JPS6127501A - Manufacture of synthetic resin optical element having refractive index distribution - Google Patents
Manufacture of synthetic resin optical element having refractive index distributionInfo
- Publication number
- JPS6127501A JPS6127501A JP14819284A JP14819284A JPS6127501A JP S6127501 A JPS6127501 A JP S6127501A JP 14819284 A JP14819284 A JP 14819284A JP 14819284 A JP14819284 A JP 14819284A JP S6127501 A JPS6127501 A JP S6127501A
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- monomer
- lens
- index distribution
- transparent gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Moulds For Moulding Plastics Or The Like (AREA)
- Casting Or Compression Moulding Of Plastics Or The Like (AREA)
- Polymerisation Methods In General (AREA)
Abstract
Description
【発明の詳細な説明】
J、−7発明の技術分野
本発明は、軸方向に屈折率分布を有する合成樹脂光学素
子の製造方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION J.-7 Technical Field of the Invention The present invention relates to a method for manufacturing a synthetic resin optical element having a refractive index distribution in the axial direction.
3−2 従来技術
近年、球面レンズの収差補正を光軸方向に屈折率分布を
つけることに依って行なう事が提案されており、たとえ
ば球面と平面の屈折面に依って形成された凸レンズに於
いては、光軸方向の屈折率分布が、次に示す式(1)又
は(2)、n(z)−no(/−tZ) (
1)n (z ) −n □ V7:17−(2)(式
中n(z)は球面の中心から光軸方向に2の距離にある
点の屈折率、noは球面の中心の屈折率、tは正の定数
、2は球面の中心からの光軸方向の距離)を満たす様で
あれば、レンズの球面収差が飛躍的に減少することが理
論的に示されている。3-2 Prior Art In recent years, it has been proposed to correct aberrations of spherical lenses by creating a refractive index distribution in the optical axis direction. Then, the refractive index distribution in the optical axis direction is expressed by the following equation (1) or (2), n(z)-no(/-tZ) (
1) n (z) -n □ V7:17-(2) (In the formula, n(z) is the refractive index at a point located at a distance of 2 from the center of the spherical surface in the optical axis direction, and no is the refractive index at the center of the spherical surface. , t is a positive constant, and 2 is the distance from the center of the spherical surface in the optical axis direction), it has been theoretically shown that the spherical aberration of the lens is dramatically reduced.
上記のような軸方向屈折率分布レンズは一般に等屈折率
面がすべて光軸に垂直であるような三次元分布をもつが
、これ以外に等屈折率面が曲面を議すものも考えられる
。The above-mentioned axially graded index lens generally has a three-dimensional distribution in which all the equirefractive index surfaces are perpendicular to the optical axis, but it is also possible to consider lenses in which the equirefractive index surfaces are curved surfaces.
この概念を拡大すれば、球面レンズに等屈折率面が平面
または成る曲率の球面である様な屈折率分布をつける事
に依°って収差を自由に決定する事が出来ると考えられ
、この技術は、単に7個のレンズの収差補正のみならず
、例えば複数のレンズの組み合せから成るレンズシステ
ム中で成るレンズに関して要求される焦点距離と収差の
あらゆる組合せを実現できるものとしても非常に有用で
ある0
3、−3 解決しようとする問題点
この様な屈折率分布を形成する為には、素材中に所定の
屈折率分布を示現する組成分布を形成すれば良く、たと
えば無機ガラスを使用する場合にはイオン交換やOVD
法などの方法によって形成できる。しかしながら無機ガ
ラスを使用する場合、イオン交換にしても0VDKして
も、莫大な熱や真空の設備を必要とし、余り実用的では
ない。従ツ、 て、屈折率分布をもった曲面レンズを
製造するには、有機ガラスが有利である。Expanding this concept, it is thought that aberrations can be determined freely by giving a spherical lens a refractive index distribution such that the equirefractive index surface is a flat surface or a spherical surface with a certain curvature. The technology is extremely useful not only for correcting aberrations of seven lenses, but also for achieving any desired combination of focal length and aberration for a lens in a lens system consisting of a combination of lenses, for example. 0 3, -3 Problem to be solved In order to form such a refractive index distribution, it is sufficient to form a composition distribution that exhibits a predetermined refractive index distribution in the material, for example, by using inorganic glass. In some cases, ion exchange or OVD
It can be formed by methods such as the law. However, when inorganic glass is used, both ion exchange and 0VDK require enormous amounts of heat and vacuum equipment, which is not very practical. Accordingly, organic glasses are advantageous for manufacturing curved lenses with a refractive index distribution.
一方、合成樹脂を使用して光学機器などに使用するレン
ズを製造することは近年盛んになっており、プラスチッ
クレンズを用いたカメラも最近製作されそいる。特に、
球面収差が減少する非球面レンズを精密射出成形によっ
て製造する試みが最近性なわれているが、精密な形状精
度を有する金型を製造することは非常に難しく、更には
射出成形によって生じる歪みを除去することも難しいの
で、所望の性能が得られていないのが現状である。On the other hand, the use of synthetic resin to manufacture lenses for use in optical devices has become popular in recent years, and cameras using plastic lenses are also being manufactured recently. especially,
Recently, attempts have been made to manufacture aspheric lenses that reduce spherical aberration by precision injection molding, but it is extremely difficult to manufacture molds with precise shape accuracy, and it is difficult to reduce the distortion caused by injection molding. Since it is also difficult to remove, the current situation is that the desired performance cannot be obtained.
このような欠陥は、前記のような屈折率分布を形成した
球面レンズを製造することで大幅に改善しうろことがで
きる。前記のような屈折率分布を形成した球面レンズを
製造する方法としては、平板方法が既に知られている。Such defects can be greatly improved by manufacturing a spherical lens having a refractive index distribution as described above. A flat plate method is already known as a method for manufacturing a spherical lens having the above-mentioned refractive index distribution.
しかし、このような方法では、切削又は研磨などの後加
工に時間とコストがかかり、更に、形成した屈折率分布
を全て有効に使えないなどと言う欠点がある。However, such a method has disadvantages in that post-processing such as cutting or polishing takes time and cost, and furthermore, the formed refractive index distribution cannot be fully used effectively.
3、−q 発明の目的
本発明の目的は、この様な屈折率分布を有した球面レン
ズの製造方法において、上記のような欠点を解決し得る
7体成形法を提供することにある。3.-q OBJECT OF THE INVENTION An object of the present invention is to provide a seven-body molding method that can solve the above-mentioned drawbacks in a method of manufacturing a spherical lens having such a refractive index distribution.
3−5 発明の概要
上記の目的を達成する本発明方法は、
(a) 屈折率Haの網状重合体(共重合体を含む)
Paを形成する単量体(単量体混合物を含む)Maを一
定の曲率半径±Rの球面の成形面を有する円筒状成形容
器内に入れ、一部重合させて、透明ゲル物体を形成する
工程
(b) 前記Haとは異なる屈折率Nbを有する重合
体(共重合体を含む)PAを形成する単量体(単量体混
合物を含む)M善を液体、気体又は霧滴状態で前記透明
ゲル物体の平面又は球面から円筒の軸方向に拡散させる
と共に重合させ、屈折率が円筒の軸方向に連続的に変化
する屈折率分布を前記透明ゲル物体中に形成する工程
(c) 加熱等により重合を完結させて前記屈折率肴
布を固定化する工程を含む屈折率分布を有する合成樹脂
光学素子を一体成形によって製造する方法を要旨として
いる。以下に本発明の詳細な説明する。3-5 Summary of the Invention The method of the present invention that achieves the above objects includes: (a) reticular polymers (including copolymers) having a refractive index of Ha;
Monomers (including monomer mixtures) Ma forming Pa are placed in a cylindrical molding container having a spherical molding surface with a constant radius of curvature ±R, and partially polymerized to form a transparent gel object. Step (b) Adding a monomer (including a monomer mixture) that forms a polymer (including a copolymer) PA having a refractive index Nb different from that of the Ha in a liquid, gas, or atomized state. Step (c) of diffusing and polymerizing from the flat or spherical surface of the transparent gel object in the axial direction of the cylinder to form a refractive index distribution in the transparent gel object in which the refractive index changes continuously in the axial direction of the cylinder; (c) heating, etc. The gist of the present invention is a method for manufacturing a synthetic resin optical element having a refractive index distribution by integral molding, which includes a step of completing polymerization and fixing the refractive index cloth. The present invention will be explained in detail below.
まず屈折率NaO網状重合体(共重合体を含む、)pa
を形成する単量体(単量体混合物を含む)Maを平面成
形面と一定の曲率半径±Rの球面成形面とを有する円筒
状容器内に満たし、一部重合させて透明ゲル物体に成形
する。この透明ゲル物体は、溶剤に不溶な成分(網状構
造の重合体)をj〜り0重量%含んでいる。First, refractive index NaO network polymer (including copolymer) pa
A cylindrical container having a flat molding surface and a spherical molding surface with a constant radius of curvature ±R is filled with monomers (including monomer mixtures) Ma that form the , and is partially polymerized and molded into a transparent gel object. do. This transparent gel body contains 0 to 0% by weight of a component insoluble in a solvent (a polymer with a network structure).
次に、Naとは異なる屈折率NAを有する重合体(共重
合体を含む)を形成する単量体(単量体混合物を含む)
MAを液体・気体及び霧滴のいずれかの状態で前記透明
ゲル物体に接触させ、前記透明ゲル物体の前記平面又は
球面から円筒の軸方向に拡散・重合させて、屈折率が円
筒の軸方向に連続的に変化する屈折率分布を形成させる
。B(aが液体、気体及び霧滴状態の3種類の方法は各
々特公昭!;!;−1111/%特公昭j4−37!;
2/及び特願昭57−’133!;’I K述べられて
いる合成樹脂光伝送体の製造方法における拡散、重合方
法に準じて実施本
液などを応用して加熱等により重合を完結させて前記屈
折率分布を固定化する。本発明方法で成形できる軸方向
屈折率分布レンズの種々の例を第1図A〜FK示す。Next, a monomer (including a monomer mixture) forming a polymer (including a copolymer) having a refractive index NA different from that of Na
MA is brought into contact with the transparent gel object in the state of either liquid, gas, or mist droplets, and is diffused and polymerized from the plane or spherical surface of the transparent gel object in the axial direction of the cylinder, so that the refractive index changes in the axial direction of the cylinder. to form a continuously changing refractive index distribution. B (The three methods in which a is in the liquid, gas, and mist state are each Tokko Sho!;!;-1111/% Tokko Shoj4-37!;
2/ and special application 1984-'133! The refractive index distribution is fixed by applying the present solution and the like to complete the polymerization by heating or the like according to the diffusion and polymerization method in the method of manufacturing a synthetic resin optical transmission body described in IK. Various examples of axial gradient index lenses that can be molded by the method of the present invention are shown in FIGS. 1A to 1FK.
これらのレンズ10は一方の屈折面//Aが平面で他方
の屈折面//Bが凸または凹の球面で構成され、その内
部にはレンズ軸方向に変化する屈折率分布が与えられて
いる。そして等屈折率面12は第1図A、Bのものは光
軸に垂直であり、C,Dに示したものは球面屈折面//
Bとほぼ陰画率中心を一致させた球面形状を成し、E、
Fに示したレンズは球面屈折面と反対方向に曲率中心を
もつ球面形状を成している。These lenses 10 are composed of one refractive surface //A being a flat surface and the other refractive surface //B being a convex or concave spherical surface, and the inside thereof is given a refractive index distribution that changes in the lens axis direction. . The equirefractive index surfaces 12 shown in FIG. 1A and B are perpendicular to the optical axis, and those shown in C and D are spherical refractive surfaces.
It has a spherical shape with the center of the negative area almost coincident with B, and E,
The lens shown in F has a spherical shape with the center of curvature in the opposite direction to the spherical refractive surface.
また第1図A−Fの各レンズにおいて屈折率の増減方向
は、球面屈折率面側を最大として平面屈折面//AK:
向けて順次減少する分布をもつ場5合と逆に平面屈折面
//A側を最大として球面屈折面//B側に向けて順次
減少する分布をもつ夢合の二通りがある。In addition, in each lens shown in FIG. 1A to F, the direction of increase/decrease in refractive index is the maximum on the spherical refractive index surface side, and the planar refractive surface//AK:
There are two cases: case 5, which has a distribution that decreases sequentially toward the plane refractive surface //A side, and dream case, which has a distribution that is maximum on the plane refractive surface //A side and decreases sequentially toward the spherical refractive surface //B side.
そして第1図のB、C,Fに示した各レンズは球面側を
低屈折率に、A、D、Hのレンズでは平面側を低屈折率
にすれば球面収差は均一媒質を用いたレンズよりも小さ
くなる。一般には上記のレンズ形状と屈折率分布の組み
合せは単一レンズで低収差とするかあるいは組み合せて
使用する他のレンズの収差を補正し週る正または負の収
差をもつレンズとする等の用途に応じて適宜選択され、
本発明方法はこれらいずれのタイプのレンズも製造が可
能である。Each lens shown in B, C, and F in Figure 1 has a low refractive index on the spherical side, and lenses A, D, and H have a low refractive index on the flat side to eliminate spherical aberration. becomes smaller than In general, the above combination of lens shape and refractive index distribution is used to create a single lens with low aberrations, or to create a lens with positive or negative aberrations that corrects the aberrations of other lenses used in combination. be selected accordingly,
The method of the present invention can produce any of these types of lenses.
本発明で透明ゲル物体の原料となるべき単量体Maとし
ては、アリル基、アクリル酸基、メタクリル酸基または
ビニル基のうちの2種類以上の基を・有する単量体を用
いることができる。次に単量体Maの具体例を挙げる。As the monomer Ma to be the raw material for the transparent gel object in the present invention, a monomer having two or more types of groups among allyl group, acrylic acid group, methacrylic acid group, or vinyl group can be used. . Next, specific examples of monomer Ma will be given.
(1) アリル化合物
7タル酸ジアリル、イソフタル酸ジアリル、テレフタル
酸ジアリル、ジエチレングリコールビスアリルカーボネ
ート等のジアリルエステル、;トリメリド酸トリアリル
、リン酸トリアリル、亜リン酸トリアリル等のトリアリ
ルエステル;メタクリル酸アリル、アクリル酸アリル等
の不飽和酸アリルエステル。(1) Allyl compound 7 Diallyl esters such as diallyl talate, diallyl isophthalate, diallyl terephthalate, diethylene glycol bisallyl carbonate; triallyl esters such as triallyl trimellidate, triallyl phosphate, triallyl phosphite; allyl methacrylate; Unsaturated acid allyl esters such as allyl acrylate.
(2) R1,−R2−R3で表される化合物R1及
びR3がいずれもビニル基、アクリル基、ビニルエステ
ル基、またはメタクリル基である化合物:R1及びR3
のいずれか一方がビニル基、アクリル基、メタクリル基
及びビニルエステル基のtつの基のうちのいずれかであ
り、他方が残りの3つの基のうちのいずれかである化合
物。ここでR2は以下に示され2価の基のうちから選択
できる。(2) Compound represented by R1, -R2-R3 A compound in which R1 and R3 are both a vinyl group, an acrylic group, a vinyl ester group, or a methacrylic group: R1 and R3
A compound in which one of these groups is one of the following three groups: a vinyl group, an acrylic group, a methacrylic group, and a vinyl ester group, and the other is one of the remaining three groups. Here, R2 can be selected from the divalent groups shown below.
C−
OH3
−(c;H20H20)m−OH20H2−(m−0−
20)(cH2)P−(P=3〜1S)
(OH2)i
’OH200HQ 、 (1l−yl−’
〜3)(OH2)コ
(3)上記(1)と(2)の単量体の混合物、またはモ
ノビニル化合物、ビニルエステル類、アクリル酸エステ
ル類及ヒメタクリル酸エステル類の5種のうちの少なく
とも1種と上記(1)または(2)の単量体(またはそ
の混合物)との混合物。C- OH3-(c;H20H20)m-OH20H2-(m-0-
20) (cH2)P-(P=3~1S) (OH2)i'OH200HQ, (1l-yl-'
~3) (OH2) (3) A mixture of the monomers (1) and (2) above, or at least one of the five monovinyl compounds, vinyl esters, acrylic esters, and hymethacrylic esters. A mixture of a species and the monomer (1) or (2) above (or a mixture thereof).
また単量体Mbとしては、次のようなものが挙げらハる
。Furthermore, examples of the monomer Mb include the following.
(4) 0I(2=O−000Yで表わされる化合物
ただし、式中Xは水素原子あるいはアルキル基またはフ
ェニル基、
(OH2)74 H(J−i−ざ)、i−、プロピル基
、1−ブチル基、S−ブチル基、t−ブチル基、(h−
o〜2)
及び−(OH20H20)p−OH20H3(7’=/
〜6)から成る群から選ばれた基、または−(OF2)
a−F(a−t−+)、−(J2((3F2)b H(
b−/−ざ)、−cn2ca2o−cu2cr3、
−(cH2CH20)c OF2(3F2H(c−/〜
4’)、−CH2CH20・CH2(OF2)aF(a
−/−4)、−CH2(OF2)do(GFz)zF(
(1−t 〜x、1=t−4)及び−3i(002H5
)aから成る群より選ばれた基を表す。(4) A compound represented by 0I (2=O-000Y, where X is a hydrogen atom, an alkyl group, or a phenyl group, (OH2)74H(J-i-za), i-, a propyl group, 1- Butyl group, S-butyl group, t-butyl group, (h-
o~2) and -(OH20H20)p-OH20H3(7'=/
-6), or -(OF2)
a-F(a-t-+), -(J2((3F2)b H(
b-/-za), -cn2ca2o-cu2cr3, -(cH2CH20)c OF2(3F2H(c-/~
4'), -CH2CH20・CH2(OF2)aF(a
-/-4), -CH2(OF2)do(GFz)zF(
(1-t ~x, 1=t-4) and -3i (002H5
) represents a group selected from the group consisting of a.
(5) 0H2−aHoa−Rdで表される化合物.
0
ただし、式中Rdは−(OH2)f−OH3(f−0−
2>、−(cH2)gHCg冑l〜3)、
(h−o〜2)から成る群より選ばれた基を表す。(5) Compound represented by 0H2-aHoa-Rd.
0 However, in the formula, Rd is -(OH2)f-OH3(f-0-
Represents a group selected from the group consisting of 2>, -(cH2)gHCg1~3), and (ho~2).
(6) (41及び(5)の単量体の混合物。(6) A mixture of the monomers of (41 and (5)).
単量体Haとして上記(1)〜(3)、単量体Hbとし
て(4)〜(6)のいずれも組み合わせることができる
。Any of the above (1) to (3) as the monomer Ha and (4) to (6) as the monomer Hb can be combined.
また上記透明ゲル物体のゲル化状態を調節するには、(
3)項に挙げたように架橋性単量体Ma r不飽和基を
一つ有する単量体を添加する方法及びGBr4 、 C
01+*メルカプ′タン類等の連鎖移動剤を添加する方
法、または両者を併用する方法が有効である。In addition, in order to adjust the gelation state of the transparent gel object, (
As mentioned in section 3), the method of adding a crosslinking monomer Mar monomer having one unsaturated group and GBr4, C
A method of adding a chain transfer agent such as 01+*mercap'tans or a method of using both in combination is effective.
3−乙 発明の効果
本発明方法によれば、球面収差の小さい球面レンズのみ
ならず、要求される焦点距離と球面収差を有するレンズ
を一体成形することができ、後加工などの工程が不要な
ので、現在製造されている一プラスチック成形レンズと
殆ど同等のコストで精密な屈折率分布を有した球面レン
ズを製造することができる。3-B Effect of the Invention According to the method of the present invention, not only a spherical lens with small spherical aberration, but also a lens with the required focal length and spherical aberration can be integrally molded, and there is no need for post-processing steps. , it is possible to manufacture a spherical lens with a precise refractive index distribution at almost the same cost as a currently manufactured plastic molded lens.
3−7 発明の実施例 以下に実施例を用いて本発明を更に詳細に説明する。3-7 Examples of the invention The present invention will be explained in more detail below using Examples.
例えば、前記透明ゲル物体中K Mbを液体状態で拡散
・重合させる場合について述べると、第2図に示すよう
にまず開始剤を添加した単量体Maを所定量、一定の曲
率半径Rの凸面から成る底面を有する円筒型の成形容器
2に注入管3を通じて注入し、容器λ内の液上空間を排
気管tで排気しつつ窒素導入管Sで窒素ガスを送給して
窒素置換した後コックを閉じて密閉する。For example, in the case of diffusing and polymerizing KMb in the transparent gel body in a liquid state, as shown in FIG. The liquid is injected into a cylindrical molded container 2 having a bottom surface made of . Close the cock and seal.
容器を液面が容器中心軸と垂直になるように静置した上
で所定温度で所定時間加熱し、表面が平滑な前記透明ゲ
ル物体lを形成する。The container is left standing so that the liquid level is perpendicular to the central axis of the container, and then heated at a predetermined temperature for a predetermined time to form the transparent gel object 1 with a smooth surface.
次にN”aとは異なる屈折率を有する重合体(共重合体
を含む)Pbを形成、する単量体(単量体混合物を含む
)Hbを、注入管tを通じて容器中の透明ゲル物体lの
表面上に所定量注入す怠。その後、再び容器内を窒素置
換して密閉し、容器−を恒温槽に入れて所定温度で所定
時間、上記容器を加熱して、単量体Mbを透明ゲル物体
l中に表面からその表面に対して垂直方向に拡散・重合
させて屈折率が一方向(図示例で円筒状容器中心軸方向
)に連続的に変化する屈折率分布を形成させる。Next, a monomer (including a monomer mixture) Hb that forms a polymer (including a copolymer) Pb having a refractive index different from that of N''a is injected into the transparent gel body in the container through the injection tube t. After that, the inside of the container was replaced with nitrogen again and sealed, and the container was placed in a constant temperature bath and heated at a predetermined temperature for a predetermined time to remove the monomer Mb. It is diffused and polymerized into the transparent gel object l from the surface in a direction perpendicular to the surface to form a refractive index distribution in which the refractive index changes continuously in one direction (in the illustrated example, the direction of the central axis of the cylindrical container).
その後、更に所定温度で所定時間加熱処理して重合を完
結させることにより、第1図AK示すように一方の平面
から他方の凸面まで屈折率が厚み方向に連続的に変化す
る一定の曲率半径Rの凸面と平面から成るレンズを製造
することができる。Thereafter, by further heat-treating at a predetermined temperature for a predetermined period of time to complete the polymerization, a constant radius of curvature R such that the refractive index changes continuously in the thickness direction from one plane to the other convex surface as shown in FIG. It is possible to manufacture a lens consisting of a convex surface and a flat surface.
次に前記透明ゲル物体中にMbを一方向から気体又は霧
滴状態で拡散・重合させて第1図Aに示すレンズをつく
る場合について述べる。Next, a case will be described in which the lens shown in FIG. 1A is manufactured by diffusing and polymerizing Mb in the form of gas or mist droplets from one direction into the transparent gel body.
まず、前記透明ゲル物体は前述と同様な方法で容器中に
形成させる。First, the transparent gel body is formed in a container in the same manner as described above.
その後、単量体Hbを外部にて所定温度で加熱して気化
させるか(気体状態)又は超音波、スプレーノズルなど
で霧化させた(霧滴状態)上で、所定量窒素をキャリヤ
ーガスとして、容器中の透明ゲル物体の表面上に送り込
む。所定温度で所定時間上記容器を加温して単量体Mb
を透明ゲル物体中に表面からそ”の表面に対し垂直方向
に拡散・重合させて屈折率が一方向に連続的に変化する
屈折率分布を形成させる。その後容器内に窒素ガスを再
び送り込み、窒素置換した後所定温度で所定時間加熱処
理して重合を完結させて厚み方向に屈折率分布をもった
一定の曲率半径Rの凸面と平面から成るレンズを製造す
る。Thereafter, the monomer Hb is heated externally at a predetermined temperature to vaporize (gaseous state) or atomized using ultrasonic waves, a spray nozzle, etc. (fog droplet state), and a predetermined amount of nitrogen is added as a carrier gas. , onto the surface of the transparent gel object in the container. By heating the container at a predetermined temperature for a predetermined time, the monomer Mb
is diffused and polymerized into a transparent gel object in a direction perpendicular to its surface to form a refractive index distribution in which the refractive index changes continuously in one direction.Nitrogen gas is then fed into the container again. After nitrogen substitution, a heat treatment is performed at a predetermined temperature for a predetermined time to complete polymerization, thereby producing a lens consisting of a convex surface with a constant radius of curvature R and a flat surface with a refractive index distribution in the thickness direction.
気体状態で拡散・重合させる場合は、単量体Mbの蒸気
を含む雰囲気中のMbの蒸気の圧力があまりに低いとゲ
ル物体内のMb拡散量が小となって希望の屈折率分布が
得られないので、この圧力は絶対圧で/ mmHg以上
であることが好ましく、より好ましい圧力範囲はjmm
1g以上である。When diffusing and polymerizing in a gaseous state, if the pressure of the Mb vapor in the atmosphere containing monomer Mb vapor is too low, the amount of Mb diffused within the gel body will be small and the desired refractive index distribution will not be obtained. Since there is no
It is 1g or more.
以上の製造方法において、単量体MaとMbの各々が重
合体になった時の屈折率Na、、Nbはどちらか高くて
もかまわないが1.屈折率差の絶対値はo、oos 又
は、それ以上が好ましい。In the above manufacturing method, when each of the monomers Ma and Mb becomes a polymer, the refractive index Na or Nb may be higher than the other, but 1. The absolute value of the refractive index difference is preferably o, oos or more.
屈折率NaがNbより大きい場合には、以上9方法によ
り、光軸方向に前述(1)式又は(2)式で表わされる
屈折率分布を持ち、光軸に垂直な面内では、屈折率が一
様であるような合成樹脂凸レンズが一体成形で得られ、
従来の屈折率が一定であるレンズに比べて著しく球面収
差が減少したレンズを製造することができる。また、N
bがNaより大きい場合は、球面収差は増大するが、絶
対値が等しく、符号が逆の球面収差ができるレンズシス
テムにおいて、球面収差を補正することに使用される。When the refractive index Na is larger than Nb, by using the above nine methods, the refractive index distribution expressed by the above formula (1) or (2) is obtained in the optical axis direction, and in the plane perpendicular to the optical axis, the refractive index is A synthetic resin convex lens with uniformity can be obtained by integral molding.
It is possible to manufacture a lens with significantly reduced spherical aberration compared to conventional lenses with a constant refractive index. Also, N
If b is larger than Na, the spherical aberration increases, but it is used to correct spherical aberration in a lens system that produces spherical aberrations with equal absolute values and opposite signs.
以上は、球面収差を補正するために平凸レンズにおいて
平面から他方の曲率半径Rの凸面まで軸方向に屈折率が
変化する屈折率分布を有する合成樹脂光学素子(第1図
A)の製造例であるが、本発明によれば、その他第1図
B−F!i種類の屈折率分布を有した合成樹脂光学素子
も簡単に製造することができる。The above is an example of manufacturing a synthetic resin optical element (Fig. 1A) having a refractive index distribution in which the refractive index changes in the axial direction from a flat surface to the other convex surface with a radius of curvature R in a plano-convex lens in order to correct spherical aberration. However, according to the present invention, other figures 1B-F! A synthetic resin optical element having i types of refractive index distribution can also be easily manufactured.
例えば、第1図Bに示した様なレンズを製造するには第
2図の一定の曲率半径Rの凸面を有する円筒型容器20
代わりに第3図に示すような一定の曲率半径−Rの凹面
を有する円筒型容器−を使用すればよく、その後の製造
方法は、上記第1図Aのレンズの製造方法と同様である
。Na<Nbの時は低球面収差凹レンズとなる。For example, to manufacture a lens as shown in FIG. 1B, a cylindrical container 20 having a convex surface with a constant radius of curvature R as shown in FIG.
Instead, a cylindrical container having a concave surface with a constant radius of curvature R as shown in FIG. 3 may be used, and the subsequent manufacturing method is similar to that of the lens shown in FIG. 1A above. When Na<Nb, the lens becomes a concave lens with low spherical aberration.
また、第1図0.Dに示した様なレンズを製造するには
各々第を図(a)第5図((転)に示されているような
平面の成形面2Aと球面の成形面2Bを有する円筒型成
形容器λ中においてまず前記透明ゲルは凹面から成る型
の上部を注意深く取り去り、次に第を図、第5図の(旬
に示されているように第2図7と同様な円筒状容器上部
7を設置する。その後は上記第1図Aのレンズの製造方
法と同様に行なえば単量体M/Lはゲル体の球面の方か
ら拡散・重合して行き、等屈折率面がレンズの球面に対
して同心であるような屈折率分布を形成することができ
る。Also, Fig. 1 0. To manufacture a lens as shown in D, a cylindrical molding container having a flat molding surface 2A and a spherical molding surface 2B as shown in FIGS. In λ, the transparent gel is first carefully removed from the upper part of the mold, which has a concave surface, and then a cylindrical container upper part 7 similar to that shown in FIG. After that, if the manufacturing method of the lens shown in Fig. 1A is followed, the monomer M/L will be diffused and polymerized from the spherical surface of the gel body, and the equirefractive index surface will be on the spherical surface of the lens. It is possible to form a refractive index distribution that is concentric with respect to the other.
更に、第1図EK示したようなレンズを製造するには、
第1図Cのレン、ズあ製造法と同様の方法を使用すれば
良い。ただし、第441iU(41において、H4を前
記透明ゲル物体の凸面から拡、散させる場合が異なる。Furthermore, in order to manufacture a lens as shown in FIG. 1EK,
A method similar to the method for manufacturing the lens and the lens shown in FIG. 1C may be used. However, in the 441iU (41), the case where H4 is diffused from the convex surface of the transparent gel object is different.
この場合は、中心に微小な円形の穴が開いたマスクを前
記透明ゲル物体の中心に合わせて、凸面上に設置した後
、単量体M4を第を図(A)のように容器中に入れ、凸
面の方から拡散させる。In this case, a mask with a small circular hole in the center is aligned with the center of the transparent gel object and placed on the convex surface, and then the monomer M4 is placed in the container as shown in Figure (A). and spread it from the convex side.
すると、MAは前記透明ゲル物体中を放射状に拡散・重
合して行き、第1図Eに示したようなレンズが製造され
る。Then, MA diffuses and polymerizes radially within the transparent gel object, producing a lens as shown in FIG. 1E.
最後に第1図FK示したようなレンズを製造するには、
第3図(a)に示されているような円筒型容器中におい
て、まず前記透明ゲル物体を形成させる。その後、平面
から成る型の上部を注意深く取り去り、第1図Eのレン
ズの製造法と同様に、中心に微小な円形の穴lrAが開
いたマスクざを前記透明ゲル物体の中心に合わせて平面
上に設置した後、単量体MAを第6図(旬のように容器
中に入れ、平面の方から拡散させる。するとMAは前記
透明ゲル物体中を放射状に拡散・重合して行き、第1図
FK示したようなレンズが製造される。第1図A〜Fに
おいて、球面収差の大きを制御するには、前記透明ゲル
物体の転化率及び拡散時の温度・時間等を調節すれば良
い。Finally, to manufacture a lens like the one shown in Figure 1 FK,
The transparent gel body is first formed in a cylindrical container as shown in FIG. 3(a). Thereafter, the upper part of the flat mold is carefully removed, and the mask ring with a small circular hole lrA in the center is aligned with the center of the transparent gel object and placed on the flat surface in the same manner as in the manufacturing method of the lens shown in FIG. 1E. After placing the monomer MA in the container as shown in Fig. 6, it is diffused from the flat side. Then, the MA diffuses and polymerizes radially in the transparent gel body, and the first A lens as shown in Figure FK is manufactured.In Figures 1A to 1F, the magnitude of spherical aberration can be controlled by adjusting the conversion rate of the transparent gel object and the temperature and time during diffusion. .
以上に述べたように本発明によれば、球面収差を自由に
決定してレンズを製造することができる。As described above, according to the present invention, a lens can be manufactured by freely determining the spherical aberration.
第1図AないしFは本発明方法で製造できる種々のレン
ズ形状と屈折率等分布面形状との組み合せ例を示す断面
図、第2図は本発明方法で凸球面レンズを成形する方法
の一例を示す断面図、第3図は凹球面レンズを成形する
方法の一例を示す断面図、第1図(a) 、 (b)は
母材成型と単量体Mb 拡散を別容器中で行なって凸レ
ンズを成形する実施例を示す断面図、第5図は同上方法
で凹レンズを成形する実施例を示す断面図、第3図(a
) 、 (b)はレンズの屈折率等分布面の曲率中心が
レンズ屈折面の曲率中心に対して反対側にあるような分
布形状をもつレンズを成形する方法の一例を示す断面図
である。
l・・・透明ゲル物体、2・・・成形容器J II 6
11単量体Mの注入管
l・・・単量体Mb注入管 10・・・レンズ//A、
//B−−・屈折面 12・・・等屈折率面第1図
第6図
ン1A to 1F are cross-sectional views showing examples of combinations of various lens shapes and uniform refractive index distribution surface shapes that can be manufactured by the method of the present invention, and FIG. 2 is an example of a method for molding a convex spherical lens by the method of the present invention. Figure 3 is a cross-sectional view showing an example of a method for molding a concave spherical lens, and Figures 1 (a) and (b) show that molding of the base material and diffusion of monomer Mb are performed in separate containers. 5 is a sectional view showing an example of molding a convex lens, FIG. 5 is a sectional view showing an example of molding a concave lens using the same method as above, and FIG.
) and (b) are cross-sectional views showing an example of a method for molding a lens having a distribution shape such that the center of curvature of the uniform refractive index distribution surface of the lens is on the opposite side to the center of curvature of the refractive surface of the lens. l...transparent gel object, 2...molded container J II 6
11 Monomer M injection tube l... Monomer Mb injection tube 10... Lens //A,
//B--Refractive surface 12... Equal refractive index surface Figure 1 Figure 6 N
Claims (1)
を形成する単量体(単量体混合物を含む)Maを一定の
曲率半径±Rの球面の成形面を有する円筒状容器内に入
れ、一部重合させて、透明ゲル物体を形成する工程。 (b)前記Naとは異なる屈折率N^bを有する重合体
(共重合体を含む)P^bを形成する単量体(単量体混
合物を含む)M^bを液体、気体又は霧滴状態で前記透
明ゲル物体の平面又は球面から円筒の軸方向に拡散させ
ると共に重合させ、屈折率が円筒の軸方向に連続的に変
化する屈折率分布を前記透明ゲル物体中に形成する工程 (c)加熱等により重合を完結させて前記屈折率分布を
固定化する工程を含む屈折率分布を有する合成樹脂光学
素子を1体成形によって製造する方法。[Claims] (a) A network polymer (including a copolymer) with a refractive index of Na, Pa
A process of placing monomers (including monomer mixtures) Ma forming the molecule into a cylindrical container having a spherical molding surface with a constant radius of curvature ±R, and partially polymerizing it to form a transparent gel object. (b) A monomer (including a monomer mixture) M^b forming a polymer (including a copolymer) P^b having a refractive index N^b different from that of Na is a liquid, gas, or mist. Diffusion in the form of droplets from the plane or spherical surface of the transparent gel object in the axial direction of the cylinder and polymerization to form a refractive index distribution in the transparent gel object in which the refractive index continuously changes in the axial direction of the cylinder ( c) A method for manufacturing a synthetic resin optical element having a refractive index distribution by one-piece molding, which includes a step of fixing the refractive index distribution by completing polymerization by heating or the like.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14819284A JPS6127501A (en) | 1984-07-17 | 1984-07-17 | Manufacture of synthetic resin optical element having refractive index distribution |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14819284A JPS6127501A (en) | 1984-07-17 | 1984-07-17 | Manufacture of synthetic resin optical element having refractive index distribution |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6127501A true JPS6127501A (en) | 1986-02-07 |
Family
ID=15447309
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14819284A Pending JPS6127501A (en) | 1984-07-17 | 1984-07-17 | Manufacture of synthetic resin optical element having refractive index distribution |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6127501A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503576A (en) * | 1987-08-19 | 1989-11-30 | インテグレイテッド・ソーラ・テクノロジイズ・コーポレーション | Concentrator for conducted light rays having optical density with large gradient, lenses with large shapes and compound lenses, and methods of manufacturing the same |
WO2000041650A1 (en) * | 1999-01-12 | 2000-07-20 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
WO2001071411A2 (en) * | 2000-03-20 | 2001-09-27 | California Institute Of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
EP1658829A1 (en) * | 2000-03-20 | 2006-05-24 | California Institute of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
US7115305B2 (en) | 2002-02-01 | 2006-10-03 | California Institute Of Technology | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
JP2011016272A (en) * | 2009-07-08 | 2011-01-27 | Menicon Co Ltd | Plastic lens and method for producing the same |
JP2011162765A (en) * | 2010-01-14 | 2011-08-25 | Canon Inc | Organic-inorganic composition material and production process thereof, and optical element |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5637521A (en) * | 1979-09-04 | 1981-04-11 | Kubota Ltd | Calorimeter for weighing of food |
-
1984
- 1984-07-17 JP JP14819284A patent/JPS6127501A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5637521A (en) * | 1979-09-04 | 1981-04-11 | Kubota Ltd | Calorimeter for weighing of food |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01503576A (en) * | 1987-08-19 | 1989-11-30 | インテグレイテッド・ソーラ・テクノロジイズ・コーポレーション | Concentrator for conducted light rays having optical density with large gradient, lenses with large shapes and compound lenses, and methods of manufacturing the same |
US6824266B2 (en) | 1999-01-12 | 2004-11-30 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
AU766157B2 (en) * | 1999-01-12 | 2003-10-09 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
US7837326B2 (en) | 1999-01-12 | 2010-11-23 | Calhoun Vision, Inc. | Lenses capable of post-fabrication power modification |
US6450642B1 (en) | 1999-01-12 | 2002-09-17 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
US7210783B2 (en) | 1999-01-12 | 2007-05-01 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
WO2000041650A1 (en) * | 1999-01-12 | 2000-07-20 | California Institute Of Technology | Lenses capable of post-fabrication power modification |
US6813097B2 (en) | 1999-01-12 | 2004-11-02 | California Institute Of Technology | Lenses capable of post-fabrication modulus change |
CN1306918C (en) * | 1999-01-12 | 2007-03-28 | 加利福尼亚技术学院 | Lenses capable of post-fabrication power modification |
US6749632B2 (en) | 2000-03-20 | 2004-06-15 | California Institute Of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
WO2001071411A3 (en) * | 2000-03-20 | 2002-03-07 | California Inst Of Techn | Application of wavefront sensor to lenses capable of post-fabrication power modification |
WO2001071411A2 (en) * | 2000-03-20 | 2001-09-27 | California Institute Of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
EP2042125A3 (en) * | 2000-03-20 | 2009-04-15 | California Institute of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
EP1658829A1 (en) * | 2000-03-20 | 2006-05-24 | California Institute of Technology | Application of wavefront sensor to lenses capable of post-fabrication power modification |
US7115305B2 (en) | 2002-02-01 | 2006-10-03 | California Institute Of Technology | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
US7700157B2 (en) | 2002-02-01 | 2010-04-20 | California Institute Of Technology | Method of producing regular arrays of nano-scale objects using nano-structured block-copolymeric materials |
JP2011016272A (en) * | 2009-07-08 | 2011-01-27 | Menicon Co Ltd | Plastic lens and method for producing the same |
JP2011162765A (en) * | 2010-01-14 | 2011-08-25 | Canon Inc | Organic-inorganic composition material and production process thereof, and optical element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4208364A (en) | Process for the production of contact lenses | |
DK592289A (en) | PROCEDURE FOR THE MANUFACTURE OF FORMED HYDROGEN PRODUCTS, INCLUDING CONTACT LENSES | |
DK0433085T3 (en) | Process for making molded hydrogel articles, including contact lenses | |
US20070257387A1 (en) | Package mold combination | |
JPS60175009A (en) | Production of plastic optical element having refractive index distribution | |
JPS6127501A (en) | Manufacture of synthetic resin optical element having refractive index distribution | |
BR8202377A (en) | PROCESS OF FORMING HYDROPHYL POLYMERIC GEL MOLD USED IN THE POLYMERIZATION AND COMPOSITION OF HYDROPHYL GEL POLYMERS PRODUCED BY THIS PROCESS | |
JPH02165933A (en) | Manufacture of microlens array | |
JPS6223001A (en) | Production of spherical plastic lens | |
JPS6120714A (en) | Manufacture of synthetic resin optical element having refractive index dispersion | |
JPS58159506A (en) | Manufacture of synthetic resin optical transmitter | |
JPH0355801B2 (en) | ||
JPS6232402A (en) | Production of synthetic resin spherical lens | |
JPS62113102A (en) | Production of spherical plastic lens | |
JPH0585881B2 (en) | ||
JPH0374166B2 (en) | ||
JPH0530845B2 (en) | ||
JPS63218903A (en) | Production of light transmission body and array consisting of synthetic resin | |
JPS58217511A (en) | Production of transparent plastic | |
JPS60249103A (en) | Preparation of light divergent synthetic resin body | |
JPS6232401A (en) | Production of synthetic resin spherical lens | |
JPH0225482B2 (en) | ||
JPS58164617A (en) | Resin for plastic lens | |
JPS55102632A (en) | Method for manufacturing non-fogging article | |
JPH0486604A (en) | Production of plastic optical transmission body |