon fiber was used for 0-3, and the electrolytic solution and electrolytic treatment/inactivation treatment conditions shown in Table 3 were used.

実施例1と同様に処理した。その結果を第3表に示す。It was treated in the same manner as in Example 1. The results are shown in Table 3.

(以下、余白) 実施例14.比較例9 実施例1で用いた脱サイジング“トレカ″T−300−
3に炭素繊維を、実施例1と同一の処理液中に浸漬し、
糸速0.075m/分および0゜025m/分で連続的
に走行させ、炭素繊維と陰極間にそれぞれ電圧4.5v
で、電流0.124Aおよび電圧2.5Vで、電流0.
041Aを流した。 ここで炭素繊維1g当りの電気量
は何れも500クーロンに設定した。
(Hereinafter, blank space) Example 14. Comparative Example 9 Desizing “Trading Card” T-300- used in Example 1
3, the carbon fibers were immersed in the same treatment solution as in Example 1,
The yarn was run continuously at a speed of 0.075 m/min and 0°025 m/min, and a voltage of 4.5 V was applied between the carbon fiber and the cathode.
At a current of 0.124 A and a voltage of 2.5 V, the current is 0.124 A and a voltage of 2.5 V.
041A was flown. Here, the amount of electricity per gram of carbon fiber was set at 500 coulombs.

処理槽中の炭素繊維の浸漬長は0.5mであり、糸速0
.075m/分では電解処理時間が約6゜7分、電流密
度3.75A/m2であった。一方。
The immersion length of the carbon fiber in the treatment tank was 0.5 m, and the yarn speed was 0.
.. At 0.075 m/min, the electrolytic treatment time was about 6.7 minutes, and the current density was 3.75 A/m2. on the other hand.

糸速0.025m/分では電解処理時間が約20分、電
流密度が1.25A/m2であった。
At a yarn speed of 0.025 m/min, the electrolytic treatment time was approximately 20 minutes, and the current density was 1.25 A/m2.

次いで、実施例1と同様にして水洗、乾燥および不活性
化処理した。
Then, in the same manner as in Example 1, it was washed with water, dried, and inactivated.

iqられた処理炭素繊維について、実施例1に示し、た
樹脂処方Aについて樹脂含浸ストランド引張強度を測定
し°た結果、電流密度3.75A/m”で処理したもの
は365 kc+/mm ”と強度向上中が大きかった
のに対して、電流密度1.25A/m2で処理したもの
は350 kO/mm 2と強度向上中が小さく、しか
も処理時間が約20分と長く、生産性が低かった。
The tensile strength of the resin-impregnated strands was measured for the resin formulation A shown in Example 1 for the iq treated carbon fibers, and as a result, the tensile strength of the resin-impregnated strands treated at a current density of 3.75 A/m'' was 365 kc+/mm''. While the strength improvement was large, those treated with a current density of 1.25 A/m2 had a small strength improvement of 350 kO/mm2, and the processing time was long at about 20 minutes, resulting in low productivity. .

比較例12 実施例1で用いた脱すイジング′トレカ″T−300−
3に炭素繊維、約20mをパイレックスガラスフレーム
に巻き、68%溢硝酸に浸漬し、120℃で45分間処
理した後、約60分間水洗し、120℃のオーブン中で
約30分間乾燥した。
Comparative Example 12 Ising 'Trading Card' T-300- used in Example 1
3. About 20 m of carbon fiber was wound around a Pyrex glass frame, immersed in 68% nitric acid, treated at 120°C for 45 minutes, washed with water for about 60 minutes, and dried in an oven at 120°C for about 30 minutes.

得られた処理炭素繊維を窒素雰囲気下、700℃の電気
炉中で約2分間加熱して脱官能基化処理した。
The obtained treated carbon fibers were heated for about 2 minutes in an electric furnace at 700° C. under a nitrogen atmosphere to undergo a defunctionalization treatment.

得られた処理炭素繊維について、実施例1と同様に、樹
脂処方AおよびBの2水準について樹脂含浸ストランド
引張物性を測定した。その結果を第4表に示す。
Regarding the obtained treated carbon fibers, the tensile physical properties of the resin-impregnated strands were measured for two levels of resin formulations A and B in the same manner as in Example 1. The results are shown in Table 4.

(以下、余白)(Hereafter, margin)

Claims (4)

【特許請求の範囲】[Claims] (1)電解液として有機酸あるいはその塩の水溶液を用
い、炭素繊維を陽極として強電解処理し、次いで該炭素
繊維の表面を不活性化処理することを特徴とする炭素繊
維の処理方法。
(1) A method for treating carbon fibers, which comprises using an aqueous solution of an organic acid or its salt as an electrolytic solution, subjecting carbon fibers to strong electrolytic treatment using them as anodes, and then inactivating the surface of the carbon fibers.
(2)特許請求の範囲第1項において、有機酸あるいは
その塩の水溶液の温度が少なくとも30℃であり、かつ
電解処理の電気量が少なくとも炭素繊維1g当り50ク
ーロンである炭素繊維の処理方法。
(2) The method for treating carbon fibers according to claim 1, wherein the temperature of the aqueous solution of an organic acid or its salt is at least 30° C., and the amount of electricity in the electrolytic treatment is at least 50 coulombs per gram of carbon fibers.
(3)特許請求の範囲第1〜2項において、電解処理の
電流密度が有機酸あるいはその塩の水溶液中の炭素繊維
の表面積1m^2当り少なくとも1.5アンペアである
炭素繊維の処理方法。
(3) A method for treating carbon fibers according to claims 1 and 2, wherein the current density of the electrolytic treatment is at least 1.5 amperes per 1 m^2 of surface area of the carbon fibers in an aqueous solution of an organic acid or its salt.
(4)特許請求の範囲第1〜3項において、不活性化処
理が少なくとも400℃の温度に保たれた不活性雰囲気
中での加熱処理である炭素繊維の処理方法。
(4) A method for treating carbon fibers according to claims 1 to 3, wherein the inactivation treatment is a heat treatment in an inert atmosphere maintained at a temperature of at least 400°C.
JP11208585A 1985-05-27 1985-05-27 Treatment of carbon fiber Pending JPS61275468A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11208585A JPS61275468A (en) 1985-05-27 1985-05-27 Treatment of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11208585A JPS61275468A (en) 1985-05-27 1985-05-27 Treatment of carbon fiber

Publications (1)

Publication Number Publication Date
JPS61275468A true JPS61275468A (en) 1986-12-05

Family

ID=14577711

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11208585A Pending JPS61275468A (en) 1985-05-27 1985-05-27 Treatment of carbon fiber

Country Status (1)

Country Link
JP (1) JPS61275468A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007224459A (en) * 2006-02-24 2007-09-06 Toray Ind Inc Method for producing surface-oxidized carbon fiber bundle

Similar Documents

Publication Publication Date Title
KR101042872B1 (en) Method for producing mat-surfaced austenitic stainless steel straps
KR20060136468A (en) Method for producing mat-surfaced austenitic stainless steel straps
JP5191322B2 (en) Carbon fiber surface treatment method
KR20200065418A (en) Method for improving the surface of stainless steel
JPS61275468A (en) Treatment of carbon fiber
US4814157A (en) Carbon fibers and method for producing same
JPS61245368A (en) Treatment of carbon fiber
JPS62149964A (en) Production of ultrahigh strength carbon fiber
JPS6112967A (en) Treatment of carbon fiber
JPS63216986A (en) High-speed pickling method for low cr steel
JPS61282470A (en) Treatment of carbon fiber
JPS62149966A (en) Treatment of carbon fiber
JPS62149972A (en) Treatment of carbon fiber
JPS62149968A (en) Treatment of carbon fiber
JPS62149973A (en) Treatment of carbon fiber
JPS62149965A (en) Treatment of carbon fiber
JP4938226B2 (en) Method for manufacturing aluminum material for electrolytic capacitor electrode, aluminum material for electrolytic capacitor electrode, method for manufacturing electrode material for electrolytic capacitor, and aluminum electrolytic capacitor
JPS59116469A (en) Surface treatment of carbon fiber
JPS62141171A (en) Method for strength enhancing treatment of carbon fiber
JPS62149967A (en) Treatment of carbon fiber
JPH0544155A (en) Surface treatment of carbon fiber
Azzerri et al. Potentiostatic pickling: a new technique for improving stainless steel processing
JPS6013079B2 (en) Surface treatment method for aluminum foil
JPS6245774A (en) Treatment of carbon fiber
JPH0376869A (en) Method for treating surface of carbon fiber in vapor phase