JPS61274374A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS61274374A JPS61274374A JP60118162A JP11816285A JPS61274374A JP S61274374 A JPS61274374 A JP S61274374A JP 60118162 A JP60118162 A JP 60118162A JP 11816285 A JP11816285 A JP 11816285A JP S61274374 A JPS61274374 A JP S61274374A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- thickness
- substrate
- gaas
- type
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 25
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 238000001451 molecular beam epitaxy Methods 0.000 claims description 7
- 239000012808 vapor phase Substances 0.000 claims description 5
- 238000007738 vacuum evaporation Methods 0.000 claims description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 33
- 238000000034 method Methods 0.000 abstract description 10
- 229910000078 germane Inorganic materials 0.000 abstract description 3
- 238000005979 thermal decomposition reaction Methods 0.000 abstract description 3
- 239000002184 metal Substances 0.000 abstract description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 abstract 1
- 238000001947 vapour-phase growth Methods 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 7
- 239000007789 gas Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 238000000927 vapour-phase epitaxy Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
- H01L31/0693—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1852—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/544—Solar cells from Group III-V materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/549—Organic PV cells
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Sustainable Development (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明はSi基板上に形成された■−v族化合物半導
体層を有する半導体装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a semiconductor device having a ■-v group compound semiconductor layer formed on a Si substrate.
従来のm−v族化合物半導体層を有する半導体装置とし
て、例えば第17回IEF!E 光電池専門家会議の
会議録、オーランド、 1984年5月1日〜4日、第
42〜45頁(The Conference Rec
ord of TheSeventeenth ItE
EEPhotovoltaic 5pecialist
sConference、 0rlando+ Ma
y 1−4.1984.pp42−45)に示されてい
るGaAs太陽電池について説明する。As a semiconductor device having a conventional m-v group compound semiconductor layer, for example, the 17th IEF! E. The Conference Rec., Orlando, May 1-4, 1984, pp. 42-45
ord of The Seventeenth ItE
EEPhotovoltaic 5specialist
sConference, 0rlando+ Ma
y 1-4.1984. The GaAs solar cell shown in pp. 42-45) will be explained.
このGaAs太陽電池21の断面構造図を第2図に示す
。A cross-sectional structural diagram of this GaAs solar cell 21 is shown in FIG.
図において、n形GaAs基板1上に液相エピタキシャ
ル法によってn形バッファ層2が形成されている。そし
て前記n形バッファ層2中には、AJ−Ga−As−Z
nメルトからのZn拡散によってp形GaAs層3及
びpn接合4が形成されており、前記p形GaAs層3
上には、液相エピタキシャル法によってp形AlGaA
s層5が形成されている。前記p形A j’ GaAs
層5の表面には反射防止膜6が形成されている。さらに
前記p形GaAs層5の表面の一部にp形電極7が、前
記n形GaAs基板1の裏面にn形電極8が形成されて
いる。In the figure, an n-type buffer layer 2 is formed on an n-type GaAs substrate 1 by a liquid phase epitaxial method. In the n-type buffer layer 2, AJ-Ga-As-Z
A p-type GaAs layer 3 and a pn junction 4 are formed by Zn diffusion from the n-melt, and the p-type GaAs layer 3
On top, p-type AlGaA is deposited by liquid phase epitaxial method.
An s layer 5 is formed. The p-type A j' GaAs
An antireflection film 6 is formed on the surface of the layer 5. Furthermore, a p-type electrode 7 is formed on a part of the surface of the p-type GaAs layer 5, and an n-type electrode 8 is formed on the back surface of the n-type GaAs substrate 1.
このようなGaAs太陽電池21においては、該電池に
入射した光の大部分はGaAs中の吸収係数が大きいた
め、表面から数μmまでの所で吸収される。In such a GaAs solar cell 21, most of the light incident on the cell is absorbed within several μm from the surface because GaAs has a large absorption coefficient.
光吸収により発生したキャリアはpn接合4によって掃
引され、電極を通して外部回路に電力を供給する。この
ようなGaAs太陽電池は(i>太陽光を効率よく電気
エネルギに変換できる。Carriers generated by light absorption are swept by the pn junction 4 and supply power to an external circuit through the electrode. Such a GaAs solar cell can efficiently convert (i> sunlight into electrical energy).
(ii )高温でも安定して動作する。(ii) Operates stably even at high temperatures.
(iii )放射線損傷に強い。(iii) Resistant to radiation damage.
などの利点を有しているため、人工衛星等の電源や集光
方式による光発電システム用として実用化されようとし
ている。Because of these advantages, it is being put into practical use as a power source for artificial satellites and for photovoltaic power generation systems using a concentrating method.
〔発明が解決しようとする問題点〕
しかしながら従来のGaAs太陽電池21はGaAs結
晶基板を用いているため高価であり、Si太陽電池やア
モルフォス太陽電池と競合して広く実用化を進めて行く
上で問題となる。また光受光の有効領域の深さは数μm
程度であるにもかかわらず、GaAs結晶がわれやすい
ため太陽電池自体を厚(する必要があり、さらにこのこ
とは、人工衛星等の電源として用いるには、ロケットの
打上げ能力とからんで、重要な問題点となる。[Problems to be solved by the invention] However, since the conventional GaAs solar cell 21 uses a GaAs crystal substrate, it is expensive, and in order to compete with Si solar cells and amorphous solar cells, it is difficult to promote widespread practical application. It becomes a problem. In addition, the depth of the effective area for light reception is several μm.
Despite the fact that the GaAs crystal is fragile, the solar cell itself needs to be thick, and this is an important factor in relation to the launch capability of the rocket when used as a power source for artificial satellites. This becomes a problem.
この発明は上記のような問題点を解消するためになされ
たもので、上記GaAs太陽電池等の従来のm−v族化
合物半導体装置と同程度の特性を持ち、かつ低価格で、
しかも軽量である半導体装置を得ることを目的としてい
る。This invention was made to solve the above-mentioned problems, and has characteristics comparable to those of conventional m-v group compound semiconductor devices such as the above-mentioned GaAs solar cells, and is low-priced.
Furthermore, the objective is to obtain a semiconductor device that is lightweight.
この発明に係る半導体装置は、基板としてSiを用い、
該Si基板上に、まず、高真空蒸着法もしくは分子線エ
ピタキシーによって第1のGe層を設け、該第1のGe
層上に気相化学反応(CVD)によって第2のGe層を
設け、さらに該第2のGe層上に、Geと同程度の格子
定数を有するm−v族化合物半導体層を設けたものであ
る。A semiconductor device according to the present invention uses Si as a substrate,
First, a first Ge layer is provided on the Si substrate by high vacuum evaporation or molecular beam epitaxy.
A second Ge layer is provided on the layer by vapor phase chemical reaction (CVD), and an m-v group compound semiconductor layer having a lattice constant comparable to that of Ge is further provided on the second Ge layer. be.
この発明においては、第1のGe層が、軽量でしかも安
価なSi基板上に良質の第2のGe層を形成するための
バッファ層として作用し、前記第2のGe層が、良質の
m−v族化合物半導体層を形成するためのバッファ層と
して作用し、そのため良質のm−v族化合物半導体層が
活性層となり高性能な半導体装置が得られる。In this invention, the first Ge layer acts as a buffer layer for forming a high quality second Ge layer on a lightweight and inexpensive Si substrate, and the second Ge layer has a high quality m It acts as a buffer layer for forming the -v group compound semiconductor layer, and therefore, the high quality m-v group compound semiconductor layer becomes an active layer and a high-performance semiconductor device can be obtained.
以下、この発明の一実施例を、第1図を用いて説明する
。第1図は本発明の一実施例による太陽電池22の断面
構造を示し、図において、9はSi基板、10は第1の
Ge層、11は第2のGe層であり、これらは以下のよ
うにして製作される。An embodiment of the present invention will be described below with reference to FIG. FIG. 1 shows a cross-sectional structure of a solar cell 22 according to an embodiment of the present invention. In the figure, 9 is a Si substrate, 10 is a first Ge layer, and 11 is a second Ge layer. It is manufactured in this way.
まずSi基板9の有機、無機の汚れをとり、表面の自然
酸化膜を除去した後、図示していない分子線エピタキシ
ャル装置に装填する。そして該装置内を10”’Pa以
上の高真空に保ちながら、Si基板を500℃程度に加
熱する。Geソースの入ったクヌーセンセルの温度を上
昇して、約6.0人/minの速さでSi基板9上に第
1のGe層上0を成長させる。この第1のGe層上0の
厚みは、0.5μmないし2.0μmが好ましい。分子
線エピタキシーによってSi基板9上に成長させ−たG
e層の膜質は、Qe層の膜厚が大きくなるにつれて良く
なり、約0.5μm程度で膜質の良さが飽、 和する
傾向にある。従って、少なくとも0.5μmの厚みは必
要である。また厚みが2.0μm以上と厚いGe層を得
るには、上記条件では6時間以上もの長い成長時間を必
要とし、実用的でない。First, organic and inorganic stains are removed from the Si substrate 9, and the natural oxide film on the surface is removed, and then the Si substrate 9 is loaded into a molecular beam epitaxial apparatus (not shown). Then, the Si substrate is heated to about 500°C while maintaining the inside of the device at a high vacuum of 10"'Pa or more. The temperature of the Knudsen cell containing the Ge source is raised to increase the rate of about 6.0 people/min. Then, the first Ge layer 0 is grown on the Si substrate 9. The thickness of this first Ge layer 0 is preferably 0.5 μm to 2.0 μm.Growing on the Si substrate 9 by molecular beam epitaxy Let's G
The film quality of the e layer improves as the film thickness of the Qe layer increases, and the film quality tends to reach saturation at about 0.5 μm. Therefore, a thickness of at least 0.5 μm is required. Further, in order to obtain a thick Ge layer having a thickness of 2.0 μm or more, a long growth time of 6 hours or more is required under the above conditions, which is not practical.
以上のようにして第1のGe層上0を成長させた後、こ
れを分子線エピタキシャル装置から取り出し、今度は気
相化学反応(Chemical Vapor、 D
eposition)装置に装填する。そして水素雰囲
気を保ちながら800℃に加熱する。水素ガス中に1%
のゲルマンガス(G e H4)を混入させ、ゲルマン
の熱分解により、第1のGe層上0上に第2のGe1i
llをエピタキシャル成長させると、2〜5μm程度の
厚みの良質の第2のGe層11が数分ないし数十分の比
較的短時間に得られる。After growing the first Ge layer 0 in the above manner, it is taken out from the molecular beam epitaxial apparatus and subjected to a chemical vapor reaction (Chemical Vapor, D
(eposition) device. Then, it is heated to 800° C. while maintaining a hydrogen atmosphere. 1% in hydrogen gas
of germane gas (G e H4) is mixed, and by thermal decomposition of germane, a second Ge1i is formed on the first Ge layer.
When ll is epitaxially grown, a high quality second Ge layer 11 having a thickness of about 2 to 5 μm can be obtained in a relatively short time of several minutes to several tens of minutes.
次に、前記第2のGe層11上に、有機金属°気相成長
法(Metal Organic Chemical
Vapor’Deposition)等゛の方法によっ
て、厚み2.5μmのn形GaAs層2、厚み0.5μ
mのp形GaAs層3. pn接合4.厚み0.05
μmのp第71.jtGaAs層5を形成する。反射防
止膜6. p形電極7は従来のGaAs太陽電池と同
様の方法で形成することができ、n形電極12は、従来
のSi太陽電池などと同様の方法で形成することができ
る。Next, on the second Ge layer 11, a metal organic chemical vapor phase epitaxy method is applied.
An n-type GaAs layer 2 with a thickness of 2.5 μm and a thickness of 0.5 μm were formed by a method such as vapor deposition.
m p-type GaAs layer 3. pn junction4. Thickness 0.05
μm pth 71. A jtGaAs layer 5 is formed. Anti-reflection film6. The p-type electrode 7 can be formed in the same manner as in conventional GaAs solar cells, and the n-type electrode 12 can be formed in the same manner as in conventional Si solar cells.
以上のようにして形成された太陽電池22の電気出力特
性等の評価を行なったところ、従来のGaAs太陽電池
21と同程度の特性が得られた。またこの発明では優れ
た機械的性質を有しているSi基板を用いているため、
厚みを50μm程度と極めて薄クシても充分な機械的強
度を得ることができた。しかも電気出力特性は、厚み3
μm程度のGaAs層の部分で発生しているので、Si
基板の厚みに関係なく高い電気出力が得られる。従って
、太陽電池の単位重量当たりの発生電力量、即ち重量能
率を、従来の厚み300μmのGaAs太陽電池21の
約10倍以上と橿めて太き(することができた。さらに
コスト的にも、安価なSi基板を用いているため、従来
のGaAs太陽電池21の1/3以下とすることができ
た。When the electrical output characteristics and other characteristics of the solar cell 22 formed as described above were evaluated, the characteristics were found to be comparable to those of the conventional GaAs solar cell 21. Furthermore, since this invention uses a Si substrate that has excellent mechanical properties,
Sufficient mechanical strength could be obtained even with a very thin comb with a thickness of about 50 μm. Moreover, the electrical output characteristics are
Since it occurs in the GaAs layer of about μm, the Si
High electrical output can be obtained regardless of substrate thickness. Therefore, the amount of power generated per unit weight of the solar cell, that is, the weight efficiency, was increased to more than 10 times that of the conventional GaAs solar cell 21 with a thickness of 300 μm.In addition, it was possible to increase the amount of power generated per unit weight of the solar cell. Since an inexpensive Si substrate is used, the size of the GaAs solar cell 21 can be reduced to 1/3 or less of that of the conventional GaAs solar cell 21.
このようにして高性能太陽電池22が得られたのは、S
i上に高品質Ge層及び高品質GaAs層が得られたこ
とによる。Si上の高品質Ge層を得るには、まず分子
線エピタキシーにより第1のGe層を設け、前記第1の
Ge層上に気相化学反応によって第2のGe層を設ける
ことが必要である。The high performance solar cell 22 was obtained in this way because S
This is because a high quality Ge layer and a high quality GaAs layer were obtained on i. To obtain a high quality Ge layer on Si, it is first necessary to provide a first Ge layer by molecular beam epitaxy, and then to provide a second Ge layer on the first Ge layer by vapor phase chemical reaction. .
分子線エピタキシーのみによっては高品質Ge層が得ら
れないのは、該分子線エピタキシーでは最適成長温度を
500℃程度と比較的低くする必要があるからである。The reason why a high-quality Ge layer cannot be obtained by molecular beam epitaxy alone is that the optimum growth temperature must be relatively low, about 500° C., in molecular beam epitaxy.
ここでこの温度を高(すると平坦なモホロジーのGe層
が得られず、また温度が低すぎると、モホロジーは平坦
となるが、多結晶状となり単結晶が得られない。従って
500℃程度の温度では、結晶成長時に充分な熱エネル
ギを与えられず、良質のGe結晶を得ることが困難とな
る。Here, if this temperature is set to a high temperature (if this is done, a Ge layer with a flat morphology will not be obtained; if the temperature is too low, the morphology will be flat, but it will become polycrystalline and a single crystal cannot be obtained. Therefore, the temperature of about 500℃ In this case, sufficient thermal energy cannot be applied during crystal growth, making it difficult to obtain a good quality Ge crystal.
また気相化学反応法のみによっては、Si基板上に高品
質なGe層を得ることができない、即ち、GeH,ガス
等の熱分解による気相化学反応で単結晶Ge層を得るに
は800℃程度の比較的高温が必要となるが、この高温
で直接Si基板上にGe結晶を成長させると、SiとG
eの反応により平坦な界面が得られず、その上に成長し
たGe層の品質は悪くなってしまうからである。Furthermore, it is not possible to obtain a high-quality Ge layer on a Si substrate using only the vapor phase chemical reaction method. In other words, it is impossible to obtain a single crystal Ge layer on a Si substrate using a vapor phase chemical reaction using thermal decomposition of GeH, gas, etc. However, if Ge crystal is grown directly on the Si substrate at this high temperature, Si and G
This is because a flat interface cannot be obtained due to the reaction of e, and the quality of the Ge layer grown thereon will be poor.
したがってこの発明では、分子線エピタキシーによりS
i基板上に、ある程度品質の良いGe層を一度形成した
後、このGe層上に、充分な熱エネルギを与えることが
可能な気相化学反応によってGe層を成長させることに
より、高品質のGe層が得られるわけである。このよう
な高品質Ge層が得られることによって初めて、高品質
のGaAs層を得ることが可能となる。Therefore, in this invention, S
After forming a Ge layer of a certain level of quality on an i-substrate, a Ge layer of high quality can be grown on this Ge layer by a gas phase chemical reaction that can provide sufficient thermal energy. This results in layers. Only when such a high-quality Ge layer is obtained can a high-quality GaAs layer be obtained.
以上の実施例では、第1のGe層10の形成方法として
、分子線エピタキシーを用いたが、これは1(I”Pa
程度以上の高真空蒸着法によっても形成することができ
る。In the above embodiments, molecular beam epitaxy was used as the method for forming the first Ge layer 10, but this
It can also be formed by a high vacuum evaporation method.
また上記実施例では、GaAs太陽電池について説明し
てきたが、Geと同程度の格子定数を有する任意のm−
v族化合物半導体を用いた、任意の半導体装置に対して
もこの発明を適用でき、有効であることは言うまでもな
い。Furthermore, in the above embodiments, GaAs solar cells have been explained, but any m-
Needless to say, the present invention is applicable and effective to any semiconductor device using a V group compound semiconductor.
以上のように、この発明に係る半導体装置によれば、安
価、軽量で機械的強度の大きいSi基板上に、まずある
程度の品質の第1のGe層を、この上に高品質のGe層
を、さらにこの上に高品質のm−v族化合物半導体層を
備えた構成にしたので、安価、軽量でしかも高性能な半
導体装置が得られる効果がある。As described above, according to the semiconductor device of the present invention, a first Ge layer of a certain level of quality is first formed on a cheap, lightweight, and mechanically strong Si substrate, and then a high quality Ge layer is formed thereon. Furthermore, since a high quality m-v group compound semiconductor layer is provided thereon, an inexpensive, lightweight, and high-performance semiconductor device can be obtained.
第1図はこの発明の一実施例によるGaAs太陽電池を
示す模式断面図、第2図は従来のGaAs太陽電池を示
す模式断面図である。
9はSi基板、10は第1のGe層、11は第2のGe
層、2.3はn形、p形GaAs層(!If−V族化合
物半導体層)、7は電極、22はGaAs太陽電池であ
る。
なお図中同一符号は同−又は相当部分を示す。FIG. 1 is a schematic sectional view showing a GaAs solar cell according to an embodiment of the present invention, and FIG. 2 is a schematic sectional view showing a conventional GaAs solar cell. 9 is a Si substrate, 10 is a first Ge layer, 11 is a second Ge layer
The layers 2.3 are n-type and p-type GaAs layers (!If-V group compound semiconductor layers), 7 is an electrode, and 22 is a GaAs solar cell. Note that the same reference numerals in the figures indicate the same or equivalent parts.
Claims (2)
キシーによって形成された第1のGe層と、前記第1の
Ge層上に気相化学反応(CVD)によって形成された
第2のGe層と、前記第2のGe層上に形成されたGe
層と同程度の格子定数を有するIII−V族化合物半導体
層とを備えたことを特徴とする半導体装置。(1) A first Ge layer formed on the Si substrate by high vacuum evaporation or molecular beam epitaxy, and a second Ge layer formed on the first Ge layer by vapor phase chemical reaction (CVD). and Ge formed on the second Ge layer.
1. A semiconductor device comprising a III-V compound semiconductor layer having a lattice constant comparable to that of the semiconductor layer.
ることを特徴とする特許請求の範囲第1項記載の半導体
装置。(2) The semiconductor device according to claim 1, wherein the first Ge layer has a thickness of 0.5 to 2 μm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118162A JPS61274374A (en) | 1985-05-29 | 1985-05-29 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60118162A JPS61274374A (en) | 1985-05-29 | 1985-05-29 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61274374A true JPS61274374A (en) | 1986-12-04 |
Family
ID=14729636
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60118162A Pending JPS61274374A (en) | 1985-05-29 | 1985-05-29 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61274374A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102779865A (en) * | 2012-08-09 | 2012-11-14 | 厦门大学 | Silicon-based triple-junction solar battery using germanium as tunneling junction |
-
1985
- 1985-05-29 JP JP60118162A patent/JPS61274374A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102779865A (en) * | 2012-08-09 | 2012-11-14 | 厦门大学 | Silicon-based triple-junction solar battery using germanium as tunneling junction |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7122733B2 (en) | Multi-junction photovoltaic cell having buffer layers for the growth of single crystal boron compounds | |
US6660928B1 (en) | Multi-junction photovoltaic cell | |
JP3318658B2 (en) | High efficiency solar cell and its manufacturing method | |
US7309832B2 (en) | Multi-junction solar cell device | |
US5405453A (en) | High efficiency multi-junction solar cell | |
US5342453A (en) | Heterojunction solar cell | |
US4370510A (en) | Gallium arsenide single crystal solar cell structure and method of making | |
US5316593A (en) | Heterojunction solar cell with passivated emitter surface | |
US4156310A (en) | High bandgap window layer for gaas solar cells and fabrication process therefor | |
WO2009139935A1 (en) | High performance, high bandgap, lattice-mismatched, gainp solar cells | |
JP2010118666A (en) | Alternative substrate of inversion altered multi-junction solar battery | |
JPH0955521A (en) | Solar battery cell and its manufacture | |
WO1985005226A1 (en) | Solar cells and photodetectors | |
CN103000759A (en) | Preparation method of gallium arsenide thin-film multijunction stacked solar cells | |
WO1990009039A1 (en) | High efficiency solar cell | |
Venkatasubramanian et al. | 18.2%(AM1. 5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate | |
CN108735848B (en) | Multi-junction laminated laser photovoltaic cell and manufacturing method thereof | |
CN111430493B (en) | Multi-junction solar cell and power supply equipment | |
Saxena et al. | High‐efficiency AlGaAs/GaAs concentrator solar cells by organometallic vapor phase epitaxy | |
Kamath et al. | Large-area high-efficiency (AlGa) As—GaAs solar cells | |
JPS61274374A (en) | Semiconductor device | |
CN103489952B (en) | A kind of SiC substrate single-unit solar cell epitaxial structure and preparation method thereof | |
CN110137298B (en) | Preparation method of Ge/Si heterojunction bottom cell of GaAs-based multi-junction solar cell | |
WO2003052836A1 (en) | Multi-junction solar cell device | |
Lewis et al. | Recent developments in multijunction solar cell research |