JPS61222918A - Production of reducing agent for producing solar cell-grade silicon - Google Patents

Production of reducing agent for producing solar cell-grade silicon

Info

Publication number
JPS61222918A
JPS61222918A JP6306685A JP6306685A JPS61222918A JP S61222918 A JPS61222918 A JP S61222918A JP 6306685 A JP6306685 A JP 6306685A JP 6306685 A JP6306685 A JP 6306685A JP S61222918 A JPS61222918 A JP S61222918A
Authority
JP
Japan
Prior art keywords
solar cell
reducing agent
grade silicon
carbon
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6306685A
Other languages
Japanese (ja)
Inventor
Katsutoshi Igawa
井川 勝利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP6306685A priority Critical patent/JPS61222918A/en
Publication of JPS61222918A publication Critical patent/JPS61222918A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Abstract

PURPOSE:To produce a reducing agent for the production of an inexpensive solar cell-grade silicon and resistant to cracking even by the rapid heating to a high temperature, by aggregating carbonaceous powder with an aqueous solution of a sugar, drying the aggregate, and heating in an inert atmosphere. CONSTITUTION:Carbonaceous powder (e.g. carbon black) is aggregated by using a binder consisting of an aqueous solution of a sugar such as sucrose, glucose, lactose, etc. The aggregated carbon particle is dried to a water-content of <=6% and heat-treated in an inert atmosphere at 280-320 deg.C to obtain the objective reducing agent for producing a solar cell-grade silicon. The obtained carbon particle is resistant to cracking even by the rapid heating to about >=1,500 deg.C in the production of the solar cell-grade silicon. Accordingly the operational troubles can be prevented, and the agent can be produced at a low cost because the use of expensive binder is unnecessary.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、太陽電池級シリコンの製造に供する炭素質還
元剤の製造方法、特に高純度炭素粉を糖類の水溶液によ
って塊成化処理して製造する方法に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a carbonaceous reducing agent used in the production of solar cell grade silicon, and in particular to a method for producing a carbonaceous reducing agent for producing solar cell-grade silicon, in particular a method for agglomerating high-purity carbon powder with an aqueous solution of sugars. Relating to a method of manufacturing.

〈従来技術とその問題点〉   5 太陽電池級シリコン(5olar Grade−9i 
5OG−Siと略す)は、現在珪石を還元して得た金属
シリコンを塩素化してガス体となし、このガスを精製還
元する事により製造されているが、製造に要するエネル
ギーが非常に大きく低コスト化には限界があるといわれ
ている。
<Prior art and its problems> 5 Solar cell grade silicon (5olar Grade-9i
Currently, 5OG-Si (abbreviated as 5OG-Si) is produced by chlorinating metallic silicon obtained by reducing silica stone to form a gas, and then purifying and reducing this gas, but the energy required for production is extremely large and low. It is said that there are limits to cost reduction.

一方、最近国産の低品位珪砂を5OG−Siの原料とな
りうる純度まで精製す4る技術が確立されつつある。こ
のように、5i02からシリコンを製造する際に用いら
れる還元剤として活性炭あるいはカーボンブラック等の
高純度化した炭素粉を糖類、炭水化物等の結合剤と混合
し塊成化して使用している。
On the other hand, a technology has recently been established for refining domestically produced low-grade silica sand to a purity that can be used as a raw material for 5OG-Si. As described above, highly purified carbon powder such as activated carbon or carbon black is mixed with a binder such as sugar or carbohydrate and agglomerated to be used as a reducing agent when producing silicon from 5i02.

西ドイツ国特許出願公開第3013319号明細書には
、5OG−9i生成のための5i02の還元工程に対す
る高温溶融法において活性化された炭素を砂糖又はセル
ローズのような結合剤で石英砂と結合した錠剤の形で使
用する方法が開示され、また特開昭58−190809
号に記載されているように、炭素粉を好ましくはフェノ
ール樹脂で粒状化し、予め粒状化された高純度5i02
と共に高温化で還元する方法が開示されている。
DE 30 13 319 A1 describes tablets in which carbon activated in a high temperature melt process is combined with quartz sand with a binder such as sugar or cellulose for the reduction step of 5i02 to produce 5OG-9i. A method for using it in the form of
The carbon powder is preferably granulated with phenolic resin and pre-granulated high purity 5i02
In addition, a method for reduction at high temperature is disclosed.

また、特開昭52−66895号にはカーボンブラック
に糖密水溶液を混入して造粒する方法、特開昭55−1
36116号には活性炭およびカーボンブラックを糖、
デンプン、セルロース等の結合剤でペレット化する方法
などが開示されている。
In addition, JP-A No. 52-66895 describes a method of granulating carbon black by mixing a sugar-tight aqueous solution, and JP-A No. 55-1
No. 36116 contains activated carbon and carbon black with sugar,
A method of pelletizing with a binder such as starch or cellulose has been disclosed.

しかしながらこれらに共通してみられる炭素質粉末を糖
などの結合剤で粒状化後乾燥したのみの炭素粒では、1
soo〜2000℃の高温雰囲気下へ急速にさらされる
と熱割れの発生が著しく。
However, carbon grains, which are commonly found in these types of carbon powders, are simply granulated with a binder such as sugar and then dried.
When rapidly exposed to a high temperature atmosphere of soo~2000℃, thermal cracking occurs significantly.

操業中、微粉末の大量発生や棚つりなどによる操業困難
を引き起こす恐れがある。又、フェノール樹脂の場合、
前述熱割れの程度は軽減するものの皆無とはいえない事
及び価格が高いなどの欠点を有している。
During operation, there is a risk of operational difficulties due to the generation of a large amount of fine powder and hanging shelves. In addition, in the case of phenolic resin,
Although the degree of thermal cracking mentioned above can be reduced, it still has drawbacks such as the fact that it is not completely eliminated and the price is high.

〈発明の目的〉 したがって、本発明の目的は、高価な結合剤を使用する
ことなく、高温への急熱に対し亀裂の生成がなく、安定
かつ安価に操業することができる太陽電池級シリコン製
造用還元剤の製造方法を提供しようとするにある。
<Objective of the Invention> Therefore, the object of the present invention is to produce solar grade silicon that does not require the use of expensive binders, does not generate cracks when rapidly heated to high temperatures, and can be operated stably and inexpensively. The purpose of the present invention is to provide a method for producing a reducing agent for use in reducing agents.

〈発明の構成〉 本発明は、炭素質粉末を塊成化して太陽電池級シリコン
製造用の還元剤を製造する方法において、炭素質粉末を
少なくとも1種の糖類の水溶液にて塊成化し、塊成化し
た炭素粒の水分を6%以下に乾燥した後に、不活性雰囲
気下で280〜320℃の加熱処理を行うことを特徴と
する太陽電池級シリコン製造用還元剤の製造方法を提供
するものである。
<Configuration of the Invention> The present invention provides a method for producing a reducing agent for producing solar cell-grade silicon by agglomerating carbonaceous powder. Provided is a method for producing a reducing agent for producing solar cell-grade silicon, which comprises drying the converted carbon grains to a moisture content of 6% or less, and then subjecting them to heat treatment at 280 to 320°C in an inert atmosphere. It is.

以下、本発明を更に詳細に説明する。The present invention will be explained in more detail below.

炭素粒をシャフト炉へ装入し、底部から5i02を導入
して還元する5OG−Si製造プロセスでは、粒径10
〜20mm、気孔率45〜55%、圧潰強度3 Kgf
以りでさらに高反応性である炭素粒が要求されている。
In the 5OG-Si production process, carbon grains are charged into a shaft furnace and 5i02 is introduced from the bottom to reduce the grain size.
~20mm, porosity 45-55%, crushing strength 3 Kgf
Therefore, carbon particles with even higher reactivity are required.

このような炭素粒の原料としては、タール蒸留より得ら
れるクレオソート油、あるいはエチレンボトムなどを1
200〜1600℃の高温火炎中に噴霧して製造するカ
ーボンブラックが反応性の他、生産性、価格の面で優れ
ているといえる(第1図参照)。
As a raw material for such carbon grains, creosote oil obtained by tar distillation or ethylene bottom can be used.
It can be said that carbon black produced by spraying into a high-temperature flame of 200 to 1,600°C is superior in terms of reactivity, productivity, and cost (see Figure 1).

カーボンブラックは粒径が20〜60−と微細な事、粒
度分布巾が狭い事、表面活性が低い事などから塊成化し
にくく、塊成化したとしても強度が低い、しかしながら
糖類の水溶液とはなじみが良好で、例えば蔗糖10〜3
0%の水溶液の場合は皿型造粒機などにてlO〜15t
sに塊成化する事は可能であるが炭素粒の水分が30〜
40%となり、強度も低い、この問題は乾燥工程を設け
る事で一般に解決できる。
Carbon black is difficult to agglomerate due to its fine particle size of 20 to 60 mm, narrow particle size distribution, and low surface activity, and even if it does agglomerate, its strength is low. However, an aqueous solution of sugars Good blending, e.g. sucrose 10-3
In the case of a 0% aqueous solution, use a dish-type granulator etc. to produce 10 to 15 tons.
Although it is possible to agglomerate carbon grains into
40%, and the strength is low. This problem can generally be solved by providing a drying process.

本発明者等の実験した結果では120〜130°Cで送
風乾燥する方法が塊成化した炭素粒の乾燥時の割れが最
も少なく、圧潰強度も3〜5Kgfで良好であり、らつ
経済的であることが判明している0通常ではこの段階で
還元剤として供するのであるが、当5OG−9iプロセ
スの場合、シャフト炉へ装入され瞬時に1500〜20
00℃という高温にさらされるため、そのままでは蔗糖
の急速な熱分解反応及び内部との温度差による応力など
により亀裂が発生し、圧潰強度は1Kgf以下に低下し
て操業困難となってしまう。
According to the results of experiments conducted by the present inventors, the method of blow drying at 120 to 130°C has the least cracking of agglomerated carbon grains during drying, has a good crushing strength of 3 to 5 kgf, and is economical. Normally, it is used as a reducing agent at this stage, but in the case of the 5OG-9i process, it is charged into the shaft furnace and instantly reduced to 1,500 to 20
Since it is exposed to a high temperature of 00°C, cracks will occur due to the rapid thermal decomposition reaction of sucrose and stress caused by the temperature difference with the inside, and the crushing strength will drop to less than 1 kgf, making operation difficult.

そこで本発明者等は炭素質粉末と結合剤である糖類の熱
分解特性を検討すると共に多数の加熱処理実験による結
果から5OG−Siプロセスに適する還元剤の製造方法
として、炭素粉を糖類の水溶液で塊成化して得られた炭
素粒を、その水分を6at%以下に乾燥した後N2など
の不活性雰囲気で280〜320℃、好ましくは300
℃近傍の温度で加熱処理する方法が良好であるのとの事
実を見出した。加熱処理前の水分は6%を越えると炭素
粒の強度が低く亀裂も発生する。
Therefore, the present inventors studied the thermal decomposition characteristics of carbonaceous powder and saccharide as a binder, and based on the results of numerous heat treatment experiments, we decided to use carbon powder in an aqueous solution of saccharide as a method for producing a reducing agent suitable for the 5OG-Si process. After drying the carbon particles obtained by agglomerating the carbon particles to a moisture content of 6 at% or less, the carbon particles are dried at 280 to 320°C, preferably 300°C in an inert atmosphere such as N2.
It has been found that a method of heat treatment at a temperature around °C is effective. If the moisture content before heat treatment exceeds 6%, the strength of the carbon grains will be low and cracks will occur.

次に加熱処理温度に関しては第1図に示すカーボンブラ
ックと蔗糖の熱分解特性の例に代表されるように、結合
剤としての蔗糖が180℃付近で融解・膨張し、200
℃付近から急速に脱水反応を中心とした熱分解を呈し、
400℃付近ではほぼ終了する挙動から説明できる。
Next, regarding the heat treatment temperature, as typified by the example of thermal decomposition characteristics of carbon black and sucrose shown in Figure 1, sucrose as a binder melts and expands at around 180°C.
It exhibits rapid thermal decomposition centered on dehydration reaction from around ℃,
This can be explained by the behavior that almost ends at around 400°C.

すなわち、280℃未満では分解量が少なすぎるため還
元剤の使用過程(1,500〜1700℃)で亀裂が生
成し、320℃をこえると分解量が多すぎるため脱ガス
速度が上昇して加熱処理過程で亀裂が生成するのである
0本発明の加熱処理温度の範囲280〜320℃での分
解量では脱ガスによる応力発生に対処できるだけの強度
を有しているため亀裂が発生しないのである。従って、
本発明の温度範囲での加熱処理を適用する場合炭素粒の
強度を規定する蔗糖のような糖類量も重要であり、その
量は、本発明者等の実験によれば10〜30wt%必要
となっている。糖類の量が10wt%未満では加熱処理
過程で亀裂発生が顕著となり、30wt%をこえるのは
経済的でないからである。
In other words, if the temperature is below 280°C, the amount of decomposition is too small and cracks will form during the process of using the reducing agent (1,500-1700°C), and if it exceeds 320°C, the amount of decomposition will be too large and the rate of degassing will increase, causing heating. Although cracks are generated during the treatment process, cracks do not occur because the amount of decomposition at the heat treatment temperature range of 280 to 320° C. according to the present invention is strong enough to cope with stress generation due to degassing. Therefore,
When applying heat treatment in the temperature range of the present invention, the amount of sugars such as sucrose that determines the strength of carbon grains is also important, and according to experiments conducted by the present inventors, the amount is required to be 10 to 30 wt%. It has become. This is because if the amount of saccharide is less than 10 wt%, cracking will become noticeable during the heat treatment process, and if it exceeds 30 wt%, it is not economical.

糖類としては、蔗糖と類似の熱分解特性を示す他の糖類
、例えば、ブドウ糖などの単糖類、麦芽糖、乳糖などの
二糖類、さらにセルロース、リグニンなどの多糖類にも
適用でき、同様の加熱処理によって5OG−Siプロセ
スの還元剤に適する炭素粒が製造できる。これらの糖類
は1種で用いてもよく、さらに2種以上混合して用いて
もよい。
As for sugars, it can be applied to other sugars that exhibit similar thermal decomposition properties to sucrose, such as monosaccharides such as glucose, disaccharides such as maltose and lactose, and polysaccharides such as cellulose and lignin, and can be applied to similar heat treatments. Carbon particles suitable as a reducing agent for the 5OG-Si process can be produced by this method. These saccharides may be used alone or in combination of two or more.

く実 施 例〉 平均粒径25−のカーボンプラーツタを30%濃度の蔗
糖水溶液を用いて1000φ一層の皿型造粒機で転動造
粒して蔗糖を17%含有した、lO〜15履鵬の炭素粒
を製造した。この時の炭素粒の含水量は37wt%であ
る。
Example: Carbon plastron with an average particle size of 25 mm was tumble granulated using a 30% sucrose aqueous solution in a 1000φ single-layer dish-shaped granulator to obtain lO~15 particles containing 17% sucrose. Peng carbon grains were produced. The water content of the carbon particles at this time was 37 wt%.

これを125℃で70分間送風乾燥して水分6%とした
後マツフル炉にてN2雰囲気下で表1に示す250〜3
50℃の範囲の5種類の温度で60分保持した後冷却し
て5種類の炭素粒を得た。そして分解による減量、亀裂
の生成状況圧潰強度等を測定した。さらにこれらの加熱
処理品を1500℃の炉へ入れて急熱して10分間保持
した後冷却して亀裂の生成状況を圧潰強度を試験した。
This was air-dried at 125°C for 70 minutes to reduce the moisture content to 6%, and then heated in a Matsufuru furnace under an N2 atmosphere to a 250-3
Five types of carbon grains were obtained by holding at five different temperatures in the range of 50°C for 60 minutes and then cooling. Then, weight loss due to decomposition, crack formation, crushing strength, etc. were measured. Furthermore, these heat-treated products were placed in a furnace at 1500° C. to rapidly heat them, held for 10 minutes, and then cooled to examine the occurrence of cracks and the crushing strength.

これらの結果を表1に示す。These results are shown in Table 1.

150℃処理の場合、加熱減量は水分減量が主体で8.
4%であり、亀裂生成は生じなかったが、次工程での1
500℃の急速加熱によって全部破壊し、圧潰強度は0
.3KgFまで低下した。
In the case of 150°C treatment, the heating loss is mainly due to water loss.8.
4%, no crack formation occurred, but 1% in the next process.
It was completely destroyed by rapid heating at 500℃, and the crushing strength was 0.
.. It decreased to 3KgF.

350℃処理の場合、加熱減量はIB、2%に達し水分
の他、蔗糖の約80%が分解した事になる。
In the case of treatment at 350°C, the loss on heating reached IB, 2%, which means that in addition to water, about 80% of the sucrose was decomposed.

この場合、炭素粒の亀裂発生は著しく約70%に達し、
圧潰強度は1.2Kgfまで低下している。
In this case, the occurrence of cracks in carbon grains reaches approximately 70%,
The crushing strength has decreased to 1.2Kgf.

本発明範囲の280〜320℃で行ったケースはいずれ
も亀裂生成は軽微で、300℃の場合は皆無であり、さ
らに1500℃に急熱しても亀裂発生が認められず、圧
潰強度も4Kgfとすぐれていた。
In all cases conducted at 280 to 320°C, which is the range of the present invention, crack formation was slight, and in the case of 300°C, there was no cracking.Furthermore, even when rapidly heated to 1500°C, no cracking was observed, and the crushing strength was 4Kgf. It was excellent.

炭素粒の含水量を6wt%より小さくし、また蔗糖含有
量を変えて同様の実験を行ったところ。
A similar experiment was conducted with the water content of the carbon grains lower than 6 wt% and the sucrose content changed.

同様の結果が得られた。Similar results were obtained.

表    1 炭素粒の総数 〈発明の効果〉 本発明より製造された炭素粒は、5OG−9iプロセス
で1500°C以上の急熱に対し亀裂の生成もなく、操
業とのトラブルを防止することができ、また高価な結合
剤を使用することもないので、5OG−3iプロセスが
安定かつ安価に操業できる効果を有している。
Table 1 Total number of carbon grains <Effects of the invention> The carbon grains produced according to the present invention do not generate cracks when subjected to rapid heating of 1500°C or more in the 5OG-9i process, and troubles with operation can be prevented. Moreover, since no expensive binder is used, the 5OG-3i process has the advantage of being able to operate stably and at low cost.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原料(カーボンブラックと蔗糖)と乾燥後炭素
粒の熱分解特性を示すグラフである。 この図において、蔗糖は200℃より分解開始し、40
0℃で分解総量の80%に至る。800℃での炭化収率
は22%であるカーボンブラックはほとんど分解せず、
800℃での炭素収率は98.5%であることを示して
いる。 FIG、1 温    贋 (°C)
FIG. 1 is a graph showing the thermal decomposition characteristics of raw materials (carbon black and sucrose) and dried carbon particles. In this figure, sucrose starts to decompose at 200°C, and 40°C
At 0°C, 80% of the total amount of decomposition occurs. Carbon black, which has a carbonization yield of 22% at 800°C, hardly decomposes,
The carbon yield at 800°C is shown to be 98.5%. FIG, 1 Temperature (°C)

Claims (1)

【特許請求の範囲】[Claims] 炭素質粉末を塊成化して太陽電池級シリコン製造用の還
元剤を製造する方法において、炭素質粉末を少なくとも
1種の糖類の水溶液にて塊成化し、塊成化した炭素粒の
水分を6%以下に乾燥した後に、不活性雰囲気下で28
0〜320℃の加熱処理を行うことを特徴とする太陽電
池級シリコン製造用還元剤の製造方法。
In a method for producing a reducing agent for producing solar cell-grade silicon by agglomerating carbonaceous powder, the carbonaceous powder is agglomerated in an aqueous solution of at least one type of sugar, and the water content of the agglomerated carbon grains is reduced to 6 After drying to less than 28% under an inert atmosphere
A method for producing a reducing agent for producing solar cell-grade silicon, which comprises performing a heat treatment at 0 to 320°C.
JP6306685A 1985-03-27 1985-03-27 Production of reducing agent for producing solar cell-grade silicon Pending JPS61222918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6306685A JPS61222918A (en) 1985-03-27 1985-03-27 Production of reducing agent for producing solar cell-grade silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6306685A JPS61222918A (en) 1985-03-27 1985-03-27 Production of reducing agent for producing solar cell-grade silicon

Publications (1)

Publication Number Publication Date
JPS61222918A true JPS61222918A (en) 1986-10-03

Family

ID=13218594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6306685A Pending JPS61222918A (en) 1985-03-27 1985-03-27 Production of reducing agent for producing solar cell-grade silicon

Country Status (1)

Country Link
JP (1) JPS61222918A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504089A (en) * 2008-09-30 2012-02-16 エボニック デグサ ゲーエムベーハー Carbohydrate pyrolysis method

Similar Documents

Publication Publication Date Title
CN103540172A (en) Method and system for preparing regenerative carbon black by deashing and modifying pyrolytic carbon of waste rubber and plastic products
CN107500788A (en) A kind of insulating fire brick and preparation method thereof
CN112299849B (en) Method for preparing battery carbon rod by using regenerated graphite
EP3165619B1 (en) Method for smelting nickel oxide ore
JP3173336B2 (en) High strength rock wool and method for producing the same
CN1055320C (en) Production method of direct reduction shaft and blast furnace cold-bonded pellet
US3630959A (en) Carbonization of bituminous coals
CA1116156A (en) Granular activated carbon manufacture from brown coal treated with concentrated inorganic acid without pitch
US4074990A (en) Method of preparing colemanite-containing glass batch
JPS61222918A (en) Production of reducing agent for producing solar cell-grade silicon
KR20230022398A (en) Thermally Treated Lignin Method for Producing Carbon from Thermally Treated Lignin
JPS60145352A (en) Manufacture of ferroboron
CN115924863A (en) Device and method for producing silicon nitride powder by liquid phase method
CN110255553A (en) A kind of method that high-temperature vacuum prepares high purity graphite
JPS61275122A (en) Production of reducing agent for producing silicon suitable to solar cell
CN115340094A (en) Semi-coke-containing reducing agent for silicon smelting and preparation method thereof
CN112359243B (en) Method for preparing indium tin alloy by reducing ITO waste target by starch
JP2013510796A (en) Method for producing silicon
US1729162A (en) Manufacture of vegetable char
US2936217A (en) Method for chlorinating titanium oxide material
RU2771203C1 (en) Method for preparation of charge for the production of silicon carbide
CN1194235A (en) Amorphous particulate active carbon made from antiracite and its producing method
JP6014012B2 (en) Coke production method and coke
JPS58115016A (en) Preparation of fine powdery silicon carbide
CN106676287B (en) A kind of utilization method of boron mud