JPS61275168A - High heat conductivity sintered body and manufacture - Google Patents

High heat conductivity sintered body and manufacture

Info

Publication number
JPS61275168A
JPS61275168A JP60117179A JP11717985A JPS61275168A JP S61275168 A JPS61275168 A JP S61275168A JP 60117179 A JP60117179 A JP 60117179A JP 11717985 A JP11717985 A JP 11717985A JP S61275168 A JPS61275168 A JP S61275168A
Authority
JP
Japan
Prior art keywords
sintered body
mol
thermally conductive
thermal conductivity
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60117179A
Other languages
Japanese (ja)
Inventor
均 角谷
周一 佐藤
矢津 修示
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP60117179A priority Critical patent/JPS61275168A/en
Priority to DE8585116660T priority patent/DE3584515D1/en
Priority to EP8585116660A priority patent/EP0194358B1/en
Priority to CA000499395A priority patent/CA1275560C/en
Publication of JPS61275168A publication Critical patent/JPS61275168A/en
Priority to US08/046,422 priority patent/US5332629A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、たとえば放熱基板材料として有効な特性を
有する、立方晶窒化硼素からなる高熱伝導性焼結体およ
びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a highly thermally conductive sintered body made of cubic boron nitride, which has characteristics effective as a heat dissipation substrate material, for example, and a method for manufacturing the same.

[従来の技術] 立方晶窒化硼素(以下、CBNと略す。)は、ダイヤモ
ンドに次ぐ硬度を有し、熱的および化学的に極めて安定
であるため、工具用材料として注目されている。さらに
、cBNは、硬度のみならず、熱伝導性においてもダイ
ヤモンドに次ぐものであるため、たとえば放熱基板材料
のような用途への応用も期待されている。
[Prior Art] Cubic boron nitride (hereinafter abbreviated as CBN) has a hardness second only to diamond and is extremely stable thermally and chemically, so it is attracting attention as a material for tools. Furthermore, since cBN is second only to diamond not only in hardness but also in thermal conductivity, it is expected to be used in applications such as heat dissipation substrate materials.

ところで、放熱基板材料としては、従来より、。By the way, as a heat dissipation board material, conventionally.

第1表に示す特性を有する種々の材料が用いられている
Various materials have been used that have the properties shown in Table 1.

第1表から、ダイヤモンドが他の材料に比べてはるかに
高い熱伝導率を示すことがわかる。
From Table 1, it can be seen that diamond exhibits a much higher thermal conductivity than other materials.

他方、スラック(5lack)は、ジャーナル・オブ・
フィジカル・ケミストリー・ソリツズ(J。
On the other hand, Slack (5lack) is a journal of
Physical Chemistry Solutions (J.

Phys 、 Chem 、 5olids ) 、第
34巻く1972年)第321頁において、純粋な単結
晶のCBNは、室温にて約13W/am・℃の熱伝導率
を有することを予想しており、かつ放熱基板材料として
の可能性を示唆している。
Phys. This suggests its potential as a substrate material.

しかしながら、瑛在までのところ、大型のcBN単結晶
は得られておらず1.シたがって13W/Cff1・℃
の熱伝導率は確認されていない。
However, up to now, large cBN single crystals have not been obtained.1. Therefore 13W/Cff1・℃
The thermal conductivity of is not confirmed.

また、結合相を含むCBN焼結体の熱伝導率としては、
2W/cm・℃が報告されているにすぎない。これは、
結合相が大きなフォノン散乱源となり、熱伝導率を極端
に低下させるためと推測される。
In addition, the thermal conductivity of the CBN sintered body containing the binder phase is as follows:
Only 2 W/cm·°C has been reported. this is,
This is presumed to be because the bonded phase becomes a large phonon scattering source and extremely reduces thermal conductivity.

また、結合相を含まない高熱伝導性のcBN焼結体全体
造する方法として、たとえば特開昭54−33510号
には、出発物質として熱分解型窒化硼素(pBN)を用
い、直接変換法により稠密な高熱伝導性のcBN焼結体
全体造する方法が開示されている。
In addition, as a method for producing an entire cBN sintered body with high thermal conductivity that does not contain a binder phase, for example, Japanese Patent Application Laid-Open No. 54-33510 uses pyrolytic boron nitride (pBN) as a starting material and uses a direct conversion method. A method for constructing a dense, highly thermally conductive cBN sintered body is disclosed.

[発明が解決しようとする問題点] しかしながら、特開昭54−33510号の方法では、
熱伝導率4W/cm・℃以上の焼結体を製造するには、
圧カフGPa 、8度2000℃以上の厳しい条件が必
要であり、また再現性の点でも問題があった。さらに、
EIBNは、極めて高価なものであもある。
[Problems to be solved by the invention] However, in the method of JP-A-54-33510,
To produce a sintered body with a thermal conductivity of 4 W/cm・℃ or higher,
Strict conditions such as a pressure cuff GPa of 8 degrees or more than 2000 degrees Celsius were required, and there were also problems in terms of reproducibility. moreover,
EIBN is also extremely expensive.

他方、比較的緩和な条件で、しかも安価に、結合相を含
まないCBN焼結体を製造する方法が、たとえばマテリ
アル・リサーチ・ブレチン(M at。
On the other hand, a method for manufacturing a CBN sintered body without a binder phase under relatively mild conditions and at low cost is disclosed, for example, by Materials Research Bulletin (Mat.

Res、 3u11):第7巻(1972年)第999
頁において若槻等の論文に示されている。ここでは、低
結晶性の六方晶型窒化硼素(hBN)を出発物質とし、
直接変換法によりOBN焼結体が得られる。
Res, 3u11): Volume 7 (1972) No. 999
As shown in the paper by Wakatsuki et al. Here, low-crystalline hexagonal boron nitride (hBN) is used as a starting material,
An OBN sintered body is obtained by the direct conversion method.

しかしながら、出発物質として用いる低結晶性hBNは
、化学的に不安定であり、空気中の酸素と反応しやすく
、したがって焼結体全体にわたり均一かつ十分に焼結し
たものを得ることが困難である。
However, the low crystallinity hBN used as a starting material is chemically unstable and easily reacts with oxygen in the air, making it difficult to obtain uniform and sufficient sintering throughout the sintered body. .

それゆえに、この発明の目的は、熱伝導性に優れた安価
なcBN焼結体全体定に供給することにある。
Therefore, an object of the present invention is to provide an inexpensive cBN sintered body with excellent thermal conductivity.

[問題点を解決するため手段] 本願発明者達は、高熱伝導性の焼結体を安価にしかも再
現良く製造すべく、種々の方法により合成実験を繰返し
た。その結果、特開昭58−176179号および特開
昭59−57967号に開示されている方法、すなわち
hBNにアルカリ土類金属またはアルカリ金属の硼窒化
物を混合し、あるいは拡散担持させ、これをcBNの熱
力学的に安定な条件下で1350℃以上の高温に保ち、
cBN焼結体全体成する方法が最も適していることを見
い出した。これらの先行技術は、熱伝導性に優れた焼結
体を提供するためになされたものではなく、主に透光性
に優れた焼結体を提供すべくなされたものであるが、こ
こでは添加された硼窒化物の一部または全部が、高圧下
で焼結するに際し、系外に拡散除去され、その結果実質
的に100%のcBNからなる焼結体が容易に得られる
[Means for Solving the Problems] The inventors of the present invention repeatedly conducted synthesis experiments using various methods in order to produce a highly thermally conductive sintered body at low cost and with good reproducibility. As a result, the method disclosed in JP-A-58-176179 and JP-A-59-57967 was adopted, namely, by mixing or diffusing an alkaline earth metal or an alkali metal boronitride into hBN. Maintained at a high temperature of 1350°C or higher under thermodynamically stable conditions for cBN,
It has been found that the method of forming the entire cBN sintered body is most suitable. These prior arts were not made to provide a sintered body with excellent thermal conductivity, but were mainly made to provide a sintered body with excellent translucency, but here, Part or all of the added boronitride is diffused out of the system during sintering under high pressure, and as a result, a sintered body consisting of substantially 100% cBN can be easily obtained.

上記のようにして得られた焼結体の熱伝導度を測定した
ところ、平均2〜3W10111・℃と、他のバインダ
を用いた焼結体に比べて比較的高い値を示すことがわか
ンた。もっとも、場合によっては、1.7W/cm・℃
と低い値を示すものがあるなど、ばらつきも大きかった
When the thermal conductivity of the sintered body obtained as described above was measured, it was found that the average value was 2 to 3W10111°C, which is a relatively high value compared to sintered bodies using other binders. Ta. However, in some cases, 1.7W/cm・℃
There were also large variations, with some showing low values.

そこで、本願発明者達は、種々の条件を変えて多数の実
験を繰返したところ、焼結体の熱伝導率は、焼結時の条
件よりも、むしろ焼結処理前の原料組成、すなわちhB
N中へのアルカリ土類金属またはアルカリ金属の硼窒化
物の添加量に大きく支配されることを見出した。さらに
、高熱伝導性焼結体を得るには、アルカリ土類金属また
はアルカリ金属の硼窒化物の添加量を、0.6モル%以
上、1.2モル%以下の範囲内に制御することが必要で
あるとわかった。
Therefore, the inventors of the present application repeated a large number of experiments under various conditions, and found that the thermal conductivity of the sintered body was determined by the raw material composition before sintering, that is, hB, rather than by the conditions during sintering.
It has been found that the amount of alkaline earth metal or alkali metal boronitride added to N is largely controlled. Furthermore, in order to obtain a highly thermally conductive sintered body, the amount of alkaline earth metal or alkali metal boronitride added must be controlled within the range of 0.6 mol% or more and 1.2 mol% or less. I found it necessary.

以上の内容を、原料としてホットプレスしたh8N成形
体を、添加剤としてマグネシウム硼窒化物(MOa B
2 N4 )を用いた場合につき、具体的に説明する。
A hot-pressed h8N molded body of the above contents was used as a raw material, and magnesium boronitride (MOa B) was added as an additive.
2N4) will be specifically explained.

まず、hBN中にM(J a B2 N4を添加する際
の温度条件を変え、処理温度と添加されたMQ・82 
N−!との関係を求めたところ、M7図に示す結果が得
られた。
First, we changed the temperature conditions when adding M(J a B2 N4 into hBN), and the treatment temperature and the added MQ・82
N-! The results shown in Figure M7 were obtained.

次に、第1図の結果を利用し、MOs 82 N4添加
量の異なる数個の原料組成物を作成し、それぞれ、一定
の温度・圧力条件下において処理し、焼結体を得た。得
られた焼結体の熱伝導率を測定し、原料中に添加したM
Q s 82 N4 Ilkとの関係を求めたところ、
第2図に示す結果が得られた。
Next, several raw material compositions with different amounts of MOs 82 N4 added were prepared using the results shown in FIG. 1, and each was treated under constant temperature and pressure conditions to obtain a sintered body. The thermal conductivity of the obtained sintered body was measured, and the M added to the raw material was measured.
When looking for the relationship with Q s 82 N4 Ilk,
The results shown in FIG. 2 were obtained.

第2図において、MO*BzN+の添加量が、約0.8
モル%以下では、熱伝導率は、MQ s B2N4添加
堡が多くなるほど高い値を示すことがわかる。これは、
Mga 82 N4添加最が多いほど、cBNの単位粒
径が大きくなり、粒界におけるフォノン散乱が減少し、
その結果熱伝導率が高くなるからと推測される。第3図
に、M(lsB2N4添加量と、得られた焼結体の平均
単位粒径との関係を示す。第3図より、Mgs B2 
N4の添加量が多いほど、粒径が大きくなることがわか
る。
In Figure 2, the amount of MO*BzN+ added is approximately 0.8
It can be seen that below mol %, the thermal conductivity shows a higher value as the amount of MQ s B2N4 added increases. this is,
The more Mga 82 N4 is added, the larger the unit grain size of cBN becomes, and the phonon scattering at grain boundaries decreases.
It is assumed that this is because the thermal conductivity increases as a result. Figure 3 shows the relationship between the amount of MgsB2N4 added and the average unit grain size of the obtained sintered body.
It can be seen that the larger the amount of N4 added, the larger the particle size.

しかしながら、第2図において、M(II s 82 
N4添加量が約0.9モル%で熱伝導率が最高値6゜2
W/cra・℃を示し、0.9モル%以上になると、逆
に熱伝導率の低下する傾向のあることがわかる。
However, in FIG. 2, M(II s 82
When the amount of N4 added is approximately 0.9 mol%, the thermal conductivity reaches a maximum value of 6°2.
W/cra·°C, and it can be seen that when the content exceeds 0.9 mol %, the thermal conductivity tends to decrease.

MO382N4を0.9モル%以上添加すると、得られ
た焼結体中に0.5重量%以上のMgを含むこととなる
。この残留Maがフォノン散乱源となり、熱伝導率の低
下を招くものと考えられる。
When 0.9 mol% or more of MO382N4 is added, the resulting sintered body will contain 0.5% by weight or more of Mg. It is thought that this residual Ma becomes a phonon scattering source and causes a decrease in thermal conductivity.

第4図は、Mga B2 N4添加量を変えて合成した
各焼結体の熱伝導率とビッカース硬度との関係を示す。
FIG. 4 shows the relationship between the thermal conductivity and Vickers hardness of each sintered body synthesized with varying amounts of Mga B2 N4 added.

熱伝導率が2〜3W/cm・℃のものは、部分的に硬度
が低く、焼結状態にもむらがあることを示している。焼
結状態が良好でない部分、すなわち硬度の低い部分は、
粒子間の結合が不十分であるため、粒界におけるフォノ
ン散乱が多く、その結果焼結体全体として比較的低い熱
伝導率を示していると考えられる。他方、硬度にむらの
なく、5000 kg/mm2以上の焼結体は、4W/
[1・℃以上の熱伝導率を有する。
Those with a thermal conductivity of 2 to 3 W/cm·°C show that the hardness is partially low and the sintered state is uneven. Areas where the sintering condition is not good, that is, areas with low hardness, are
It is thought that due to insufficient bonding between particles, there is a lot of phonon scattering at the grain boundaries, and as a result, the sintered body as a whole exhibits a relatively low thermal conductivity. On the other hand, a sintered body with uniform hardness of 5000 kg/mm2 or more has a hardness of 4W/mm2 or more.
[Has a thermal conductivity of 1°C or higher.]

第2図に示したMQs、B2 N4添加量と熱伝導率と
の関係より、Mga B2 N4添加量を0.6モル%
以上、1.2モル%以下とすることにより、4W/cn
+・℃以上の高熱伝導性の焼結体を安定に得られること
がわかる。
Based on the relationship between the amount of MQs, B2 N4 added and the thermal conductivity shown in Figure 2, the amount of Mga B2 N4 added was set to 0.6 mol%.
Above, by setting it to 1.2 mol% or less, 4W/cn
It can be seen that a sintered body with high thermal conductivity of +°C or higher can be stably obtained.

したがって、この発明は、六方晶窒化硼素中に、0.6
モル%以上、1.2モル%以下のアルカリ土類金属また
はアルカリ金属の硼窒化物を均一に拡散担持させ、立方
晶窒化硼素の熱力学的に安定な条件下で1350℃以上
の温度で高圧焼結することにより得られる、実質的に1
00%立方晶窒化硼素からなる高熱伝導性焼結体であり
、また上記のようにして高熱伝導性焼結体を得る製造方
法である。
Therefore, in this invention, 0.6
Boron nitride of an alkaline earth metal or an alkali metal of mol% or more and 1.2 mol% or less is uniformly diffused and supported under high pressure at a temperature of 1350°C or more under thermodynamically stable conditions of cubic boron nitride. Obtained by sintering, substantially 1
This is a highly thermally conductive sintered body made of 00% cubic boron nitride, and is a manufacturing method for obtaining a highly thermally conductive sintered body as described above.

熱伝導率4W/am・℃以上の高熱伝導性焼結体は、粒
径5μm以上、マイクロヌープ硬度5000 ka/ 
nun’以上、Mg含有量が0.5重量%以下である。
The highly thermally conductive sintered body has a thermal conductivity of 4 W/am・℃ or more, a particle size of 5 μm or more, and a microknoop hardness of 5000 ka/
nun' or more, and the Mg content is 0.5% by weight or less.

このことから逆に、焼結体の粒径、硬度および不純物量
より、該焼結体の熱伝導性を知ることも可能である。
From this, conversely, it is also possible to know the thermal conductivity of the sintered body from the particle size, hardness, and amount of impurities of the sintered body.

[実施例] 実施例1 常圧下、窒素雰囲気中で、1160〜1175℃の範囲
の種々の温度にて、MQsNtをhBN成形体中に拡散
含浸させ1、hBN焼結体中で反応により生じたMOa
BzN重量が、0.4〜1゜3モル%の範囲のもの8種
類を得た。これらを、それぞれ、容器内に充填し、ベル
ト型装置を用い、5.5GPa 、1450℃の温度下
に30分間保持した。
[Example] Example 1 MQsNt was diffused and impregnated into an hBN compact at various temperatures in the range of 1160 to 1175°C in a nitrogen atmosphere under normal pressure. MOa
Eight types were obtained in which the BzN weight ranged from 0.4 to 1.3 mol %. Each of these was filled into a container and held at a temperature of 5.5 GPa and 1450° C. for 30 minutes using a belt type device.

得られた焼結体は、直径3011I11厚さ約1.51
の単相の緻密な焼結体であった。試料番号1の焼結体は
、一部未変換のhBNが残留していたが、他の焼結体は
、外見上全面にわたり均一にかつ強固に焼結していた。
The obtained sintered body has a diameter of 3011I11 and a thickness of about 1.51
It was a single-phase dense sintered body. In the sintered body of sample number 1, some unconverted hBN remained, but the other sintered bodies were sintered uniformly and firmly over the entire surface in appearance.

この結果より、100%c3=B2N4添加量が約0.
45モル%以上必要であることがわかる。
From this result, 100%c3=B2N4 addition amount is approximately 0.
It can be seen that 45 mol% or more is required.

試料番号2〜8の焼結体から、2.5x2.5x1,5
gueの試料片を切り出し、各試料片につき一1InS
b赤外線放射顕微鏡を用いた直接測温法により、室温に
おける熱伝導率を測定した。得られた結果を、下記の第
2表に示す。
From the sintered bodies of sample numbers 2 to 8, 2.5x2.5x1.5
Cut out sample pieces of 1 InS for each sample piece.
b Thermal conductivity at room temperature was measured by direct temperature measurement using an infrared emission microscope. The results obtained are shown in Table 2 below.

原料hBN成形体中へのMO82N4添加量が0.6モ
ル%以上、1.2モル%以下の場合には、得られた焼結
体が、約4W/CI・℃以上の熱伝導率を有することが
わかる。
When the amount of MO82N4 added to the raw material hBN compact is 0.6 mol% or more and 1.2 mol% or less, the obtained sintered body has a thermal conductivity of about 4 W/CI・℃ or more. I understand that.

実施例2 高熱伝導性焼結体となるための必要特性を調べるため、
実施例1で得られた試料番号2〜8の焼結体の粒径、硬
度および不純物量を調べた。
Example 2 In order to investigate the necessary characteristics to become a highly thermally conductive sintered body,
The grain size, hardness, and amount of impurities of the sintered bodies of sample numbers 2 to 8 obtained in Example 1 were examined.

粒径は、焼結体の表面をKOHでエツチングし、粒界を
明瞭にした後、SEMにて実測した。
The grain size was measured by SEM after etching the surface of the sintered body with KOH to clarify the grain boundaries.

硬度は、ビッカース圧子を用い、荷重10にり。The hardness was determined using a Vickers indenter and a load of 10.

圧入時間15秒にて行なった。The press-fitting was performed for 15 seconds.

不純物すなわちMO含有量の測定は、イオンマイクロア
ナライザを用いて行なった。
The impurity, ie, MO content, was measured using an ion microanalyzer.

結果を、下記の第3表に示す。The results are shown in Table 3 below.

それぞれの試料につき、イオンマイクロアナライザによ
り、Mg以外の不純物につき分析したところ、C,A1
1.C,aおよびSiが検出されたが、いずれも200
 ppm以下であった。
When each sample was analyzed for impurities other than Mg using an ion microanalyzer, it was found that C, A1
1. C, a and Si were detected, all at 200
It was less than ppm.

実施例1の結果、および第3表に示した結果より、熱伝
導率4W10N・℃以上の高熱伝導性焼結体は、単位粒
径5μm以上、ビッカース硬度5000 kg/ mm
2以上、さらにMO含有量が0.5重量%以下となって
いることがわかる。
From the results of Example 1 and the results shown in Table 3, a highly thermally conductive sintered body with a thermal conductivity of 4W10N・℃ or more has a unit particle size of 5 μm or more and a Vickers hardness of 5000 kg/mm.
It can be seen that the MO content is 2 or more, and furthermore, 0.5% by weight or less.

1i1と 実施例1におけるMOs82N*に代え、1−is B
N2 、Ca s B2 N4および5rsBzN4を
、それぞれ、hBN中に0.6〜1.2モル%拡散担持
させ、実施例1と同様にして焼結体を得た。熱伝導率は
、すべて4W/Cm・℃以上であり、粒径、硬度および
不純物量とも、はぼ実施例2の結果と同様であった。
1i1 and MOs82N* in Example 1, 1-is B
A sintered body was obtained in the same manner as in Example 1 except that N2, Ca s B2 N4, and 5rsBzN4 were each diffused and supported in hBN in an amount of 0.6 to 1.2 mol %. The thermal conductivity was all 4 W/Cm·° C. or more, and the particle size, hardness, and amount of impurities were almost the same as the results of Example 2.

[発明の効果] この発明によれば、0.6モル%以上、1.2モル%以
下のアルカリ土類金属またはアルカリ金属の硼窒化物が
、六方晶窒化硼素中に均一に担持させた状態で焼結が行
なわれるので、熱伝導率が4〜6W/am−’Cと、S
t C,AQN、A120、など他の焼結体材料に比べ
、飛躍的に高い高熱伝導性焼結体を得ることが可能とな
る。したがって、たとえば放熱基板材料として用いれば
、半導体レーザ素子、マイクロ波素子などの電気的特性
および寿命を大幅に改善することができ、同時にICや
メモリにおいても電気的特性の安定化および長野分化を
果たすことが可能となる。
[Effects of the Invention] According to the present invention, 0.6 mol% or more and 1.2 mol% or less of alkaline earth metal or alkali metal boronitride is uniformly supported in hexagonal boron nitride. Since the sintering is carried out at
It becomes possible to obtain a sintered body with significantly higher thermal conductivity than other sintered body materials such as tC, AQN, and A120. Therefore, if used as a heat dissipation substrate material, for example, it can significantly improve the electrical characteristics and lifespan of semiconductor laser devices, microwave devices, etc., and at the same time stabilize the electrical characteristics and achieve Nagano differentiation in ICs and memories. becomes possible.

さらに、この発明の製造方法によれば、上記高熱伝導性
焼結体を安定にかつ安価に供給することが可能となる。
Further, according to the manufacturing method of the present invention, it is possible to stably and inexpensively supply the above-mentioned highly thermally conductive sintered body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、hBN成形体中へのMQa 82 N4拡散
担持処理における処理温度と、添加されたMOs BZ
 N4量との関係を示す図である。第2図は、この発明
の焼結体の熱伝導率と、原料のhBN中へのMgs 8
2 N4添加量との関係を示す図である。第3図は、こ
の発明の焼結体の単位粒径と、原料のhBN−中へM!
1IsBzN*添加量との関係を示す図である。第4図
は、この発明の焼結体のビッカース硬度と、熱伝導率と
の関係を示す図である。 第2図 7原料ILBNへのM9382/1114添加量(一杯
)第3図 、原料にBNへのMg38zN+溪力υ蓋(机−色)手
続補正書 昭和61年2月lz日 1、事件の表示 昭和60年特許願第 117179  号2、発明の名
称 高熱伝導性焼結体およびその製造方法 3、補正をする者 事件との間係 特許出願人 住所  大阪市 全区 北浜 5丁目15番地名称  
(213)住友電気工業株式会社代表者川上哲部 4、代理人 住 所 大阪市全区平野町2丁目8番地の1 平野町八
千代ピル5、補正命令の日付 自発補正 6、補正の対象 明細書の特許請求の範囲の欄および発明の詳細な説明の
欄 7、補正の内容 (1) 明細書の特許請求の範囲を別紙のとおり補正す
る。 (2) 明細書第10頁第12行の「マイクロヌープ」
とあるのを、「ビッカース」に補正する。 以上 2、特許請求の範囲 (1) 六方晶窒化硼素中に0.6モル%以上1.2モ
ル%以下のアルカリ土類金属またはアルカリ金属の硼窒
化物を均一に拡散担持させ、立方晶窒化硼素の熱力学的
に安定な条件下で1350℃以上の温度にて高圧焼結す
ることにより得られ、実質的に100%の立方晶窒化硼
素からなり、室温における熱 導率がIなくとも4W/
CI・℃である、高熱伝導性焼結体。 (2) 前記焼結体の平均単位粒径は、5μ口以上であ
る、特許請求の範囲第1項記載の高熱伝導性焼結体。 (3) 前記焼結体のビッカース硬度が、5000 k
M−一2以上である、特許請求の範囲第1項記載の高熱
伝導性焼結体。 (4) 前記焼結体中の不純物含有量が、0゜5重量%
以下である、特許請求の範囲第1項記載の高熱伝導性焼
結体。 (5) 六方晶窒化硼素中に、0.6モル%以上1.2
モル%以下のアルカリ土類金属またはアルカリ金属の硼
窒化物を均一に拡散担持させ、これを立方晶窒化硼素の
熱力学的に安定な条件下で1350’C以上の温度で高
圧焼結することを特徴とする、高熱伝導性焼結体の製造
方法。
Figure 1 shows the treatment temperature in the MQa 82 N4 diffusion support treatment into the hBN molded body and the added MOs BZ.
It is a figure showing the relationship with the amount of N4. Figure 2 shows the thermal conductivity of the sintered body of the present invention and the Mgs 8 in the raw material hBN.
2 is a diagram showing the relationship with the amount of N4 added. Figure 3 shows the unit particle size of the sintered body of the present invention and the M!
1IsBzN* is a diagram showing the relationship with the addition amount. FIG. 4 is a diagram showing the relationship between Vickers hardness and thermal conductivity of the sintered body of the present invention. Figure 2 7 Amount of M9382/1114 added to raw material ILBN (one cup) Figure 3, Mg38zN + pulsation force υ cover (table-color) to raw material BN February lz, 1985 1, Indication of incident 1985 Patent Application No. 117179 2, Name of the invention Highly thermally conductive sintered body and its manufacturing method 3, Interaction with the case of the person making the amendment Patent applicant address 5-15 Kitahama, Zen-ku, Osaka City Name
(213) Sumitomo Electric Industries Co., Ltd. Representative Tetsube Kawakami 4, Agent address 5-1 Yachiyo Pill, Hirano-cho, Zen-ku, Osaka City, Yachiyo Pill 5, Date of amendment order Voluntary amendment 6, Specification subject to amendment Claims column and Detailed Description of the Invention column 7, Contents of amendment (1) The claims of the specification are amended as shown in the attached sheet. (2) “Micronoop” on page 10, line 12 of the specification
Correct that to "Vickers". Above 2, Claims (1) Cubic nitridation by uniformly diffusing and supporting an alkaline earth metal or alkali metal boronitride in an amount of 0.6 mol% or more and 1.2 mol% or less in hexagonal boron nitride. Obtained by high-pressure sintering of boron at temperatures above 1350°C under thermodynamically stable conditions, it consists essentially of 100% cubic boron nitride and has a thermal conductivity of at least 4W at room temperature. /
High thermal conductivity sintered body with CI・℃. (2) The highly thermally conductive sintered body according to claim 1, wherein the average unit grain size of the sintered body is 5 μm or more. (3) The Vickers hardness of the sintered body is 5000 k.
The highly thermally conductive sintered body according to claim 1, which has a molecular weight of M-12 or more. (4) The impurity content in the sintered body is 0.5% by weight.
A highly thermally conductive sintered body according to claim 1, which is as follows. (5) 0.6 mol% or more 1.2 in hexagonal boron nitride
To uniformly diffuse and support boronitride of an alkaline earth metal or alkali metal in an amount of mol% or less, and to sinter this at high pressure at a temperature of 1350'C or higher under thermodynamically stable conditions for cubic boron nitride. A method for producing a highly thermally conductive sintered body, characterized by:

Claims (5)

【特許請求の範囲】[Claims] (1)六方晶窒化硼素中に0.6モル%以上1.2モル
%以下のアルカリ土類金属またはアルカリ金属の硼窒化
物を均一に拡散担持させ、立方晶窒化硼素の熱力学的に
安定な条件下で1350℃以上の温度にて高圧焼結する
ことにより得られる、実質的に100%立方晶窒化硼素
からなる、高熱伝導性焼結体。
(1) 0.6 mol% to 1.2 mol% of alkaline earth metal or alkali metal boronitride is uniformly diffused and supported in hexagonal boron nitride, and cubic boron nitride is thermodynamically stabilized. A highly thermally conductive sintered body made of substantially 100% cubic boron nitride, obtained by high-pressure sintering at a temperature of 1350° C. or higher under the following conditions.
(2)前記焼結体の平均単位粒径は、5μm以上である
、特許請求の範囲第1項記載の高熱伝導性焼結体。
(2) The highly thermally conductive sintered body according to claim 1, wherein the average unit grain size of the sintered body is 5 μm or more.
(3)前記焼結体のマイクロヌープ硬度が、5000k
g/mm^2以上である、特許請求の範囲第1項記載の
高熱伝導性焼結体。
(3) Microknoop hardness of the sintered body is 5000k
The highly thermally conductive sintered body according to claim 1, which has a high thermal conductivity of at least g/mm^2.
(4)前記焼結体中の不純物含有量が、0.5重量%以
下である、特許請求の範囲第1項記載の高熱伝導性焼結
体。
(4) The highly thermally conductive sintered body according to claim 1, wherein the content of impurities in the sintered body is 0.5% by weight or less.
(5)六方晶窒化硼素中に、0.6モル%以上1.2モ
ル%以下のアルカリ土類金属またはアルカリ金属の硼窒
化物を均一に拡散担持させ、これを立方晶窒化硼素の熱
力学的に安定な条件下で1350℃以上の温度で高圧焼
結することを特徴とする、高熱伝導性焼結体の製造方法
(5) 0.6 mol% to 1.2 mol% of alkaline earth metal or alkali metal boronitride is uniformly diffused and supported in hexagonal boron nitride, and the thermodynamics of cubic boron nitride is A method for producing a highly thermally conductive sintered body, the method comprising high-pressure sintering at a temperature of 1350° C. or higher under physically stable conditions.
JP60117179A 1985-01-11 1985-05-30 High heat conductivity sintered body and manufacture Pending JPS61275168A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60117179A JPS61275168A (en) 1985-05-30 1985-05-30 High heat conductivity sintered body and manufacture
DE8585116660T DE3584515D1 (en) 1985-01-11 1985-12-31 HEAT SINK USING A SINTERED BODY WITH HIGH HEAT CONDUCTIVITY AND METHOD FOR THE PRODUCTION THEREOF.
EP8585116660A EP0194358B1 (en) 1985-01-11 1985-12-31 Heat sink using a sintered body having high heat-conductivity and method of manufacturing thereof
CA000499395A CA1275560C (en) 1985-01-11 1986-01-10 Sintered body having high heat-conductivity and method of manufacturing thereof
US08/046,422 US5332629A (en) 1985-01-11 1993-04-13 Boron nitride system including an hBN starting material with a catalyst and a sintered cNB body having a high heat conductivity based on the catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60117179A JPS61275168A (en) 1985-05-30 1985-05-30 High heat conductivity sintered body and manufacture

Publications (1)

Publication Number Publication Date
JPS61275168A true JPS61275168A (en) 1986-12-05

Family

ID=14705376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60117179A Pending JPS61275168A (en) 1985-01-11 1985-05-30 High heat conductivity sintered body and manufacture

Country Status (1)

Country Link
JP (1) JPS61275168A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176179A (en) * 1982-04-07 1983-10-15 科学技術庁無機材質研究所長 Manufacture of sintered body of cubic bron nitride
JPS5957967A (en) * 1982-09-27 1984-04-03 科学技術庁無機材質研究所長 Manufacture of light permeable cubic boron nitride fine body
JPS5988375A (en) * 1982-11-09 1984-05-22 住友電気工業株式会社 Sintered body for high hard tool and manufacture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176179A (en) * 1982-04-07 1983-10-15 科学技術庁無機材質研究所長 Manufacture of sintered body of cubic bron nitride
JPS5957967A (en) * 1982-09-27 1984-04-03 科学技術庁無機材質研究所長 Manufacture of light permeable cubic boron nitride fine body
JPS5988375A (en) * 1982-11-09 1984-05-22 住友電気工業株式会社 Sintered body for high hard tool and manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005097098A (en) * 2003-08-20 2005-04-14 Showa Denko Kk Cubic boron nitride, its producing method and whetstone and sintered body using it
JP4684599B2 (en) * 2003-08-20 2011-05-18 昭和電工株式会社 Method for producing cubic boron nitride

Similar Documents

Publication Publication Date Title
KR940001657B1 (en) Sintered silicon carbide ceramic body of high electrical resistivity
JPS59131583A (en) Ceramic carrier
EP0287841A2 (en) Sintered body of aluminum nitride
US5908798A (en) In-situ toughened alpha prime-sialon-based ceramics
US5773733A (en) Alumina-aluminum nitride-nickel composites
JP3648541B2 (en) High thermal conductivity silicon nitride ceramics and method for producing the same
US5332629A (en) Boron nitride system including an hBN starting material with a catalyst and a sintered cNB body having a high heat conductivity based on the catalyst
US4539298A (en) Highly heat-conductive ceramic material
JPS5849510B2 (en) Chitsuka Aluminum Shouketsutaino
JPS61275168A (en) High heat conductivity sintered body and manufacture
US4772575A (en) Method of manufacturing sintered compact of cubic boron nitride
EP0267623B1 (en) Black sintered body of aluminum nitride and process for producing the same
JPS60151281A (en) Aluminum nitride sintered body
US6124225A (en) Cutting tools and wear resistant articles and material for same
JPS61201668A (en) High heat conducting aluminum nitride sintered body and manufacture
JPS5969473A (en) Sintering silicon carbide powder composition
EP0194358B1 (en) Heat sink using a sintered body having high heat-conductivity and method of manufacturing thereof
JP2664063B2 (en) Aluminum nitride pre-sintered body, aluminum nitride sintered body, and method for producing them
JP2742600B2 (en) Aluminum nitride sintered body and method for producing the same
JP2000044351A (en) Silicon nitride-based heat radiating member and its production
JPS61270263A (en) Manufacture of high heat conductive aluminum nitride sintered body
JPS62252374A (en) Manufacture of aluminum nitride sintered body
JPS61205670A (en) Aluminum nitride sintered body and manufacture
KR100310549B1 (en) Ceramic bodies, methods for manufacturing the same, and electrical members comprising the same
JP2735645B2 (en) Black aluminum nitride sintered body