JPS6127446B2 - - Google Patents

Info

Publication number
JPS6127446B2
JPS6127446B2 JP18351580A JP18351580A JPS6127446B2 JP S6127446 B2 JPS6127446 B2 JP S6127446B2 JP 18351580 A JP18351580 A JP 18351580A JP 18351580 A JP18351580 A JP 18351580A JP S6127446 B2 JPS6127446 B2 JP S6127446B2
Authority
JP
Japan
Prior art keywords
heating
temperature
heated
command
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18351580A
Other languages
Japanese (ja)
Other versions
JPS57105678A (en
Inventor
Toshuki Ishikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP18351580A priority Critical patent/JPS57105678A/en
Publication of JPS57105678A publication Critical patent/JPS57105678A/en
Publication of JPS6127446B2 publication Critical patent/JPS6127446B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of Heat Treatment Processes (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Control Of Temperature (AREA)

Description

【発明の詳細な説明】 本発明は、連続式加熱炉の加熱制御方法及び装
置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heating control method and apparatus for a continuous heating furnace.

連続式加熱炉は、熱間圧延工程で鋼板、形鋼等
を製造する前に、鋼片を熱間圧延工程で必要とさ
れる所定温度に加熱する場合に用いられている。
A continuous heating furnace is used to heat a steel billet to a predetermined temperature required in a hot rolling process before manufacturing steel plates, sections, etc. in the hot rolling process.

連続式加熱炉には、予熱帯、加熱帯を有する二
ゾーン式のもの、予熱帯、加熱帯、均熱帯を有す
る三ゾーン式のもの等があり、第1図には従来の
三ゾーン式のものが示されている。
Continuous heating furnaces include two-zone types with a preheating zone and heating zone, and three-zone types with a preheating zone, heating zone, and soaking zone. Figure 1 shows the conventional three-zone type furnace. something is shown.

図において、被加熱体は三つの加熱ゾーン10
a(予熱帯)、10b(加熱帯)、10c(均熱
帯)を上流から下流に順次通過して所定温度に加
熱され、一定の速度で抽出されて次の圧延工程に
送られる。予熱帯10aは炉内に案内された被加
熱体を予熱する区間であり、加熱帯10bは予熱
帯10aを通過した被加熱体を十分に加熱する区
間であり、均熱帯10cは加熱帯10bを通過し
た被加熱体の温度を均等にする区間である。
In the figure, the object to be heated has three heating zones 10.
It sequentially passes through a (preparation zone), 10b (heating zone), and 10c (soaking zone) from upstream to downstream, is heated to a predetermined temperature, is extracted at a constant speed, and is sent to the next rolling process. The preheating zone 10a is a section for preheating the object to be heated guided into the furnace, the heating zone 10b is a section for sufficiently heating the object to be heated that has passed through the preheating zone 10a, and the soaking zone 10c is a section for preheating the object to be heated that has passed through the preheating zone 10a. This is a section that equalizes the temperature of the object to be heated that has passed through it.

各加熱ゾーン10a、10b、10cには、各
各加熱制御装置が設けられているが、ここでは加
熱ゾーン10aの加熱制御装置のみを代表して説
明する。
Each of the heating zones 10a, 10b, and 10c is provided with a heating control device, but only the heating control device of the heating zone 10a will be described here as a representative.

加熱ゾーン10aでの加熱を行なうために、燃
料管12a、空気管14aからそれぞれ燃料、空
気が供給されており、燃料管12aから供給され
る燃料の燃焼により被加熱体の雰囲気温度が上昇
して被加熱体が加熱される。そして、燃料、空気
の流量は燃料流量加熱器16a、空気流量検出器
18aにより検出されており、燃料流量検出器1
6aの検出信号100aは空気比設定器20a及
び燃料流量指示計21aに、空気流量検出器18
aの検出信号102aは空気調節器22aにそれ
ぞれ供給されている。空気比設定器20aは検出
信号100aにより燃料流量に応じた空気流量指
令104aを空気調節器22aに供給することが
でき、空気調節器22aは空気流量指令104
a、検出信号102aにより空気弁24aを制御
して空気流量を燃料流量に応じたものとすること
ができる。
In order to perform heating in the heating zone 10a, fuel and air are supplied from a fuel pipe 12a and an air pipe 14a, respectively, and the atmospheric temperature of the object to be heated rises due to combustion of the fuel supplied from the fuel pipe 12a. The object to be heated is heated. The flow rates of fuel and air are detected by the fuel flow heater 16a and the air flow detector 18a, and the fuel flow rate detector 1
The detection signal 100a of 6a is sent to the air ratio setter 20a and the fuel flow rate indicator 21a, and the air flow rate detector 18
The detection signals 102a of a are respectively supplied to the air conditioners 22a. The air ratio setting device 20a can supply the air flow rate command 104a according to the fuel flow rate to the air conditioner 22a based on the detection signal 100a, and the air conditioner 22a can supply the air flow rate command 104 according to the fuel flow rate.
a. The air valve 24a can be controlled by the detection signal 102a to make the air flow rate correspond to the fuel flow rate.

加熱ゾーン10aで加熱された被加熱体の実温
度は熱電対26aにより検出され実温度検出信号
変換器27aにより実温度検出信号106aに変
換され、加熱温度指令回路28aから加熱温度指
令108aが供給される温度制御回路30aに供
給されている。この加熱温度指令108aは各加
熱ゾーン10aにおける被加熱体の加熱目標温度
に相当し、温度制御回路30aは実温度検出信号
106aと加熱温度指令108aとの差から加熱
温度信号110aを得、弁制御器32aに出力す
る。弁制御器32aは加熱温度制御信号110a
により燃料弁34aを駆動制御し、この結果、燃
料は被加熱体の加熱目標温度に応じた量だけ炉内
に供給される。
The actual temperature of the object to be heated heated in the heating zone 10a is detected by a thermocouple 26a, converted to an actual temperature detection signal 106a by an actual temperature detection signal converter 27a, and a heating temperature command 108a is supplied from a heating temperature command circuit 28a. The temperature control circuit 30a is supplied with the temperature control circuit 30a. This heating temperature command 108a corresponds to the heating target temperature of the heated object in each heating zone 10a, and the temperature control circuit 30a obtains the heating temperature signal 110a from the difference between the actual temperature detection signal 106a and the heating temperature command 108a, and controls the valve. output to the device 32a. The valve controller 32a receives the heating temperature control signal 110a.
The fuel valve 34a is driven and controlled, and as a result, fuel is supplied into the furnace in an amount corresponding to the target heating temperature of the object to be heated.

加熱ゾーン10b,10cにおける加熱制御装
置は加熱ゾーン10aのそれと同一であり、その
説明を省略する。
The heating control devices in heating zones 10b and 10c are the same as that in heating zone 10a, and their explanation will be omitted.

第1図は従来装置は以上の構成から成り、以
下、その作用を説明する。
The conventional device shown in FIG. 1 has the above configuration, and its operation will be explained below.

本従来装置では、被加熱体は各加熱ゾーン10
a,10b,10cにおいて相互の関連なく別々
に各各の加熱目標温度に加熱され、その温度制御
が行なわれる。すなわち、各加熱ゾーン10a,
10b,10cにおいて、各ゾーン10a,10
b,10cの加熱温度指令108a,108b,
108cに対応する量の燃料が炉内に導入され、
この燃料流量に応じた空気が炉内に導入される。
この結果、各ゾーン10a,10b,10cにお
いて被加熱体は加熱温度指令108a,108
b,108cに相当する各々の加熱目標温度に加
熱される。
In this conventional device, the object to be heated is in each heating zone 10.
A, 10b, and 10c are heated to their respective heating target temperatures independently of each other, and their temperatures are controlled. That is, each heating zone 10a,
10b, 10c, each zone 10a, 10
b, 10c heating temperature commands 108a, 108b,
an amount of fuel corresponding to 108c is introduced into the furnace;
Air corresponding to this fuel flow rate is introduced into the furnace.
As a result, in each zone 10a, 10b, 10c, the heated object receives heating temperature commands 108a, 108.
It is heated to each heating target temperature corresponding to b and 108c.

加熱された被加熱体は所定速度で炉内から抽出
され、次の熱間圧延装置に搬送される。
The heated object is extracted from the furnace at a predetermined speed and conveyed to the next hot rolling device.

ところが、以上説明した従来の連続式加熱炉で
は、被加熱体の大きさが変わると各加熱ゾーン1
0a,10b,10cから送出される被加熱体の
温度制御を精度良く行なうことができず、最終的
に炉から抽出される被加熱体の実温度を正確に加
熱目標温度にできないという欠点があつた。すな
わち、第1図従来装置では、被加熱体の大きさが
所定の範囲内で変動することが前提とされ炉に導
入される被加熱体が大き過ぎるとその搬送速度が
一定であるため被加熱体が各加熱目標温度に加熱
されないうちに送出され、この逆に被加熱体が小
さ過ぎると過熱された状態で抽出される問題があ
つた。このために、従来では操作者が被加熱体の
大きさを考慮して、その搬送速度を調節して抽出
間隔、すなわち先行の被加熱体とこれに続く被加
熱体とを順次炉外へ送出する抽出間隔時を変化さ
せ、あるいは加熱温度指令108a,108b,
108cを調節設定して被加熱体の抽出温度を目
標温度となる様にしていた。ところが、この様な
措置では操作者が直接操作して行なうので、温度
制御を高精度にかつ迅速に行なうことができない
こと、被加熱体の搬送速度を変えるときには次の
圧延工程で支障が生ずること、等の欠点が生ず
る。
However, in the conventional continuous heating furnace described above, when the size of the object to be heated changes, each heating zone 1
There is a drawback that the temperature of the heated object sent out from 0a, 10b, and 10c cannot be accurately controlled, and the actual temperature of the heated object finally extracted from the furnace cannot be accurately set to the heating target temperature. Ta. In other words, in the conventional apparatus shown in FIG. 1, it is assumed that the size of the object to be heated varies within a predetermined range, and if the object to be heated introduced into the furnace is too large, the conveyance speed is constant and the object to be heated is There was a problem in that the object was sent out before it was heated to each heating target temperature, and conversely, if the object to be heated was too small, it would be extracted in an overheated state. For this purpose, conventionally, the operator takes the size of the heated object into consideration and adjusts the conveyance speed to determine the extraction interval, that is, the preceding heated object and the following heated object are sent out of the furnace one after another. changing the extraction interval time, or heating temperature commands 108a, 108b,
108c was adjusted so that the extraction temperature of the object to be heated became the target temperature. However, since such measures are performed directly by the operator, temperature control cannot be performed with high precision and quickly, and when changing the conveyance speed of the heated object, problems may occur in the next rolling process. , etc., occur.

本発明は上記従来の課題に鑑みて為されたもの
であり、炉内に導入される被加熱体の大きさが異
なる場合でもその目的は炉から抽出される被加熱
体の温度を正確に目標とする温度にすることがで
きる連続式加熱炉の温度制御方法及び装置を提供
することにある。
The present invention has been made in view of the above-mentioned conventional problems, and its purpose is to accurately target the temperature of the heated objects extracted from the furnace even when the sizes of the heated objects introduced into the furnace are different. It is an object of the present invention to provide a temperature control method and device for a continuous heating furnace that can achieve a temperature of .

上記目的を達成する為に本発明方法は、移動す
る被加熱体の実温度を検出し、被加熱体の実温度
と被加熱体の加熱目標温度に相当する加熱温度指
令との比較を行なつて温度偏差を検出し、温度偏
差に基づいて被加熱体を加熱目標温度に加熱する
加熱制御を各加熱ゾーン毎に行なう連続式加熱炉
の加熱制御方法において、被加熱体の抽出間隔と
いずれかの加熱ゾーンの温度偏差との乗算を行な
い、この乗算結果を用いてその上流の加熱ゾーン
の加熱温度指令を補正することを特徴とし、本発
明装置は、移動する被加熱体の実温度を検出する
実温度検出器と、被加熱体の加熱目標温度を指令
する加熱温度指令回路と、実温度検出信号と加熱
温度指令とから温度偏差を検出し加熱温度制御信
号を出力する温度制御回路と、各加熱ゾーン毎に
有し、各加熱温度制御信号により各加熱ゾーンに
おける被加熱体の温度を各加熱体の加熱目標温度
にする連続式加熱炉の加熱制御装置において、被
加熱体の抽出間隔を検出する抽出間隔検出回路を
設け、少なくとも一の加熱ゾーンの温度制御回路
は、抽出間隔検出信号と次の加熱ゾーンの温度制
御回路の回路偏差信号とを乗算して加熱温度補正
指令を出力する補正指令回路と、加熱温度指令を
加熱温度補正指令により補正する加熱温度指令補
正回路と、を含むことを特徴とする。
In order to achieve the above object, the method of the present invention detects the actual temperature of a moving object to be heated, and compares the actual temperature of the object to be heated with a heating temperature command corresponding to the target heating temperature of the object to be heated. In a heating control method for a continuous heating furnace, in which temperature deviation is detected by the temperature deviation, and heating control is performed for each heating zone to heat the object to be heated to a heating target temperature based on the temperature deviation, one of the extraction intervals of the object to be heated and The apparatus of the present invention detects the actual temperature of a moving object to be heated. a heating temperature command circuit that commands a heating target temperature of the heated object; a temperature control circuit that detects a temperature deviation from the actual temperature detection signal and the heating temperature command and outputs a heating temperature control signal; In a heating control device for a continuous heating furnace, which is provided for each heating zone and uses each heating temperature control signal to set the temperature of the heated object in each heating zone to the heating target temperature of each heating object, the extraction interval of the heated object is controlled. An extraction interval detection circuit is provided to detect the extraction interval, and the temperature control circuit of at least one heating zone outputs a heating temperature correction command by multiplying the extraction interval detection signal by the circuit deviation signal of the temperature control circuit of the next heating zone. The heating temperature command correction circuit is characterized in that it includes a command circuit and a heating temperature command correction circuit that corrects the heating temperature command using a heating temperature correction command.

以下、図面に基づいて本発明の好適な実施例を
説明する。
Hereinafter, preferred embodiments of the present invention will be described based on the drawings.

第2図には本発明が適用された連続式加熱炉が
示されており、第1図と同一部材には同一符号を
付して説明を省略する。
FIG. 2 shows a continuous heating furnace to which the present invention is applied, and the same members as those in FIG.

本実施例において特徴的な事は、炉から抽出さ
れる被加熱体の抽出間隔を検出し、検出された抽
出間隔検出信号112と下流の加熱ゾーン10
b、10cの加熱温度制御信号110b,110
cとの乗算を行ない、この乗算結果114a,1
14bを用いてその加熱ゾーン10a,10bの
加熱温度指令108a,108bを補正すること
にある。
The characteristic feature of this embodiment is that the extraction interval of the heated object extracted from the furnace is detected, and the detected extraction interval detection signal 112 and the downstream heating zone 10
Heating temperature control signals 110b, 110 of b, 10c
This multiplication result 114a, 1
14b to correct the heating temperature commands 108a, 108b of the heating zones 10a, 10b.

すなわち、図において、連続式加熱炉は余熱帯
10aの左方に加熱炉と外気とを遮断するための
装入扉が設けられ、また均熱帯10cの右方には
抽出扉が設けられている。従つて、両扉間で加熱
炉が外気と遮断され、被加熱体は炉内にて十分に
制御された加熱作用を受ける。そして、被加熱体
を炉内に入れる場合は、まず装入扉を開き被加熱
体が確実に炉内に挿入された後にこの装入扉が閉
じられ、順次各加熱ゾーン10a,10b,10
cを通過して加熱作用が行われる。そして、被加
熱体を炉外へ出す場合には抽出扉を開き被加熱体
が確実に炉外へ抽出されれた後にこの抽出扉が閉
じられる。
That is, in the figure, the continuous heating furnace is provided with a charging door to the left of the residual zone 10a to isolate the heating furnace from the outside air, and an extraction door is provided to the right of the soaking zone 10c. . Therefore, the heating furnace is isolated from the outside air between the two doors, and the object to be heated receives a well-controlled heating action within the furnace. When the object to be heated is placed in the furnace, the charging door is first opened and the object to be heated is inserted securely into the furnace, and then this charging door is closed, and each heating zone 10a, 10b, 10
The heating effect is carried out through c. When the object to be heated is taken out of the furnace, the extraction door is opened and the extraction door is closed after the object to be heated is reliably extracted out of the furnace.

従つて本発明における前述した抽出時間すなわ
ち先行する被加熱体とこれに続く被加熱体の順次
炉外へ送り出されるすなわち抽出される時間間隔
である抽出間隔は前記抽出扉の動作間隔を計測す
ることによつて知ることができる。
Therefore, in the present invention, the above-mentioned extraction time, that is, the extraction interval, which is the time interval at which the preceding heated object and the following heated object are sequentially sent out of the furnace, that is, extracted, is determined by measuring the operating interval of the extraction door. You can know by.

図において被加熱体の抽出間隔に対応る抽出間
隔検出信号112を出力するための抽出間隔検出
回路36が設けられている。抽出間隔検出回路3
6には積分器38が設けられ、積分器38の帰還
回路には被加熱体の非抽出時間中、抽出時に各々
オン、オフするスイツチ40が挿入されている。
したがつて積分器38はスイツチ40のオン時間
により抽出間隔時間を検出することができる。す
なわち、前述したごとく、図示していない抽出扉
が閉じている時間がほぼ被加熱体の加熱炉から抽
出される時間間隔を示すこととなり、この抽出扉
が閉じている時すなわち非抽出時間中前記スイツ
チ40はオン作動しており、この間は積分器38
が積分動作を継続しているので積分出力は抽出間
隔に比例することとなる。従つて、この積分出力
の大きさから抽出間隔すなわち各被加熱体が炉か
ら取出される間隔を電気的に検出することが可能
となる。この積分器38の積分出力によりモータ
42が駆動され摺動抵抗器(ポテンシヨンメー
タ)44の摺動接点の位置が定まり、摺動接点の
位置により決定される被加熱体の抽出間隔に対応
した抽出間隔検出信号112が抽出間隔検出回路
36から出力される。
In the figure, an extraction interval detection circuit 36 is provided for outputting an extraction interval detection signal 112 corresponding to the extraction interval of the object to be heated. Extraction interval detection circuit 3
6 is provided with an integrator 38, and a switch 40 is inserted into the feedback circuit of the integrator 38, which is turned on and off during the non-extraction time of the heated object and during extraction.
Therefore, the integrator 38 can detect the extraction interval time based on the on time of the switch 40. That is, as mentioned above, the time during which the extraction door (not shown) is closed approximately indicates the time interval during which the heating object is extracted from the heating furnace, and when this extraction door is closed, that is, during the non-extraction time, The switch 40 is on, and during this time the integrator 38
continues the integral operation, so the integral output is proportional to the extraction interval. Therefore, from the magnitude of this integrated output, it is possible to electrically detect the extraction interval, that is, the interval at which each object to be heated is taken out from the furnace. The integral output of the integrator 38 drives the motor 42 and determines the position of the sliding contact of the sliding resistor (potentiometer) 44, which corresponds to the extraction interval of the heated object determined by the position of the sliding contact. An extraction interval detection signal 112 is output from the extraction interval detection circuit 36.

次に抽出間隔検出信号112は、下流の加熱ゾ
ーン10の加熱温度制御信号110b,110c
が各々供給され加熱温度補正指令114a,11
4bを出力するその上流の補正指令回路46a,
46bに供給される。
Next, the extraction interval detection signal 112 is the heating temperature control signal 110b, 110c of the downstream heating zone 10.
are supplied respectively to heating temperature correction commands 114a and 11.
4b, an upstream correction command circuit 46a,
46b.

補正指令回路46a,46bに各々供給される
温度制御信号110b,110cは所定の不感帯
を有する比例積分器48a,48bに供給され、
積分された後に乗算器50a,50bに供給され
る。尚、比例積分器48a,48bで不感帯を有
するのは、微細な雑音が温度制御信号110b,
110cに含まれるので、この雑音で温度制御回
路30a,30bが過敏に応答するのを防止する
ためである。各乗算器50a,50bにおいて
は、抽出間隔検出信号112と比例積分器48a
の出力との乗算、抽出間隔検出信号112と比例
積分器48bの出力との乗算が各々行なわれる。
各乗算器50a,50bの乗算結果はリミツタ5
2a,52bを介して加熱温度補正指令114
a,114bとして出力される。尚、リミツタ5
2a,52b加熱温度補正指令114a,114
bに含まれる異常値を除去するために設けられて
いる。
Temperature control signals 110b and 110c supplied to correction command circuits 46a and 46b, respectively, are supplied to proportional integrators 48a and 48b having predetermined dead zones,
After being integrated, it is supplied to multipliers 50a and 50b. Note that the proportional integrators 48a and 48b have a dead zone because minute noise is caused by the temperature control signals 110b and 48b.
110c, this is to prevent the temperature control circuits 30a and 30b from responding too sensitively to this noise. In each multiplier 50a, 50b, the extraction interval detection signal 112 and the proportional integrator 48a
and the extraction interval detection signal 112 and the output of the proportional integrator 48b are respectively performed.
The multiplication results of each multiplier 50a, 50b are sent to the limiter 5.
Heating temperature correction command 114 via 2a, 52b
a, 114b. In addition, Limita 5
2a, 52b heating temperature correction command 114a, 114
This is provided to remove abnormal values included in b.

加熱温度補正指令114a,114bは各々加
熱温度指令108a,108bが供給され加熱温
度指令補正回路を構成する加減算器54a,54
bに供給されており、各加減算器54a,54b
は、加熱温度補正指令114aと加熱温度指令1
08a、との加減算加熱温度補正指令114bと
加熱温度指令108bとの加減算を各々行なつて
加熱温度指令108a,108bを補正すること
ができる。
Heating temperature correction commands 114a and 114b are supplied with heating temperature commands 108a and 108b, respectively, and adder/subtractors 54a and 54 constitute a heating temperature command correction circuit.
b, and each adder/subtractor 54a, 54b
are the heating temperature correction command 114a and the heating temperature command 1.
The heating temperature commands 108a and 108b can be corrected by adding and subtracting the heating temperature correction command 114b and the heating temperature command 108b, respectively.

上記加減算器54a,54bの加減算は加減算
器54a,54bに極性判別回路56a,56b
から極性判別信号116a,116bが供給され
ているときのみ行なわれる。極性判別回路56
a,56bには各々加熱温度信号110a,11
0b、加熱温度制御信号110b,110cが供
給されており、極性判別回路56a,56bは、
各々に供給される加熱温度制御信号110が共に
正である場合又は共に負である場合にのみ極性判
別信号116a,116bを出力することができ
る。したがつて、上流の加熱ゾーン10及び下流
の加熱ゾーン10で共に加熱不足又は加熱過剰の
場合にのみ、上流の加熱ゾーン10で加熱温度指
令108a,108bの補正が行なわれる。
The addition/subtraction of the adders/subtractors 54a, 54b is performed using polarity discrimination circuits 56a, 56b.
This is performed only when the polarity discrimination signals 116a, 116b are supplied from. Polarity discrimination circuit 56
heating temperature signals 110a and 110a and 56b, respectively.
0b and heating temperature control signals 110b and 110c are supplied, and the polarity discrimination circuits 56a and 56b are
The polarity determination signals 116a, 116b can be output only when the heating temperature control signals 110 supplied to each are both positive or negative. Therefore, the heating temperature commands 108a and 108b are corrected in the upstream heating zone 10 only when both the upstream heating zone 10 and the downstream heating zone 10 are underheated or overheated.

加減算器54a,54bの加熱温度指令118
a,118bは演算回路58a,58bにおいて
実温度検出信号106a,106bとそれぞれ突
き合わされ、演算回路58a,58bから加熱温
度制御信号110a,110bが出力される。
尚、温度制御回路30cは第1図従来装置と同一
のものが使用されている。
Heating temperature command 118 for adder/subtractor 54a, 54b
a, 118b are compared with actual temperature detection signals 106a, 106b, respectively, in arithmetic circuits 58a, 58b, and heating temperature control signals 110a, 110b are output from arithmetic circuits 58a, 58b.
The temperature control circuit 30c used is the same as that of the conventional device shown in FIG.

第2図実施例装置は以上の構成から成り、以下
その作用を説明する。
The apparatus of the embodiment shown in FIG. 2 has the above-mentioned structure, and its operation will be explained below.

本実施例では、各加熱ゾーン10a,10b,
10cにおける被加熱体の温度制御は加熱温度制
御信号110a,110b,110cにより前述
した従来装置と同様に行なわれる。
In this embodiment, each heating zone 10a, 10b,
The temperature control of the object to be heated in 10c is performed using heating temperature control signals 110a, 110b, and 110c in the same manner as in the conventional apparatus described above.

ところが、本実施例では、各加熱ゾーン10
a,10bにおける加熱温度制御信号110a,
110bは、加熱温度補正指令114a,114
bにより加熱温度指令108a,108bを補正
して得た加熱温度指令118a,118bと実温
度検出信号106a,106bとが比較された結
果、得られている。
However, in this embodiment, each heating zone 10
Heating temperature control signal 110a at a, 10b,
110b is a heating temperature correction command 114a, 114
The heating temperature commands 118a, 118b obtained by correcting the heating temperature commands 108a, 108b using b are compared with the actual temperature detection signals 106a, 106b.

加熱温度補正指令114a,114bは下流の
加熱ゾーン10の加熱温度制御信号110b,1
10cに基づいて得られているので、下流の加熱
ゾーン10で加熱不足であるときには上流の加熱
ゾーン10a,10bでの加熱が予め強められ、
下流の加熱ゾーン10b,10cで加熱過剰であ
るときには上流の加熱が予め弱められる。したが
つて、下流の加熱ゾーン10b,10cにはその
加熱ゾーン10b,10cが対応することができ
る温度に加熱された被加熱体が導入されるので、
その加熱ゾーン10b,10cはその加熱目標温
度に被加熱体を加熱することができる。
The heating temperature correction commands 114a, 114b are the heating temperature control signals 110b, 1 of the downstream heating zone 10.
10c, when there is insufficient heating in the downstream heating zone 10, the heating in the upstream heating zones 10a and 10b is intensified in advance,
If there is excessive heating in the downstream heating zones 10b, 10c, the upstream heating is weakened in advance. Therefore, a heated object heated to a temperature that can be supported by the downstream heating zones 10b, 10c is introduced into the downstream heating zones 10b, 10c.
The heating zones 10b and 10c can heat the object to be heated to the target heating temperature.

又、加熱温度補正指令114a,114bは抽
出間隔検出信号112に基づいて得られており、
又被加熱体の抽出間隔は炉の加熱能力に応じて被
加熱体の大きさが大きくなると大きくなる様に、
小さくなると小さくなる様に炉内に挿入され、炉
から抽出されるので、抽出間隔信号112は被加
熱体の大きさに応じたものとなつている。したが
つてこの様な抽出間隔信号112に基づいた加熱
温度補正指令114a,114bにより加熱温度
指令108a,108bが補正されると、上流の
加熱ゾーン10a,10bでの被加熱体の加熱は
被加熱体の大きさが大きいときすなわち抽出間隔
が大きいときには強められ、逆に被加熱体の大き
さが小さいときすなわち抽出間隔が小さいときに
は弱められる。この結果、被加熱体の大きさに応
じて各加熱ゾーン10で被加熱体の加熱が行なわ
れる。
Further, the heating temperature correction commands 114a and 114b are obtained based on the extraction interval detection signal 112,
In addition, the extraction interval of the object to be heated is determined according to the heating capacity of the furnace, so that it increases as the size of the object to be heated increases.
Since the object is inserted into the furnace and extracted from the furnace in such a manner that the object becomes smaller as the object becomes smaller, the extraction interval signal 112 corresponds to the size of the object to be heated. Therefore, when the heating temperature commands 108a and 108b are corrected by the heating temperature correction commands 114a and 114b based on the extraction interval signal 112, the heating of the heated object in the upstream heating zones 10a and 10b is as follows. When the size of the object to be heated is large, that is, when the extraction interval is long, the intensity is increased, and conversely, when the size of the object to be heated is small, that is, when the extraction interval is short, it is weakened. As a result, the object to be heated is heated in each heating zone 10 according to the size of the object to be heated.

尚、以上の様に、加熱温度指令108a,10
8bが補正されるのは、極性判別回路56a,5
6bから極性判別信号116a,116bが出力
されているときだけである。すなわち、前の加熱
ゾーン10及び次の加熱ゾーン10で共に加熱不
足又は加熱過剰である場合に限り、加熱温度指令
108a,108bの補正が行なわれる。これは
前の加熱ゾーン10における加熱不足又は加熱過
剰の影響が次の加熱ゾーン10の加熱制御で吸収
することができない場合のみ前の加熱ゾーン10
の加熱温度指令108a,108bを補正し、他
の場合には加熱温度指令108a,108bのゾ
ーン補正を行なわせない様にするためである。
In addition, as mentioned above, the heating temperature commands 108a, 10
8b is corrected by the polarity discrimination circuits 56a and 5.
This is only when the polarity discrimination signals 116a and 116b are output from the terminal 6b. That is, the heating temperature commands 108a and 108b are corrected only when the previous heating zone 10 and the next heating zone 10 are both underheated or overheated. This applies to the previous heating zone 10 only when the effect of underheating or overheating in the previous heating zone 10 cannot be absorbed by the heating control of the next heating zone 10.
This is to correct the heating temperature commands 108a, 108b, and prevent zone correction of the heating temperature commands 108a, 108b in other cases.

以上説明した様に本実施例によれば、被加熱体
の大きさにかかわりなく、炉から抽出される被加
熱体を目標とする温度に正確に自動的に加熱する
ことができる。
As explained above, according to this embodiment, the object to be heated extracted from the furnace can be accurately and automatically heated to the target temperature regardless of the size of the object to be heated.

又、本実施例によれば、被加熱体の搬送速度を
一定とすることができるので、次の圧延工程に支
障が生ずることがない。
Further, according to this embodiment, since the conveying speed of the heated object can be kept constant, there is no problem in the next rolling process.

第3図には共に目標加熱温度が1260゜である第
2図実施例装置、第1図従来装置で抽出された被
加熱体の温度測定結果が示されている。図におい
て、横軸は被加熱体の温度測定の順番を、そして
縦軸は被加熱体の温度を示しており、Aは本実施
例の場合、Bは第1図従来装置の場合を示してい
る。又、被加熱体の長さは7mで一定であり、そ
の移動速度は一定で、1,4,7回目の温度測定
は250mm×00mmの角棒、2,5,8回目の温度測
定は240mm×400mmの角棒、そして3,6,9回目
の温度測定は250mm×250mmの角棒について行なわ
れた。
FIG. 3 shows the results of temperature measurement of the object to be heated extracted by the embodiment apparatus shown in FIG. 2 and the conventional apparatus shown in FIG. 1, both of which have a target heating temperature of 1260 degrees. In the figure, the horizontal axis shows the order of temperature measurement of the heated object, and the vertical axis shows the temperature of the heated object. A shows the case of this embodiment, and B shows the case of the conventional device shown in FIG. There is. In addition, the length of the object to be heated is constant at 7 m, and its moving speed is constant. The 1st, 4th, and 7th temperature measurements are made using a 250 mm x 00 mm square bar, and the 2nd, 5th, and 8th temperature measurements are made using a 240 mm square bar. The 3rd, 6th, and 9th temperature measurements were performed on a 250 mm x 250 mm square bar.

第3図から明らかな様に、本発明によれば、被
加熱体の大きさにかかわらず、被加熱体の抽出温
度を加熱目標温度(1260゜)に極めて近い温度に
加熱することができる。
As is clear from FIG. 3, according to the present invention, the extraction temperature of the object to be heated can be heated to a temperature extremely close to the target heating temperature (1260°), regardless of the size of the object.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の連続式加熱炉の構成図、第2図
は本発明の好適な実施例の構成図、第3図は第1
図従来装置、第2図実施例装置で抽出された被加
熱体の実温度測定結果を比較するグラフ図、であ
る。 10…加熱ゾーン、26…熱電対、28…加熱
温度指令回路、30…温度制御回路、36…抽出
間隔検出回路、46…補正指令回路、54…加減
算器、56…極性判別回路。
Fig. 1 is a block diagram of a conventional continuous heating furnace, Fig. 2 is a block diagram of a preferred embodiment of the present invention, and Fig. 3 is a block diagram of a conventional continuous heating furnace.
FIG. 2 is a graph diagram comparing actual temperature measurement results of the heated object extracted by the conventional device and FIG. 2 by the embodiment device. DESCRIPTION OF SYMBOLS 10... Heating zone, 26... Thermocouple, 28... Heating temperature command circuit, 30... Temperature control circuit, 36... Extraction interval detection circuit, 46... Correction command circuit, 54... Adder/subtractor, 56... Polarity discrimination circuit.

Claims (1)

【特許請求の範囲】 1 移動する被加熱体の実温度を検出し、被加熱
体の実温度と被加熱体の加熱目標温度に相当する
加熱温度指令との比較を行つて温度偏差を検出
し、温度偏差に基づいて被加熱体を加熱目標温度
に加熱する加熱制御を各加熱ゾーン毎に行なう連
続式加熱炉の加熱制御方法において、被加熱体の
抽出間隔といずれかの加熱ゾーンの温度偏差との
乗算を行ない、この乗算結果を用いてその上流の
加熱ゾーンの加熱温度指令を補正することを特徴
とする連続式加熱炉の加熱制御方法。 2 移動する被加熱体の実温度を検出する実温度
検出器と、被加熱体の加熱目標温度を指令する加
熱温度指令回路と、実温度検出信号と加熱温度指
令とから温度偏差を検出し加熱温度制御信号を出
力する温度制御回路と、を各加熱ゾーン毎に有
し、各加熱温度制御信号により各加熱ゾーンにお
ける被加熱体の温度を各加熱体の加熱目標温度に
する連続式加熱炉の加熱制御装置において、被加
熱体の抽出間隔を検出する抽出間隔検出回路を設
け、少なくとも1の加熱ゾーンの温度制御回路
は、抽出間隔検出信号と次の加熱ゾーンの温度制
御回路の温度偏差信号とを乗算して加熱温度補正
指令を出力する補正指令回路と、加熱温度指令を
加熱温度補正指令により補正する加熱温度指令補
正回路と、を含むことを特徴とする連続式加熱炉
の温度制御装置。
[Claims] 1. Detecting the actual temperature of a moving object to be heated, and comparing the actual temperature of the object to a heating temperature command corresponding to a target heating temperature of the object to detect a temperature deviation. , in a heating control method for a continuous heating furnace that performs heating control for each heating zone to heat the object to a heating target temperature based on the temperature deviation, the extraction interval of the object to be heated and the temperature deviation of one of the heating zones 1. A heating control method for a continuous heating furnace, characterized in that the multiplication result is used to correct a heating temperature command for an upstream heating zone. 2. An actual temperature detector that detects the actual temperature of the moving heated object, a heating temperature command circuit that commands the heating target temperature of the heated object, and a heating temperature command circuit that detects a temperature deviation from the actual temperature detection signal and the heating temperature command and performs heating. A continuous heating furnace having a temperature control circuit for outputting a temperature control signal in each heating zone, and using each heating temperature control signal to adjust the temperature of the heated object in each heating zone to the heating target temperature of each heating element. The heating control device is provided with an extraction interval detection circuit for detecting the extraction interval of the object to be heated, and the temperature control circuit of at least one heating zone detects the extraction interval detection signal and the temperature deviation signal of the temperature control circuit of the next heating zone. 1. A temperature control device for a continuous heating furnace, comprising: a correction command circuit that outputs a heating temperature correction command by multiplying the heating temperature by the heating temperature correction command; and a heating temperature command correction circuit that corrects the heating temperature command by the heating temperature correction command.
JP18351580A 1980-12-24 1980-12-24 Method of and apparatus for controlling heating of continuous heating furnace Granted JPS57105678A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18351580A JPS57105678A (en) 1980-12-24 1980-12-24 Method of and apparatus for controlling heating of continuous heating furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18351580A JPS57105678A (en) 1980-12-24 1980-12-24 Method of and apparatus for controlling heating of continuous heating furnace

Publications (2)

Publication Number Publication Date
JPS57105678A JPS57105678A (en) 1982-07-01
JPS6127446B2 true JPS6127446B2 (en) 1986-06-25

Family

ID=16137186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18351580A Granted JPS57105678A (en) 1980-12-24 1980-12-24 Method of and apparatus for controlling heating of continuous heating furnace

Country Status (1)

Country Link
JP (1) JPS57105678A (en)

Also Published As

Publication number Publication date
JPS57105678A (en) 1982-07-01

Similar Documents

Publication Publication Date Title
US4605161A (en) Pattern-switching temperature control apparatus
KR20060107924A (en) Distance estimating apparatus, abnormal detecting apparatus, temperature regulator and heat treatment apparatus
JPS6127446B2 (en)
EP0177615B1 (en) Keyed pid control apparatus
KR970059859A (en) Method for determining control parameters of heat treatment apparatus and apparatus therefor
CA1085023A (en) Process for manufacturing forge-welding steel pipe
JPH0565883B2 (en)
JPH01184233A (en) Sheet temperature control method for continuously annealing furnace
JPH01300188A (en) Temperature controller for heating furnace
JPS62238328A (en) Equipment for controlling heating
JPS63133211A (en) Temperature control method for treating product
JPS6012551B2 (en) Tunnel furnace pressure control method
JPH03137707A (en) Temperature control method for thermostat for heating sample treatment
JPS61242535A (en) Apparatus for uniformizing baking color of bakery goods in bread and confectionary making process
JPH04193913A (en) Method for controlling heating in continuous heating furnace
KR100250760B1 (en) Controlling method for steel heat treatment in continuous furnace
JP2577358B2 (en) Heating control method
JP2023137789A (en) Heat treatment furnace and heat treatment method
JPH05255761A (en) Method for adjusting treating condition of continuous furnace and device therefor
JPH01282620A (en) Temperature controller for semiconductor processing furnace
JPS5860183A (en) Method and device for controlling temperature in continuous type incinerator
JPH01256336A (en) Heating controller of treating device
JPS5930964B2 (en) cooking oven
JPS592801B2 (en) Automatic heating control device
JPH0726135B2 (en) Hot stove temperature control device