JPS61275122A - Production of reducing agent for producing silicon suitable to solar cell - Google Patents

Production of reducing agent for producing silicon suitable to solar cell

Info

Publication number
JPS61275122A
JPS61275122A JP11513385A JP11513385A JPS61275122A JP S61275122 A JPS61275122 A JP S61275122A JP 11513385 A JP11513385 A JP 11513385A JP 11513385 A JP11513385 A JP 11513385A JP S61275122 A JPS61275122 A JP S61275122A
Authority
JP
Japan
Prior art keywords
reducing agent
producing
solar cell
production
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11513385A
Other languages
Japanese (ja)
Inventor
Katsutoshi Igawa
井川 勝利
Matao Araya
荒谷 復夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP11513385A priority Critical patent/JPS61275122A/en
Publication of JPS61275122A publication Critical patent/JPS61275122A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To obtain a reducing agent for producing a silicon which is suitable to producing a solar cell, and improves the productivity by making carbonaceous powders controlled the ratio of a specific surface area and a mean particle size to coagulate into lumps with an aqueous solution of a sugar, thereby improving reactivity and stability against a crack. CONSTITUTION:The carbonaceous powders contolled a contour having the ratio of the specific surface area (m<2>/g)/the mean particle size (mum) of 1X10<3>-6X10<3>(m/g) to the prescribed value are prepared. The obtd. particles are formed into the lumps with the aqueous solution of a sort of sugars (such as a saccharose), followed by drying the obtd. massive carbon particles.

Description

【発明の詳細な説明】 く産業上の利用分野〉 本発明は、太陽電池級シリコンの製造に供する炭素質還
元剤の製造方法、特に高純度炭素質粉末を糖類の水溶液
によって塊成化処理して製造する方法に関する。
[Detailed Description of the Invention] Industrial Application Fields The present invention relates to a method for producing a carbonaceous reducing agent used in the production of solar cell-grade silicon, and in particular a method for agglomerating high-purity carbonaceous powder with an aqueous solution of sugars. The present invention relates to a method of manufacturing the same.

〈従来技術とその問題点〉 太陽電池級シリコン(Solar Grade−!Ji
、5OG−Siと略す)は現在珪石を還元して得た金属
シリコンを塩素化してガス体となし、このガスを精製会
還元する事により製造されているが、製造に要するエネ
ルギーは非常に大きく低コスト化には限界があるといわ
れている。
<Prior art and its problems> Solar grade silicon (Solar Grade-!Ji)
, 5OG-Si) is currently produced by chlorinating metallic silicon obtained by reducing silica stone to form a gas, and then reducing this gas to a refining process, but the energy required for production is extremely large. It is said that there are limits to cost reduction.

一方、最近国産の低品位珪砂を5OG−5i原料となり
うる純度まで精製する技術が確立されつつある。このよ
うにSi02からシリコンを直接製造する際に、還元剤
として活性炭あるいはカーボンブラック等を高純度化し
た炭素粉を糖類、炭水化物等の結合剤と混合して構成化
して使用している。
On the other hand, a technology has recently been established for refining domestically produced low-grade silica sand to a purity that can be used as a raw material for 5OG-5i. In this way, when directly producing silicon from Si02, highly purified carbon powder such as activated carbon or carbon black is used as a reducing agent by mixing it with a binder such as saccharide or carbohydrate.

西独特許第3013319号明細書には、5OG−9i
生成のためのSin 2の還元工程に対する高温溶融法
において活性化された炭素を砂糖又はセルロースのよう
な結合剤で石英砂と結合した錠剤の形で使用する方法が
開示され、又特開昭58−190809号に記載されて
いるように炭素粉を好ましくはフェノール樹脂で粒状化
し、予め粒状化された高純度SiO2と共に高温化で還
元する方法が、開示されている。
In the specification of West German Patent No. 3013319, 5OG-9i
A process is disclosed in which carbon activated in a high temperature melt process for the reduction step of Sin 2 for production is used in the form of tablets bound with quartz sand with a binder such as sugar or cellulose, and also in JP-A-58 190809, a method is disclosed in which carbon powder is granulated, preferably with a phenolic resin, and reduced together with previously granulated high-purity SiO2 at high temperature.

又特開昭52−88895号には、カーボンブラックに
糖類水溶液を混入して造粒する方法、特開昭55−13
8118号には活性炭及びカーボンブラックと糖、デン
プン、セルロース等の結合剤でペレット化して使用する
方法などが開示されている。
Furthermore, JP-A No. 52-88895 describes a method of granulating carbon black by mixing an aqueous saccharide solution.
No. 8118 discloses a method of pelletizing activated carbon or carbon black with a binder such as sugar, starch, or cellulose.

しかしながら、炭素質粉末を塊成化する5OG−5i製
造用の還元剤を種々検討した結果、還元剤の反応性及び
塊製品の強度の面で炭素質粉末の表面形状が特に重要で
あることを知見した。
However, as a result of examining various reducing agents for producing 5OG-5i that agglomerates carbonaceous powder, we found that the surface shape of the carbonaceous powder is particularly important in terms of the reactivity of the reducing agent and the strength of the agglomerated product. I found out.

表面形状が滑らかすぎる場合反応性が劣りSiO→Si
C反応が遅くなる。塊成品細孔中へのSiCの侵入速度
が停滞するなどで5rC−+S+反応が遅くなり5OG
−5iの生成速度が低下する。
If the surface shape is too smooth, the reactivity will be poor and SiO → Si
C The reaction becomes slower. The 5rC-+S+ reaction slows down due to the stagnation of the penetration rate of SiC into the pores of the agglomerate, resulting in 5OG
-5i production rate decreases.

また1表面形状が粗らすぎる場合は炭素質粉末の塊成化
時に結合剤の消費量が多くなり、加熱下での熱分解量が
著しく増加する。この結果、熱割れ発生が顕著となり操
業中の微粉の発生増大及び棚つりなどによる操業困難を
引き起こす恐れがある。
Furthermore, if the surface shape is too rough, the amount of binder consumed during agglomeration of the carbonaceous powder increases, and the amount of thermal decomposition under heating increases significantly. As a result, the occurrence of thermal cracking becomes noticeable, which may cause operational difficulties due to increased generation of fine powder during operation and shelf hanging.

〈発明の目的〉 従って、本発明の目的は炭素質粉末の表面形状を適度な
レベルに管理して塊成品に適度な反応性と熱割れ安定性
をもたせることにより安定且つ高生産性をもって太陽電
池級シリコン製造用還元剤の製造方法を提供しようとす
るにある。
<Object of the Invention> Therefore, the object of the present invention is to produce solar cells stably and with high productivity by controlling the surface shape of carbonaceous powder to an appropriate level and giving the agglomerated product appropriate reactivity and thermal cracking stability. The present invention aims to provide a method for producing a reducing agent for producing grade silicon.

〈発明の構成〉 本発明は、炭素質粉末を塊成化して太陽電池級シリコン
製造用の還元剤を製造する方法において1次素質粉末の
比表面積(m″/g)と平均粒径(−)との比がI X
1G3〜6 X103 (m/g) テアル炭素質粉末
を少なくとも1種の糖類の水溶液にて塊成化し、塊成化
した炭素粒を乾燥することを特徴とする太陽電池級シリ
コン製造用還元剤の製造方法を提供するものである。
<Structure of the Invention> The present invention provides a method for producing a reducing agent for producing solar cell-grade silicon by agglomerating carbonaceous powder. ) is the ratio of I
1G3~6 X103 (m/g) A reducing agent for producing solar cell-grade silicon, which is characterized by agglomerating TEAL carbonaceous powder with an aqueous solution of at least one type of saccharide and drying the agglomerated carbon grains. A manufacturing method is provided.

以下本発明を更に詳細に説明する。The present invention will be explained in more detail below.

炭素粒をシャフト炉へ装入し、底部からSiO2を導入
して還元する5OG−9i製造プロセスでは1粒径lO
〜20■、気孔率45〜55駕、圧潰強度3kgf以上
でさらに高反応性であり生成したSiCが炭素粒中の細
孔に侵入できるよう表面形状が粗である炭素粒が必要と
されている。
In the 5OG-9i manufacturing process, carbon grains are charged into a shaft furnace and SiO2 is introduced from the bottom for reduction.
~20■, porosity of 45 to 55, crushing strength of 3 kgf or more, higher reactivity, and a rough surface so that the generated SiC can penetrate into the pores in the carbon grains are required. .

このような炭素粒の原料としてはタール蒸留より得られ
るクレオソート油、あるいはエチレンボトムなどを12
00〜1900℃の高温火炎中に噴霧して製造するカー
ボンブラックが反応性の他生産性、価格の面で優れてい
るといえる。
As raw materials for such carbon grains, creosote oil obtained by tar distillation, ethylene bottoms, etc.
It can be said that carbon black produced by spraying into a high-temperature flame of 00 to 1900°C is excellent in terms of reactivity, productivity, and cost.

カーボンブラックは通常、平均粒径が20〜100−1
比表面積が20〜300 rn’/gのものが市販され
ている。
Carbon black usually has an average particle size of 20 to 100-1
Those having a specific surface area of 20 to 300 rn'/g are commercially available.

ピッチコークスや冶金用コークスと比べて1粒径が小さ
く、且つ比表面積が10〜100倍高いのが特徴である
Compared to pitch coke and metallurgical coke, it is characterized by a smaller particle size and a 10 to 100 times higher specific surface area.

しかし粒径性布巾が狭い事1表面活性が低い事などから
塊成化しに〈<、塊成化しても強度が低い。
However, because the particle size of the cloth is narrow and the surface activity is low, it is difficult to agglomerate. Even when agglomerated, the strength is low.

しかしながら、カーボンブラックは糖類の水溶液にはな
じみが良好で、例えば庶糖10〜30%の水溶液の場合
は皿型造粒機などにて10〜20mmに塊成化すること
が可能である。
However, carbon black has a good affinity with aqueous solutions of sugars, and for example, in the case of an aqueous solution containing 10 to 30% sucrose, it is possible to agglomerate the solution to 10 to 20 mm using a dish-type granulator.

しかし1本発明者らが知見した結果によると炭素質粉末
の表面形状が粗すぎると塊成品の強度が低下する。
However, according to the findings of the present inventors, if the surface shape of the carbonaceous powder is too rough, the strength of the agglomerated product decreases.

一方、表面形状が滑らかすぎると塊成品の強度は向上す
るものの、反応性が低下してシリコンの生成速度が遅く
なり生産性が低下する傾向がある。
On the other hand, if the surface shape is too smooth, although the strength of the agglomerated product is improved, the reactivity tends to decrease, the rate of silicon production slows down, and the productivity tends to decrease.

そこで本発明者らは炭素質粉末の表面特性と塊成品強度
及びシリコン生成速度について鋭意検討した結果、炭素
質粉末の表面特性として炭素質粉末の比表面積(m″/
g)と平均粒径(−)との比(s/g)で表わすことが
適しており、更にその値とL[I X103〜8 X1
03 、好ましくは2X1G3〜3X103に選択する
のが塊成品の強度及び反応性両面で良好であるとの事実
を見出した。
Therefore, the present inventors conducted extensive studies on the surface properties, agglomerated product strength, and silicon production rate of carbonaceous powder, and found that the specific surface area (m''/
It is suitable to express it as the ratio (s/g) between g) and the average particle diameter (-), and further, that value and L[I
03, preferably 2X1G3 to 3X103, has been found to be favorable in terms of both strength and reactivity of the agglomerated product.

比表面積と平均粒径との比に対する塊成品強度およびS
i生成速度の関係を第1図に示す、第1図は後述する実
施例に基くものである。同図において比表面積と平均粒
径との比(以下A値という)がI X 103 (m/
g)未満では表面の形状が滑らかになりすぎ、SiO→
SiC及びSiCq)炭素粒中への侵入が低下するため
Siの生産性が劣る。A値が8X103(■/g)をこ
えると塊成化時に使用する結合剤の量が増加し加熱時に
おける結合剤の熱分解に伴なう亀裂生成が顕著となり、
強度が著しく低下する。炭素質粉末の表面特性を示すA
値がlX103〜6X103〜6×103(m/g)の
範囲では塊成品の強度が3kgf以上でかつSiの生成
速度が20g/H以上と良好な結果を示している。
Agglomerate strength and S vs. ratio of specific surface area to average particle size
The relationship between i generation speed is shown in FIG. 1, which is based on an example described later. In the figure, the ratio of specific surface area to average particle diameter (hereinafter referred to as A value) is I x 103 (m/
If it is less than g), the surface shape becomes too smooth and SiO→
(SiC and SiCq) Si productivity is poor because penetration into carbon grains is reduced. When the A value exceeds 8X103 (■/g), the amount of binder used during agglomeration increases, and crack formation due to thermal decomposition of the binder during heating becomes noticeable.
Strength is significantly reduced. A showing the surface characteristics of carbonaceous powder
When the value is in the range of 1X103 to 6X103 to 6X103 (m/g), the strength of the agglomerated product is 3 kgf or more and the Si production rate is 20 g/H or more, which shows good results.

炭素質粉末としては、カーボンブラックが好ましいが、
活性炭や他の炭素質粉末でも前記の表面特性を示すもの
であれば本発明の目的に合う。
Carbon black is preferable as the carbonaceous powder, but
Activated carbon and other carbonaceous powders that exhibit the above-mentioned surface properties are suitable for the purpose of the present invention.

この特性を示す炭素質粉末を原料として、糖類の水溶液
で塊成化する。糖類としては、カーボンブラックとのな
じみのよい血糖の他に、血糖と類似の熱分解特性を示す
糖類が適している0例えば、ブドウ糖などの単糖類、麦
芽糖、乳糖などの二糖類、さらにセルロース、ソグニン
などの多糖類にも適用でき、これらの糖類は1種で用い
てもよく、さらに2種以上混合して用いてもよい。
Carbonaceous powder exhibiting this characteristic is used as a raw material and agglomerated with an aqueous solution of sugars. In addition to blood sugar, which has good compatibility with carbon black, suitable sugars include sugars that exhibit thermal decomposition properties similar to blood sugar.For example, monosaccharides such as glucose, disaccharides such as maltose and lactose, cellulose, It can also be applied to polysaccharides such as sognin, and these saccharides may be used alone or in combination of two or more.

これらの糖類の水溶液により塊成化する際に、塊成化し
た炭素粒の強度を規定するために、糖類の量も重要であ
る。前述の表面特性に対して適する量としてはlO〜3
0wt$である。 10wtX未満では乾燥過程で亀裂
発生が起こり強度が低下する。
When agglomerated with an aqueous solution of these saccharides, the amount of saccharides is also important in order to define the strength of the agglomerated carbon particles. A suitable amount for the above-mentioned surface properties is lO~3
It is 0wt$. If it is less than 10 wtX, cracks will occur during the drying process and the strength will decrease.

30wt$を越えるのは経済的ではない。It is not economical to exceed 30wt$.

次に塊成化した炭素粒を乾燥することによって目的の還
元剤を製造する。この乾燥条件としては好ましくは12
0〜130℃で送風乾燥し、炭素粒の水分を8wH以下
に乾燥する。 8wt%を越えると炭素粒の強度が低く
、亀裂も発生する。 表面特性を管理した炭素質粉末を
原料として糖類の水溶液で塊成化し、乾燥することによ
り、圧潰強度が高く、Siの生成速度の良好な炭素粒が
得られる。
Next, the target reducing agent is produced by drying the agglomerated carbon particles. This drying condition is preferably 12
Blow drying is performed at 0 to 130°C to reduce the moisture content of the carbon particles to 8 wH or less. If it exceeds 8 wt%, the strength of the carbon grains will be low and cracks will occur. By agglomerating carbonaceous powder with controlled surface properties as a raw material in an aqueous solution of sugars and drying it, carbon particles with high crushing strength and a good rate of Si production can be obtained.

更に、乾燥した後に、N2などの不活性雰囲気中で28
0〜320℃、好ましくは300℃近傍の温度で加熱処
理することにより、炭素粒の強度がより高くなり、亀裂
が発生せず、5OG−Si製造プロセスの還元剤として
最も適する炭素粒が得られる。
Furthermore, after drying, the
By heat-treating at a temperature of 0 to 320°C, preferably around 300°C, the strength of the carbon grains becomes higher, no cracks occur, and carbon grains are obtained that are most suitable as a reducing agent in the 5OG-Si manufacturing process. .

〈実施例〉 比表面積と平均粒径との比A値が0.lX103〜10
X 103 (+s/g)の範囲を示すカーボンブラッ
クを30駕濃度の血糖水溶液を用いて1000φ鵬■の
皿型造粒機で転勤造粒して血糖を17wtX含有した1
(1〜20■■の炭素粒を製造した。この時の炭素粒の
含水量は35〜4’0 %であった。これを125℃で
70分間送風乾燥して水分を8%とした後、マツフル炉
にてN2雰囲気下300℃で80分間保持した後冷却し
て成品を得た。
<Example> The ratio A value of specific surface area to average particle size is 0. lX103~10
Carbon black having a range of
(Carbon grains of 1 to 20 ■■ were produced. The moisture content of the carbon grains at this time was 35 to 4'0%. After drying with air at 125°C for 70 minutes to bring the moisture content to 8%, The product was maintained at 300° C. for 80 minutes in a N2 atmosphere in a Matsufuru furnace and then cooled to obtain a finished product.

成品を1500℃に保持したタンマン炉に入れ、底部か
らSi02をIg#+inの速度で吹込み、Siの製造
実験を行った。
The product was placed in a Tammann furnace maintained at 1500° C., and Si02 was blown into it from the bottom at a rate of Ig#+in to conduct an Si production experiment.

これらの結果を表1に示す、A値がlX103(m/g
)未満のものは圧潰強度は5kgF以上と高いもののS
iの生成速度が15g/H以下と低い、しかし本発明の
A値がlX103〜8X103(濁/1)を示すものは
圧潰強度は3kgf以上、Si生成速度は20〜22g
/)I 、収率70〜80%と良好な結果かえられた。
These results are shown in Table 1, and the A value is lX103 (m/g
), the crushing strength is as high as 5 kgF or more, but S
The production rate of i is as low as 15 g/H or less, but the A value of the present invention is 1X103 to 8X103 (turbidity/1), the crushing strength is 3 kgf or more, and the Si production rate is 20 to 22 g.
/)I, good results were obtained with a yield of 70-80%.

一方、A値が8 X 103 (W/g)をこえるもの
の場合、圧潰強度がlltgf以下に低下し、実験中、
塊成品の棚つりが頻発し、円滑な実験が困難であった。
On the other hand, when the A value exceeds 8 x 103 (W/g), the crushing strength decreases to less than lltgf, and during the experiment,
Agglomerated products frequently hung on shelves, making it difficult to conduct experiments smoothly.

表   1Table 1

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は炭素質粉末の表面特性(比表面積と平均粒径と
の比)と炭素粒の強度及び還元剤の反応性を表現するS
i生成速度の関係を示したグラフである。 なお、曲線(a)はA値とSi生成速度との関係を示し
1曲線(b)はA値と炭素粒の圧積強度との関係を示す
Figure 1 shows the surface characteristics of carbonaceous powder (ratio of specific surface area to average particle size), strength of carbon particles, and reactivity of reducing agent.
It is a graph showing the relationship between i generation speed. Note that curve (a) shows the relationship between the A value and the Si production rate, and curve (b) shows the relationship between the A value and the compaction strength of carbon grains.

Claims (1)

【特許請求の範囲】[Claims] 炭素質粉末を塊成化して太陽電池級シリコン製造用の還
元剤を製造する方法において、炭素質粉末の比表面積(
m^2/g)と平均粒径(μm)との比が1×10^3
〜6×10^3(m/g)である炭素質粉末を少なくと
も1種の糖類の水溶液にて塊成化し、塊成化した炭素粒
を乾燥することを特徴とする太陽電池級シリコン製造用
還元剤の製造方法。
In a method for producing a reducing agent for producing solar cell-grade silicon by agglomerating carbonaceous powder, the specific surface area (
m^2/g) and the average particle diameter (μm) is 1 x 10^3
A method for producing solar cell-grade silicon characterized by agglomerating carbonaceous powder with a particle size of ~6×10^3 (m/g) in an aqueous solution of at least one type of saccharide and drying the agglomerated carbon grains. Method for producing reducing agent.
JP11513385A 1985-05-28 1985-05-28 Production of reducing agent for producing silicon suitable to solar cell Pending JPS61275122A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11513385A JPS61275122A (en) 1985-05-28 1985-05-28 Production of reducing agent for producing silicon suitable to solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11513385A JPS61275122A (en) 1985-05-28 1985-05-28 Production of reducing agent for producing silicon suitable to solar cell

Publications (1)

Publication Number Publication Date
JPS61275122A true JPS61275122A (en) 1986-12-05

Family

ID=14655094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11513385A Pending JPS61275122A (en) 1985-05-28 1985-05-28 Production of reducing agent for producing silicon suitable to solar cell

Country Status (1)

Country Link
JP (1) JPS61275122A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081373A1 (en) * 2001-04-05 2002-10-17 Kabushiki Kaisha B . M Method for producing silicon
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002081373A1 (en) * 2001-04-05 2002-10-17 Kabushiki Kaisha B . M Method for producing silicon
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Similar Documents

Publication Publication Date Title
US3837843A (en) Process for thermal production of magnesium
EP2334598A2 (en) Production of solar-grade silicon from silicon dioxide
US3765869A (en) Method of producing iron-ore pellets
CA1116156A (en) Granular activated carbon manufacture from brown coal treated with concentrated inorganic acid without pitch
US2428178A (en) Method of making finely divided volatilized silica
CN1055320C (en) Production method of direct reduction shaft and blast furnace cold-bonded pellet
CN110423900A (en) A method of extracting magnesium from ferronickel slag
US5154905A (en) Method for producing unsintered cristobalite particles
US3630959A (en) Carbonization of bituminous coals
US4126422A (en) Method of densifying metal oxides
JPS61275122A (en) Production of reducing agent for producing silicon suitable to solar cell
JPS60145352A (en) Manufacture of ferroboron
US3914113A (en) Titanium carbide preparation
JPS61222918A (en) Production of reducing agent for producing solar cell-grade silicon
CN109319790B (en) Method for producing chlorosilane by using fine silicon powder and chlorosilane product
JP2013510796A (en) Method for producing silicon
CN106430196B (en) A kind of method that Mn oxide gas-based reduction prepares manganess carbide
US3786133A (en) Titanium carbide preparation
CN106676287B (en) A kind of utilization method of boron mud
CN1176312A (en) Production process of molybdenum carbide
KR100217850B1 (en) Process for production of active carbon
RU2771203C1 (en) Method for preparation of charge for the production of silicon carbide
NO810147L (en) PROCEDURE FOR BINDING AN AGGLOMERATE.
SU996389A1 (en) Process for making ceramic material
JPS6164809A (en) Treatment of cast iron melt by silicon carbide