JPS61275440A - Elasticity resistant cloth for bulletproof jacket - Google Patents

Elasticity resistant cloth for bulletproof jacket

Info

Publication number
JPS61275440A
JPS61275440A JP60116502A JP11650285A JPS61275440A JP S61275440 A JPS61275440 A JP S61275440A JP 60116502 A JP60116502 A JP 60116502A JP 11650285 A JP11650285 A JP 11650285A JP S61275440 A JPS61275440 A JP S61275440A
Authority
JP
Japan
Prior art keywords
woven fabric
bulletproof
bullet
threads
weave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60116502A
Other languages
Japanese (ja)
Inventor
宍戸 義世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP60116502A priority Critical patent/JPS61275440A/en
Publication of JPS61275440A publication Critical patent/JPS61275440A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Woven Fabrics (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は防弾衣用の耐弾織布に関するものであり、特に
、高張力繊維を朱子織りにより織組みした織布を積層し
て防弾パットを構成することにより、高耐弾性能を有せ
しめると共に、軽量化を可能にして着用性を向上せしめ
、その実用性を向上させた防弾衣用の耐弾織布に関する
ものである。
Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a bulletproof woven fabric for bulletproof clothing, and in particular, to a bulletproof pad made by laminating woven fabrics made of high-tensile fibers woven with satin weave. The present invention relates to a bulletproof woven fabric for bulletproof clothing that has a high bulletproof performance, is lightweight, improves wearability, and has improved practicality.

[従来の技術] 高速で飛来する弾丸、又は砲弾破片等を、高強度のar
tsを使用した織布を積層したバット状として身体の所
要部に当て、該弾丸等を阻止する防弾衣は、従来から高
強度ナイロン糸を素材とした織布で実用されており、ま
た、特に昨今300Kg/mrn’級の高引張り強度を
有するアラミド繊維が実用されるに及び、より高効率、
軽量の防弾衣として発展して来ている。なお、このよう
な防弾衣の一例を第8図に示す。図において6は防弾衣
を示し、この防弾衣6は、外被8と、この外被8に内装
される防弾バット7から構成される。
[Prior art] High-strength AR fires high-strength AR to remove bullets or shell fragments flying at high speed.
Bulletproof clothing that blocks bullets, etc. by applying it as a bat-shaped laminated woven fabric using TS to desired parts of the body has been used in practical use for a long time, using woven fabric made from high-strength nylon thread. Recently, aramid fibers with a high tensile strength of 300 kg/mrn' class have been put into practical use, and they have become more efficient.
It has been developed as a lightweight body armor. An example of such bulletproof clothing is shown in FIG. In the figure, 6 indicates bulletproof clothing, and this bulletproof clothing 6 is composed of an outer jacket 8 and a bulletproof bat 7 housed inside the outer jacket 8.

そして、弾丸等はMV (Mは質量、■は着速度)に比
例して負荷威力を増すので、防弾衣6の防弾パット7は
これによる運動エネルギE(E=M V2/ 2 )を
吸収して停弾しうるに足る強度を保持する必要がある。
Since the load force of bullets, etc. increases in proportion to MV (M is the mass, ■ is the landing speed), the bulletproof pad 7 of the bulletproof clothing 6 absorbs the kinetic energy E (E = M V2/ 2 ) caused by this. It is necessary to maintain sufficient strength to stop the projectile.

また、この弾丸等による貫通力は、衝突する弾丸等の先
端形状、エネルギ密度、硬さ等が影響するが、尖頭形の
弾丸は着弾面でのエネルギ密度がその平均エネルギ密度
より更に高いことから、より高い貫徹力を示す、このた
め、防弾織布の表面を硬質の鋼、アルミ合金等のハード
部材で覆って防弾バットとすることによって、尖頭弾丸
の先端の先鋭部を破壊して平滑とし、更には原口径の面
積より拡大した、所謂、マツシュルーム状とならしめ、
その表面積を増大させてエネルギ密度を減じ、貫通力を
減少させる方法が高威力で尖頭形状のライフル弾防止用
に用いられる。この場合、前記ハード部材としては高硬
度高強度の窒化硅素セラミックス板が特に有効となって
いる。
In addition, the penetrating force of this bullet etc. is affected by the tip shape, energy density, hardness, etc. of the colliding bullet, etc., but the energy density of a pointed bullet at the impact surface is higher than its average energy density. Therefore, by covering the surface of the bulletproof woven fabric with a hard material such as hard steel or aluminum alloy to make a bulletproof bat, the sharp part of the tip of the pointed bullet can be destroyed. It is smoothed and further expanded into a so-called pine mushroom shape, which is larger than the original diameter.
Increasing the surface area to reduce energy density and penetration power is used to prevent high-powered, pointed rifle bullets. In this case, a silicon nitride ceramic plate with high hardness and high strength is particularly effective as the hard member.

一方、尖頭形でない砲弾破片の場合、または、弾頭が丸
く、かつ1着弾時の弾速が比較的低い挙銃弾の場合等は
、例えばアラミド等の織布(芳香族ポリアミド織布)を
20〜30枚積層したちのだけからなる防弾バットが用
いられている。
On the other hand, in the case of non-pointed shell fragments, or in the case of raised bullets with round bullet heads and relatively low bullet velocity upon impact, for example, a woven fabric such as aramid (aromatic polyamide woven fabric) is used. A bulletproof bat made of ~30 laminated bats is used.

[発明が解決しようとする問題点] しかしながら、上述したような従来の防弾バットを構成
するアラミド等の織布は、後に詳述するが、第5.6図
に示すように、縦糸3と横糸4とをそれぞれ1本毎に交
互に上下に交叉させて平面織りによって織組みされた、
いわゆる平織りの織布5であり、この平織り織布5の場
合、糸同士のからみが多く、着弾時の糸のすべりが少な
くて織布の変形の自由度が少ない等の理由により、耐弾
に対して弱い織組となっていた。また、このような平織
り織布5を、例えば織密度(織物巾1吋当りの縦糸と横
糸のそれぞれの本数)30本、織布1枚の重1300g
/rn’程度のものを10〜30枚積層させて防弾バッ
トとして使用している。なお、ここで平面織りとは、l
平面内で、例えば横糸、縦糸等の糸同士を適宜な方法で
絡めて織組みする方法のことで、立体織りでないものを
云う。
[Problems to be Solved by the Invention] However, as will be described in detail later, the woven fabric made of aramid or the like constituting the conventional bulletproof bat as described above has warp threads 3 and weft threads as shown in Figure 5.6. 4 and 4 are woven by plane weaving, alternately crossing each other up and down,
This is a so-called plain weave woven fabric 5, and in the case of this plain woven fabric 5, the threads are often entangled, there is little slippage of the threads when the bullet hits, and there is less freedom in deforming the woven fabric, so it is not bullet resistant. It was a weak organization. In addition, such a plain-woven fabric 5 may be used, for example, at a weaving density (the number of warp and weft yarns per 1 inch of fabric width) of 30, and a weight of one woven fabric of 1300 g.
/rn' are laminated in 10 to 30 sheets and used as a bulletproof bat. In addition, plane weaving here means l
This refers to a method of weaving in which threads such as weft and warp threads are intertwined in an appropriate manner within a plane, and is not a three-dimensional weave.

このような防弾バットを人体上半身用の防弾衣に使用す
る場合、前面および背面の被覆面積はおのおの40cm
X40cm程度となるので、その重量Wは約2〜3Kg
にも達している。しかして、人体防弾衣の場合、その着
用性から、この重量は基本的に重要な事項となり、高性
能で、より軽量であることが望まれ、軽さと共にその実
用性はより向上するという宿命を持っている。
When using such a bulletproof bat as bulletproof clothing for the upper body of the human body, the covered area of the front and back should be 40 cm each.
Since the size is about 40 cm, the weight W is about 2 to 3 kg.
It has also reached However, in the case of human bulletproof clothing, weight is a fundamentally important consideration from its wearability, and it is desired that it be both high performance and lightweight, and it is destined that its practicality will improve with lightness. have.

[問題点を解決するための手段] 本発明は前述したような問題点に鑑みて鋭意研究された
ものであり、織布を構成する糸の織組み組織に着眼して
、その織組みを特定条件のもとで行なった時に高耐弾性
能が得られ、若しくは、その重量を半減させうることを
見い出したものである。
[Means for Solving the Problems] The present invention has been intensively researched in view of the above-mentioned problems, and focuses on the weaving structure of the threads constituting the woven fabric, and specifies the weaving structure. It was discovered that when carried out under certain conditions, high bullet resistance performance can be obtained or the weight can be halved.

即ち、本発明は、高張力強度を有する縦糸と横糸とを、
平面織りによって、それぞれ4本ないし8木を1ピッチ
として上下に交叉させて織組みしてなる4本ないし8本
朱子織りの織布として形成し、この織布を積層して防弾
バットを構成して防弾衣用の耐弾織布とするものであり
、より好ましい態様としては織布を構成する縦糸および
横糸を、引張り強度が250ないし350Kg/mm″
のアラミド糸とするとともに、糸太さを300ないし1
200デニール、織密度を15ないし50本(1インチ
巾当り)とするものである。
That is, the present invention uses warp yarns and weft yarns having high tensile strength.
A 4- to 8-strand satin weave fabric is formed by plane weaving, with 4 to 8 strands intersecting each other vertically at one pitch, and these woven fabrics are laminated to form a bulletproof bat. In a more preferred embodiment, the warp and weft yarns constituting the woven fabric have a tensile strength of 250 to 350 kg/mm''.
Aramid yarn with a thickness of 300 to 1
It is 200 denier and has a weave density of 15 to 50 fibers (per inch width).

本発明において用いられうる縦糸および横糸を構成する
繊維としては、高張力強度を有するものであれば特に限
定されずに用いられ、アラミド(芳香族ポリアミド)繊
維、ナイロン繊維、ポロン繊維、炭化ケイ素繊維、ガラ
ス繊維、炭素繊維などが用いられる。この中で、特に、
引張強度が250ないし350Kg/mrn’のアラミ
ド繊維は軽くて汎用性があるので実用的であると共に、
引張強度がナイロン繊維の約3倍にも達するので好適で
ある。この場合、引張強度が前記範囲よりも小さければ
、弾丸等の着弾時のエネルギ吸収作用等が充分に発揮さ
れず防弾織布には不適であり。
The fibers constituting the warp and weft that can be used in the present invention are not particularly limited as long as they have high tensile strength, such as aramid (aromatic polyamide) fiber, nylon fiber, poron fiber, silicon carbide fiber. , glass fiber, carbon fiber, etc. are used. Among these, especially
Aramid fibers with a tensile strength of 250 to 350 Kg/mrn' are light and versatile, making them practical.
It is suitable because its tensile strength is about three times that of nylon fiber. In this case, if the tensile strength is lower than the above-mentioned range, the energy absorption effect when a bullet or the like impacts is not sufficiently exerted, and the fabric is unsuitable for use as a bulletproof fabric.

また前記範囲よりも大きいものは繊維としてはコスト面
、製造面からも実用性、現実性に乏しい。
Furthermore, fibers larger than the above range are not practical or practical from the viewpoint of cost and production.

本発明における朱子織りの織組みピッチは、4〜8ピッ
チとするのが最適である。3ピッチ以下では、後述する
ように、平織り織組に近づくため織布の糸の滑りの自由
度が少なくなる等の理由により、耐弾性能が悪くなる。
The weaving pitch of the satin weave in the present invention is optimally set to 4 to 8 pitches. If the pitch is less than 3, as will be described later, the ballistic performance deteriorates due to reasons such as a decrease in the degree of freedom of sliding of the threads of the woven fabric as it approaches a plain weave weave.

また、8ピッチを過ぎると、織組みが困難になる傾向と
なるばかりでなく、完成後の織布が極めてしなやかにな
り過ぎて原形保持が困難であり、また、織布を積層して
防弾バットに仕立てる作業も同様型くずれして困難であ
り、着用時でも原形がくずれてしまう等の理由によって
、ハンドリング性が悪く、実用に乏しい。
In addition, beyond 8 pitches, not only does it tend to be difficult to weave, but the completed woven fabric becomes extremely pliable, making it difficult to maintain its original shape. The process of making it is similarly difficult as it loses its shape, and even when worn, it loses its original shape, making it difficult to handle and of little practical use.

次に、本発明の引張り強度が250〜350Kg/mm
2のアラミド糸の場合、好ましくは、糸太さを300〜
1200デニール、織密度は15〜50本(1吋当り)
とする、糸太さについては、一般に太い方が高耐弾性が
得られるが。
Next, the tensile strength of the present invention is 250 to 350 Kg/mm.
In the case of the aramid yarn No. 2, preferably the yarn thickness is 300~
1200 denier, weaving density is 15-50 (per inch)
Regarding the thread thickness, generally speaking, the thicker the thread, the higher the ballistic resistance.

1200デニールを越えると、糸が太くなって。If it exceeds 1200 denier, the thread becomes thicker.

糸の絡り合いが強くなりすぎて前述の如く、糸の自由度
が低下し、局部前型の回避が悪くなり、また、300デ
ニールよりも細くなると適度な耐弾性が得られなくなる
。一方、織密度については、一般に薄い方が高耐弾性が
得られる。しかし、全体重量を同一とすると、織布1枚
当りの重量は薄い場合の方が軽くなるので積層数を増す
結果となって防弾衣としてはかさばることとなる。この
人体防弾衣の場合、この総厚みも重量についで着用性に
影響を及ぼすので、自ずから一定の薄さの織密度を下限
として定める必要がある。また一方、疎(薄)に過ぎる
と織布としての原形保持が悪くなり、この面からも一定
の制約がある。このような観点から前述の範囲の織密度
を定める のである。
If the entanglement of the threads becomes too strong, the degree of freedom of the threads will decrease as described above, making it difficult to avoid local front molding, and if the thread is thinner than 300 denier, appropriate ballistic resistance will not be obtained. On the other hand, regarding the weave density, generally the thinner the weave, the higher the ballistic resistance. However, if the overall weight is the same, the weight per piece of woven fabric is lighter when it is thinner, which results in an increase in the number of laminated layers, resulting in a bulkier body armor. In the case of this human body bulletproof clothing, since the total thickness also affects the wearability next to the weight, it is naturally necessary to set a weave density of a certain thinness as the lower limit. On the other hand, if the woven fabric is too sparse (thin), it will not be able to maintain its original shape as a woven fabric, and there are certain restrictions from this point of view as well. From this point of view, the weave density within the aforementioned range is determined.

本発明の防弾バットは1以上述べたような織組みの条件
を適切に選択し特定することによって高耐弾性、若しく
は軽量化を可能ならしめるのである。
The bulletproof bat of the present invention can have high ballistic resistance or be lightweight by appropriately selecting and specifying the weaving conditions as described above.

本発明の織布を構成する縦または横糸は、例えば、アラ
ミド糸の場合、直径が約1/100mm程度のフィラメ
ント(ファイバー)が数100本集書きれて種々の太さ
の糸(ヤーン)として提供される。
In the case of the warp or weft yarns constituting the woven fabric of the present invention, for example, in the case of aramid yarns, several hundred filaments (fibers) with a diameter of about 1/100 mm are written as yarns of various thicknesses. provided.

また、本発明の防弾バットは、前述の如きに朱子織りさ
れた織布が、一般には10〜30枚積層されて構成され
る。
The bulletproof bat of the present invention is generally constructed by laminating 10 to 30 pieces of satin-woven fabric as described above.

[作用] 上述の如く、本発明の防弾バットは、特定条件の元で朱
子織りされた1枚の織布が多数枚積層されて構成されて
なるものであり、これらは停弾機構上は一体となって作
用する。
[Function] As described above, the bulletproof bat of the present invention is constructed by laminating a large number of sheets of satin-woven fabric under specific conditions, and these are integrated in terms of the bullet-stopping mechanism. It works as follows.

この場合1弾丸は積層数の172〜2/3付近で包絡さ
れて停弾せしめられ、一方、この着弾部位を中心として
織布は円形断面、コーン状に後方(弾丸の進行方向)に
変形を生ずる。従って、未貫通の後方172〜1/3の
層は、その貫通した前半層のバックアツプ層(vk方支
持層)として作用する。
In this case, one bullet is wrapped around 172 to 2/3 of the number of laminated layers and stopped, and on the other hand, the woven fabric is deformed backwards (in the bullet's traveling direction) into a circular cross section and a cone shape around this impact area. arise. Therefore, the unpierced rear 172 to 1/3 layer acts as a back-up layer (vk side support layer) for the penetrated front half layer.

そしてこの場合、一層一層の織布にかかる張力は、第一
層(表面側)が最大で順次減少する。停弾に至るまでの
前半層は貫通する弾丸に対して貫通抵抗力を発生し、そ
の貫通エネルギを減少させ、子の得徹凍麻を低下させる
1貫通部位の織布ではその縦(横)糸の強度が及ばず破
断する。
In this case, the tension applied to each layer of the woven fabric is greatest in the first layer (surface side) and gradually decreases. The first half of the layer up to the point where the bullet stops generates a penetration resistance force against the penetrating bullet, reducing its penetration energy and lowering the strength of the child. The thread is not strong enough and breaks.

後半層は織布強度が弾丸等の貫通力に優り、後方変形を
生じつつも破断に至らず停弾せしめる。
The strength of the fabric in the latter half of the layer is superior to the penetrating power of bullets, and even though the bullet deforms backward, it does not break and stops the bullet.

また、織布平面にほぼ直角方向に衝突した弾丸等による
負荷は、2軸平面織り織布の場合、主として、その縦(
横)糸の各々の糸(繊維)方向の引張り抵抗力を発生さ
せ、これにより支持、停弾させられる。なお、前述した
ように、この縦(横)糸はアラミド糸の場合は、直径約
17100mm程度のフィラメントが数100本集書き
れて所望の太さの糸として形成される。そして、この引
張強度は約300Kg/mrn″に達し、単位面積当り
の強度はナイロン糸の約2倍、鋼鉄線の約3倍に達する
In addition, in the case of a biaxial plane-woven fabric, the load caused by a bullet or the like that collides with the plane of the woven fabric in a direction approximately perpendicular to the woven fabric is mainly caused by its longitudinal (
A tensile resistance force is generated in the direction of each thread (fiber) of the weft threads, thereby supporting and stopping the bullet. As described above, when the warp (weft) thread is an aramid thread, several hundred filaments each having a diameter of approximately 17,100 mm are formed into a thread having a desired thickness. The tensile strength reaches approximately 300 kg/mrn'', and the strength per unit area reaches approximately twice that of nylon thread and approximately three times that of steel wire.

一方、前記停弾機構において、縦(横)の一本の糸にか
かる力は相互にからみ合う横(縦)糸に拘束され、また
支持される。
On the other hand, in the bullet stopping mechanism, the force applied to one vertical (horizontal) thread is restrained and supported by the mutually entangled horizontal (warp) threads.

ここで、本発明の朱子織り織布の停弾作用を、従来の平
織り織布の場合と比較しながら説明する。
Here, the bullet stopping effect of the satin weave fabric of the present invention will be explained while comparing it with that of a conventional plain weave fabric.

この場合、各々織布を構成する縦(横)糸は、材質9強
度、太さ、織密度(単位巾当りの元本数、糸間隔)は同
一とし、織組織のみ上記の如く異なるものとする。
In this case, the warp (weft) threads constituting each woven fabric are the same in material strength, thickness, and weaving density (number of threads per unit width, thread spacing), and only the weaving structure is different as described above. .

第1図および第2図は、本発明の一実施例の朱子織り織
布組織を示すものであり、4本ピッチで縦糸3と横糸4
が上下に交叉する4本朱子織り織布lの組織を示すもの
である。
Figures 1 and 2 show a satin weave fabric structure according to an embodiment of the present invention, in which 3 warp threads and 4 weft threads are arranged at a pitch of 4 threads.
This figure shows the structure of a four-strand satin weave fabric I in which the lines intersect vertically.

第3図および第4図は、本発明の他の実施例の朱子織り
織布の組織を示すものであり、8本ピッチで縦糸3と横
糸4が上下に交叉する8本朱子織り織布2の組織を線図
で示すものである。
FIGS. 3 and 4 show the structure of a satin weave fabric according to another embodiment of the present invention, in which an eight-strand satin weave fabric 2 in which warp threads 3 and weft threads 4 intersect vertically at a pitch of eight threads is shown. This is a diagram showing the organization of .

第5図および第6図は、従来の平織り織布5の組織の一
例を示すものである。この場合、縦糸3および横糸4は
それぞれ一本毎に交互に上下に交叉している。
5 and 6 show an example of the structure of a conventional plain weave fabric 5. FIG. In this case, the warp threads 3 and the weft threads 4 alternately intersect vertically one by one.

今、本発明の4本朱子織り織布1の組織と、従来の平織
り織布5の組織の停弾作用を、それぞれ第1図および第
5図に基づいて説明する。
Now, the bullet stopping effect of the structure of the four-strand satin weave fabric 1 of the present invention and the structure of the conventional plain weave fabric 5 will be explained based on FIGS. 1 and 5, respectively.

上記織組織の織布上のR点に荷重がかかった場合、本発
明の4木朱子織り織布lでは、第1図に示すように、横
糸4はL1〜L6の6点、縦糸3はMl 、M2の2点
で各々支持され、合計8点で荷重を受ける。
When a load is applied to the R point on the woven fabric of the above-mentioned woven structure, in the four-wood satin woven fabric 1 of the present invention, as shown in FIG. It is supported at two points, Ml and M2, and receives loads at a total of eight points.

これに対して、従来の平織り織布5では、第5図に示す
ように、横糸4はLL、L2の2点、縦糸3はMl、M
2の2点で各々拘束、支持され、当初は合計4点で同じ
荷重を受ける。
On the other hand, in the conventional plain weave fabric 5, as shown in FIG.
They are each restrained and supported at two points, and initially the same load is applied to a total of four points.

従って、4本朱子織り織布lの場合、平織り織布5より
も2倍多い支持点で同じ荷重を受ける。
Therefore, in the case of the four-strand satin woven fabric 1, the same load is received at twice as many support points as the plain woven fabric 5.

また、この支持点までの間隔は、4本朱子織り織布lの
場合、8P(縦) /4F (横)、平織り織布5の場
合、4P(縦)/2P(横)となり、4本朱子織り織布
lの場合は2倍の支持間隔となる。
In addition, the distance to this support point is 8P (vertical) / 4F (horizontal) in the case of 4-strand satin weave woven fabric 1, and 4P (vertical) / 2P (horizontal) in the case of plain-woven fabric 5, which means 4 strands. In the case of the satin woven fabric 1, the support interval is twice as large.

このため、4本朱子織り織布lは平織り織布5に比べ、 (1)支持点が多く、応力が分散、平均化する。For this reason, compared to the plain weave fabric 5, the 4-strand satin weave fabric 1 is (1) There are many support points, and stress is dispersed and averaged.

(2)支持間隔が長いので、糸の伸び(滑り)が大きく
、局部集中荷重を緩和し、また、積層している次層織布
の糸を含むより多くの糸に応力を分散し平均化する。
(2) Since the support interval is long, the elongation (sliding) of the yarn is large, which alleviates local concentrated loads, and also distributes and averages stress across more yarns, including the yarns of the next layer of laminated fabric. do.

(3)横(縦)糸のからみによって発生する縦(横)糸
目体の糸方向(図中、X方向)の引抜き抵抗力は、から
みの少ない4木朱子織り織布lの方が、平織り織布5よ
りも小さく、従って、糸方向に滑り変形し易く、これに
よりR点の局部集中荷重を緩和し、応力を分散、平均化
する。
(3) The pull-out resistance force in the thread direction (X direction in the figure) of the warp (horizontal) thread body caused by the entanglement of the weft (warp) threads is higher for the 4-wood satin woven fabric l, which has less entanglement, than for the plain weave. It is smaller than the woven fabric 5 and therefore easily slips and deforms in the yarn direction, thereby relieving the locally concentrated load at the R point and dispersing and averaging the stress.

(4)縦(横)糸の糸軸直角方向(図中、Y方向)の自
由度が大きく、R点の局部荷重に対し、当該部位の糸が
軸直角方向に変位(ずれる)し易く、前記と同様、弾丸
を包絡、阻止する場合、特定の糸への荷重集中を避け、
より多くの糸が包絡、阻止に作用し、全体として高い耐
弾性を発揮する。
(4) The degree of freedom of the warp (weft) yarn in the direction perpendicular to the yarn axis (in the Y direction in the figure) is large, and the yarn at that part is likely to be displaced (shifted) in the direction perpendicular to the axis in response to a local load at point R. Similar to the above, when enveloping and blocking a bullet, avoid concentrating the load on a specific thread,
More threads act on enveloping and blocking, resulting in high ballistic resistance as a whole.

以上の如く、織布を構成する糸が同じであり、かつ、織
密度が同等の場合、従来の平織り織布5では、変形の自
由度が少なく、比較的少数の糸で負荷する等により、局
部荷重が分散し難く、また、アラミド糸などの特徴とす
る高引張り強度による抵抗力が発現し難く、比較的弱い
剪断力が発生し易く、これによる破断が生じ易い欠点が
あり、弾丸等の耐弾に対して弱い組織になっているので
ある。
As mentioned above, when the threads constituting the woven fabric are the same and the weaving density is the same, the conventional plain woven fabric 5 has little freedom of deformation, and by applying a load with a relatively small number of threads, etc. It is difficult to disperse local loads, and it is difficult to develop resistance due to the high tensile strength that is characteristic of aramid threads, and relatively weak shearing forces are likely to occur, which can easily cause breakage. It has a structure that is vulnerable to bullet resistance.

これに対して、本発明の朱子織り織布組織は、前述の如
く、変形の自由度等が多く、平面方向の周辺の縦(横)
糸、および積層した次層以下の各々の糸に全般に荷重が
分散し、かつ、前記剪断力が発生し難く、柔軟で優れた
耐弾性が得られる。
On the other hand, the satin weave fabric structure of the present invention has a large degree of freedom in deformation, etc., as described above, and the vertical (horizontal)
The load is generally distributed over the yarn and each of the laminated yarns in the next and subsequent layers, and the shearing force is less likely to occur, resulting in flexibility and excellent ballistic resistance.

そして、このような本発明による朱子織り織布をa層し
て用い、同一重量を防弾衣として使用した場合、平織り
織布の数倍の耐弾性能が得られる。若しくは、それだけ
その重量を軽減できる。
When such a sateen woven fabric according to the present invention is used as a layer and the same weight is used as bulletproof clothing, bulletproof performance several times that of the plain woven fabric can be obtained. Alternatively, the weight can be reduced accordingly.

[実施例] 次に、本発明の詳細な説明する。[Example] Next, the present invention will be explained in detail.

本実施例としては、高張力強度を有する繊維として、引
張強度が300Kg/mm″級のアラミド(芳香族ポリ
アミド)糸を使用し、第1〜4図に示したように、縦糸
3および横糸4を平面織りによって、それぞれ4本およ
び8本朱子織り織布1.2となし、これらを20〜30
枚積層したものを供試料とした。なお、縦糸3.横糸4
を構成する糸太さは380デニール、1140デニール
、織密度(1吋巾当りの本数)は糸太さが380デニー
ルの場合、縦、横とも49本および22木、糸太さが1
140デニールの場合、縦。
In this example, aramid (aromatic polyamide) yarn with a tensile strength of 300 Kg/mm'' class was used as the fiber having high tensile strength, and as shown in Figs. are made into 4-strand and 8-strand satin weave fabrics 1.2 by plane weaving, respectively, and these are made into 20 to 30
A laminated sheet was used as a test sample. In addition, warp 3. Weft thread 4
The thickness of the threads that make up the thread is 380 denier and 1140 denier, and the weaving density (number of threads per 1 inch width) is 49 threads and 22 threads in the length and width when the thread thickness is 380 denier, and the thread thickness is 1.
For 140 denier, vertical.

横とも17木とし、各種織組織、糸太さ、織密度による
耐弾性能の相違を比較した。
Both sides were made of 17 wood, and differences in bullet resistance performance due to various weave structures, thread thicknesses, and weave densities were compared.

そして、これらの供試料に対して、重量が1.1g、材
質が硬鋼、形状が円柱状の弾丸を、着速600m/s、
着弾時の弾丸エネルギ約20Kgamの条件で撃ち、弾
丸の供試料ごとの実際の着弾時のエネルギを弾丸速度を
測定して吸収エネルギ(ΔE Kgllm)として算出
し、一方。
Then, a bullet weighing 1.1 g, made of hard steel, and having a cylindrical shape was fired at a landing speed of 600 m/s.
The bullet was shot under the condition that the bullet energy at the time of impact was approximately 20 Kgam, and the actual energy at the time of impact for each sample of the bullet was calculated as the absorbed energy (ΔE Kgllm) by measuring the bullet speed.

各種供試料の貫通した枚数を観測して、その重量を算出
し、前記吸収エネルギ(ΔE)を供試料の重量(W  
Kg/m″)で除した値をエネルギ吸収係数Mとして求
めた。
Observe the number of penetrated sheets of each sample, calculate the weight, and calculate the absorbed energy (ΔE) by the weight of the sample (W
The value divided by Kg/m'') was determined as the energy absorption coefficient M.

なお、比較のため、糸の太さ、織密度等を同じ条件とし
て従来の平織り組織の織布5についても、同条件の耐弾
試験を行ない、比較例とした。
For comparison, a bullet resistance test was also conducted under the same conditions for conventional plain weave woven fabric 5 under the same conditions such as yarn thickness and weaving density, and was used as a comparative example.

また、他の比較例として、糸の太さが1140デニール
で、織密度が30木/吋の従来の防弾衣に使用されてい
る平織り組織の織布5についても同条件の耐弾試験を行
ない、参考比較例とした。
In addition, as another comparative example, a bullet resistance test was conducted under the same conditions for Woven Fabric 5, which has a plain weave structure used in conventional bulletproof clothing, with a thread thickness of 1140 denier and a weave density of 30 wood/inch. , was used as a reference comparative example.

これらのテスト結果を第1表および第7図に示す。なお
、第7図は第1表のテスト結果をグラフ化して示すもの
であり、実施例の朱子織り織布1.2のエネルギ吸収係
数Mを比較例の平織り織布5のものと対比させて示した
ものである。第7図において実線m、nは、それぞれ本
実施例の4本朱子織りおよび8本朱子織りの場合を示し
、破線文は、比較例の平織りの場合を示す、また、図中
、点A−Jは供試料符号を示す。
The results of these tests are shown in Table 1 and FIG. In addition, FIG. 7 shows the test results in Table 1 in a graph, and compares the energy absorption coefficient M of the satin woven fabric 1.2 of the example with that of the plain woven fabric 5 of the comparative example. This is what is shown. In FIG. 7, solid lines m and n indicate the cases of 4-strand satin weave and 8-strand satin weave of this example, respectively, and the broken lines indicate the case of plain weave of the comparative example. J indicates the sample code.

第7図および第1表からも明らかなように、本実施例の
耐弾織布では、そのエネルギ吸収係数Mは、比較例の平
織り織布が2.2〜3.82であるのに対して、4本朱
子織りの場合4.29〜5.54.8本朱子織りの場合
、、 5 、7〜6.34となり、同−重量の防弾衣と
して使用した場合、約2倍の耐弾性能が得られることが
わかった。この事は、即ち、耐弾性能を同等とした場合
にはその重量(積層数)を半減できることでもある。
As is clear from FIG. 7 and Table 1, the energy absorption coefficient M of the bulletproof woven fabric of this example is 2.2 to 3.82 for the plain woven fabric of the comparative example. In the case of 4-strand satin weave, it is 4.29 to 5.5. In the case of 8-strand satin weave, it is 5.7 to 6.34, and when used as bulletproof clothing of the same weight, it has about twice the bullet resistance. It was found that performance was obtained. This means that the weight (number of laminated layers) can be halved if the ballistic performance is the same.

[発明の効果] 以上の説明から明らかなように、本発明の防弾衣用の耐
弾織布は、従来の平織り織布のものに比べ、著しく柔軟
で軽量であり、かつ、著しく高耐弾性能を有するもので
ある。そして、従来の耐弾織布に比し、積層数も著しく
少なくて済み1重量の軽減化と相俟ってその着用性も著
しく向上できるものである。
[Effects of the Invention] As is clear from the above description, the bulletproof woven fabric for bulletproof clothing of the present invention is significantly more flexible and lightweight than conventional plain weave woven fabrics, and has significantly higher bulletproof resistance. It has performance. Moreover, compared to conventional bulletproof woven fabrics, the number of laminated layers is significantly smaller, and together with the reduction in weight, the wearability can be significantly improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図および第2図は本発明の一実施例を示すものであ
り、4本朱子織り織布の場合の組織を示し、第1図は平
面図、第2図は第1図のII −II線矢視断面図、第
3図および第4図は本発明の他の実施例を示すものであ
り、8本朱子織り織布の場合の組織を示し、第3図は平
面図、第4図は第3図の■〜■線矢視断面図、第5図お
よび第6図は従来の平織り織布の組織を示すものであり
、第5図は平面図、第6図は第5図の■〜■線矢視断面
図、第7図は本発明の耐弾織布のエネルギ吸収係数を従
来の平織り織布のものと比べて表わしたグラフ、第8図
は防弾衣の一例を示す斜視図である。 1・・・・・・4本朱子織り織布、 2・・・・・・8本朱子織り織布、 3・・・・・・縦糸、    4・・・・・・横糸、R
・・・・・・着弾点、   5・・・・・・平織り織布
。 6・・・・・・防弾衣、   7・・・・・・防弾バッ
ト。 特許出願人  宇部興産株式会社 第1図    第3図
FIGS. 1 and 2 show an embodiment of the present invention, and show the structure of a four-strand satin woven fabric, with FIG. 1 being a plan view and FIG. 2 being II-- A sectional view taken along the line II, FIGS. 3 and 4 show other embodiments of the present invention, and show the structure of an 8-strand satin woven fabric. FIG. 3 is a plan view, and FIG. The figure is a sectional view taken along the line ■ to ■ in Figure 3, Figures 5 and 6 show the structure of a conventional plain weave fabric, Figure 5 is a plan view, and Figure 6 is a cross-sectional view of Figure 5. Figure 7 is a graph showing the energy absorption coefficient of the bulletproof woven fabric of the present invention compared to that of a conventional plain-woven fabric, and Figure 8 shows an example of bulletproof clothing. FIG. 1...4-strand satin woven fabric, 2...8-strand satin woven fabric, 3...warp, 4...weft, R
・・・・・・Point of impact, 5・・・ Plain weave woven fabric. 6...Bulletproof clothing, 7...Bulletproof bat. Patent applicant: Ube Industries, Ltd. Figure 1 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)高張力強度を有する縦糸と横糸とを、平面織りに
よって、それぞれ4本ないし8本を1ピッチとして上下
に交叉させて織組みしてなる4本ないし8本朱子織りの
織布として形成し、この織布を積層して防弾パットを構
成したことを特徴とする防弾衣用の耐弾織布。
(1) A 4- to 8-strand satin woven fabric is formed by weaving high-tensile strength warp and weft yarns by plane weaving, intersecting each other vertically with 4 to 8 yarns per pitch. A bulletproof woven fabric for bulletproof clothing, characterized in that the woven fabric is laminated to form a bulletproof pad.
(2)織布を構成する縦糸および横糸を、引張り強度が
250ないし350Kg/mm^2のアラミド糸とする
とともに、糸太さを300ないし1200デニール、織
密度を15ないし50本(1インチ巾当り)としたこと
を特徴とする特許請求の範囲第1項記載の防弾衣用の耐
弾織布。
(2) The warp and weft yarns constituting the woven fabric are aramid yarns with a tensile strength of 250 to 350 kg/mm^2, the thread thickness is 300 to 1200 deniers, and the weaving density is 15 to 50 threads (1 inch width). A bulletproof woven fabric for bulletproof clothing according to claim 1, characterized in that the bulletproof woven fabric is made of:
JP60116502A 1985-05-31 1985-05-31 Elasticity resistant cloth for bulletproof jacket Pending JPS61275440A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60116502A JPS61275440A (en) 1985-05-31 1985-05-31 Elasticity resistant cloth for bulletproof jacket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60116502A JPS61275440A (en) 1985-05-31 1985-05-31 Elasticity resistant cloth for bulletproof jacket

Publications (1)

Publication Number Publication Date
JPS61275440A true JPS61275440A (en) 1986-12-05

Family

ID=14688718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60116502A Pending JPS61275440A (en) 1985-05-31 1985-05-31 Elasticity resistant cloth for bulletproof jacket

Country Status (1)

Country Link
JP (1) JPS61275440A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183798A (en) * 1989-01-06 1990-07-18 Fuji Heavy Ind Ltd Anti-bullet structure
WO2002014588A1 (en) * 2000-08-17 2002-02-21 Barrday, Inc. Penetration resistant fabric
JP2002535157A (en) * 1999-01-18 2002-10-22 トワロン プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Penetration resistant material including woven fabric with high linear density ratio of two sets of yarns
US6534426B1 (en) 2000-01-14 2003-03-18 E. I. Du Pont De Nemours And Company Knife-stab-resistant composite
EP0569849B2 (en) 1992-05-13 2006-06-28 Akzo Nobel N.V. Anti-vandalism fabric
WO2009153121A1 (en) * 2008-05-26 2009-12-23 Teijin Aramid Gmbh Penetration resistant article
WO2009153120A1 (en) * 2008-05-26 2009-12-23 Teijin Aramid Gmbh Antiballistically effective article
EP1377790B2 (en) 2001-04-12 2013-06-26 E.I. Du Pont De Nemours And Company Ballistic resistant article

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345099A (en) * 1976-10-05 1978-04-22 Ube Nitto Kasei Co Body protector

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5345099A (en) * 1976-10-05 1978-04-22 Ube Nitto Kasei Co Body protector

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02183798A (en) * 1989-01-06 1990-07-18 Fuji Heavy Ind Ltd Anti-bullet structure
EP0569849B2 (en) 1992-05-13 2006-06-28 Akzo Nobel N.V. Anti-vandalism fabric
JP2002535157A (en) * 1999-01-18 2002-10-22 トワロン プロダクツ ゲゼルシャフト ミット ベシュレンクテル ハフツング Penetration resistant material including woven fabric with high linear density ratio of two sets of yarns
US6534426B1 (en) 2000-01-14 2003-03-18 E. I. Du Pont De Nemours And Company Knife-stab-resistant composite
WO2002014588A1 (en) * 2000-08-17 2002-02-21 Barrday, Inc. Penetration resistant fabric
EP1377790B2 (en) 2001-04-12 2013-06-26 E.I. Du Pont De Nemours And Company Ballistic resistant article
WO2009153120A1 (en) * 2008-05-26 2009-12-23 Teijin Aramid Gmbh Antiballistically effective article
US7905256B2 (en) 2008-05-26 2011-03-15 Teijin Aramid Gmbh Penetration-obstructing article
JP2011523011A (en) * 2008-05-26 2011-08-04 テイジン・アラミド・ゲーエムベーハー Anti-ballistic effect products
JP2011523684A (en) * 2008-05-26 2011-08-18 テイジン・アラミド・ゲーエムベーハー Penetrating product
US8293665B2 (en) 2008-05-26 2012-10-23 Teijin Aramid Gmbh Antiballistic article
WO2009153121A1 (en) * 2008-05-26 2009-12-23 Teijin Aramid Gmbh Penetration resistant article
RU2496646C2 (en) * 2008-05-26 2013-10-27 Тейджин Арамид Гмбх Penetration-resistant article

Similar Documents

Publication Publication Date Title
JP4067972B2 (en) Pseudo unidirectional fabric for bulletproof applications
US5918309A (en) Blunt force resistant structure for a protective garment
US4574105A (en) Penetration resistant textile panels with plies of nylon and plies of Kevlar
US5512348A (en) Armor with breakaway sewing
EP0558636B1 (en) Constructions having improved penetration resistance
US5536553A (en) Protective fabric comprising calendered sub-plies of woven fabric joined together by stitching
US6276255B1 (en) Soft body armor
KR101715420B1 (en) Improved ballistic composites having large denier per filament high performance yarns
MX2007000256A (en) Flexible ballistic-resistant assembly.
US6026509A (en) Ballistic resistant garment with multi-panel radial securement stitching
JPS61275440A (en) Elasticity resistant cloth for bulletproof jacket
US20100147143A1 (en) Stab resistant insert with steel cords and non-woven textile
WO2010091476A1 (en) Ballistic fabric
GB2232063A (en) Projectile resistant shield for protective garments
JP4691159B2 (en) Fabric with increased bulletproof performance coated with polymer stripes
JPH0985865A (en) Hard composite product with excellent impact resistant performance
US20040003445A1 (en) Ballistic resistant panel
JP3689649B2 (en) Protective components, protective clothing, and protective articles
JP3611040B2 (en) Protective clothing
JPS6380198A (en) Shock-resistant member
JPH0861896A (en) Member for protective clothing
JP2000028296A (en) Bullet-proof member and bullet-proof clothes
JP3423982B2 (en) Cushion with blade and bulletproof function
RU9519U1 (en) THIN LAYERED METAL ARMOR
JP2004245510A (en) Protective clothing