JPS61274318A - Apparatus for heat-treating semiconductor product - Google Patents

Apparatus for heat-treating semiconductor product

Info

Publication number
JPS61274318A
JPS61274318A JP11437685A JP11437685A JPS61274318A JP S61274318 A JPS61274318 A JP S61274318A JP 11437685 A JP11437685 A JP 11437685A JP 11437685 A JP11437685 A JP 11437685A JP S61274318 A JPS61274318 A JP S61274318A
Authority
JP
Japan
Prior art keywords
gas
tube
inner tube
semiconductor
outer tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11437685A
Other languages
Japanese (ja)
Inventor
Kazuhiro Anraku
安楽 一宏
Yukihiro Tominaga
冨永 之廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP11437685A priority Critical patent/JPS61274318A/en
Publication of JPS61274318A publication Critical patent/JPS61274318A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable uniform heat treatment by providing the furnace core tube with a construction of double tubes, one of which is an inner tube that is partially composed of a sintered substance of porous SiC, and providing outside the inner tube an outer tube for flowing a gas into which the gas can flow and can be discharged therefrom, thereby preventing the occurrence of the concentration difference of the gas to be supplied to semiconductor products. CONSTITUTION:A gas is kept flowing in an outer tube 24, and a cap 30 is opened, allowing the semiconductor wafers 22 carried on a diffusion board 21 to be delivered into an inner tube 25. At this time, the setting is performed so that the semiconductor wafers 22 are positioned at the position of a venting part 25a of the inner tube 25 which is composed of a sintered substance of porous SiC. The set inner tube 25 is delivered in through the cap 31 within the outer tube 24 and received in the outer tube 24. The gap which has flowed in through a gas inlet port 27 passes between the outer tube 24 and the inner tube 25, and the gas is made to flow into the inner tube 25 only through the venting part 25a composed of a sintered substance of porous SiC. The gas is uniformly poured in parallel with the semiconductor wafers 22 and from the circumferential direction as shown by arrows, creeping around slowly, and thereafter it is discharged.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、半導体物品の熱処理装置に係り、特に半導体
ウェハの拡散装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a heat treatment apparatus for semiconductor articles, and more particularly to a diffusion apparatus for semiconductor wafers.

(従来の技術) 半導体装置の製造工程における拡散及び酸化技術は、今
日のLSI、VLS夏の基礎であるプレーナプロセスの
基本的で、かつ重要な役割を果たしている。
(Prior Art) Diffusion and oxidation techniques in the manufacturing process of semiconductor devices play a fundamental and important role in planar processes, which are the basis of today's LSI and VLS.

ここに、従来の半導体物品の熱処理装置とその処理方法
を図に基づいて説明する。
Here, a conventional heat treatment apparatus for semiconductor articles and its treatment method will be explained based on the drawings.

第5図は従来の半導体物品の熱処理装置の断面図である
FIG. 5 is a sectional view of a conventional heat treatment apparatus for semiconductor articles.

なお、ここでは、半導体ウェハのpoc7!、を用いる
拡散装置について説明する。
In addition, here, the semiconductor wafer poc7! A diffusion device using , will be explained.

図中、1は拡散用ボード、2は半導体ウェハ、3はヒー
タ、4は反応管、5は反応管のキャップ、6はN8及び
0.ガスが流入する第1の流入口、7はガス流入管、8
はP OC’l 2を含むガスが流入する第2の流入口
、9はパルプ、10は排気口である。
In the figure, 1 is a diffusion board, 2 is a semiconductor wafer, 3 is a heater, 4 is a reaction tube, 5 is a cap of the reaction tube, 6 is N8 and 0. a first inlet port through which gas flows; 7 is a gas inlet pipe; 8
is a second inlet into which gas containing P OC'l 2 flows; 9 is pulp; and 10 is an exhaust port.

この図に示されるように、まず、ヒータ3により900
6C程度の高温に保たれた反応管4内にその排気側端部
のキャンプ5を開いて拡散用ボード1に搭載された半導
体ウェハ2を挿入する。この時、反応管4内にはN2及
び0□が第1のガス流入口6よりガス流入管7を介して
排気側と反対側の端部から流される。また前記半導体ウ
ェハ2は拡散用ボード1に搭載された状態で反応管4内
に搬入される。この後、パルプ9を開くことによりP 
OC1zを含んだガス(バブラを使用)を第2のガス流
入口8から前記ガス流入管7を介して反応管4内に流す
。すると反応管4内において、POCIと02との反応
によりPtOsが生成°される。これを拡散源として半
導体ウェハ2に対して拡散が行われる。そして所定の拡
散を終えると、排出側端部のキャップ5を開いて半導体
ウェハ2を取り出すようにしている。しかし、このよう
な方法では、ガス流入管7に近い半導体ウェハ2aの付
近と排気側にあるウェハ2bの付近とではP!0.ガス
の流れは異なり、半導体ウェハ2にPt Osガスを均
等に晒すことができないために、均一な拡散処理を行う
ことは困難であった。
As shown in this figure, first, the heater 3
The camp 5 at the exhaust side end is opened in the reaction tube 4 kept at a high temperature of about 6C, and the semiconductor wafer 2 mounted on the diffusion board 1 is inserted. At this time, N2 and 0□ are flowed into the reaction tube 4 from the end opposite to the exhaust side through the gas inflow pipe 7 from the first gas inlet 6. Further, the semiconductor wafer 2 is carried into the reaction tube 4 while being mounted on the diffusion board 1. After this, by opening the pulp 9, P
Gas containing OC1z (using a bubbler) is flowed into the reaction tube 4 from the second gas inlet 8 through the gas inlet pipe 7. Then, in the reaction tube 4, PtOs is generated by the reaction between POCI and 02. Diffusion is performed on the semiconductor wafer 2 using this as a diffusion source. After completing a predetermined diffusion, the cap 5 at the discharge side end is opened and the semiconductor wafer 2 is taken out. However, in this method, P! in the vicinity of the semiconductor wafer 2a near the gas inlet pipe 7 and in the vicinity of the wafer 2b on the exhaust side. 0. Since the gas flows are different and the semiconductor wafer 2 cannot be uniformly exposed to the PtOs gas, it has been difficult to perform a uniform diffusion process.

この問題を解決するために、第6図に示されるような半
導体ウェハの拡散装置も試みられている。
In order to solve this problem, a semiconductor wafer diffusion device as shown in FIG. 6 has also been attempted.

図中、11は反応管、12はガス導入管、13a乃至1
3eはガス導入管12−に形成されるガス導入口であり
、その他の部分は第5図に示したものと同一であり、そ
の説明は省略する。
In the figure, 11 is a reaction tube, 12 is a gas introduction tube, and 13a to 1
3e is a gas introduction port formed in the gas introduction pipe 12-, and the other parts are the same as those shown in FIG. 5, and the explanation thereof will be omitted.

次に、この拡散装置を用いた半導体ウェハの拡散方法に
ついて説明すると、ガス導入管12を反応管11の内部
まで延長し、Nt及びo2とPOCl sの混合ガスを
132乃至136の導入口より反応管ll内に流すよう
にする。
Next, to explain the method for diffusing semiconductor wafers using this diffusion device, the gas introduction tube 12 is extended to the inside of the reaction tube 11, and a mixed gas of Nt, O2, and POCl s is introduced into the reaction tube through the introduction ports 132 to 136. Let it flow into the tube.

この方法によれば、半導体ウェハ2aと2bの付近のガ
ス濃度は第5図に示される拡散装置によるよりは改善さ
れる。
According to this method, the gas concentration in the vicinity of semiconductor wafers 2a and 2b is improved more than with the diffusion device shown in FIG.

(発明が解決しようとする問題点) しかしながら、第6図に示される半導体ウェハの拡散装
置によっても、導入口13b直下の半導体ウェハ2Cと
このウェハ2Cよりは離れている所に位置する、例えば
半導体ウェハ2dではガスの流れが異なり、やはり均一
な拡散処理を行うことは難しいという問題があった。
(Problems to be Solved by the Invention) However, even with the semiconductor wafer diffusion apparatus shown in FIG. The gas flow is different in the wafer 2d, and there is a problem in that it is difficult to perform a uniform diffusion process.

本発明は、上記問題点を除去し、半導体物品へ供給され
るガスの濃度差の発生を防ぎ、均一な熱処理を行い得る
半導体物品の熱処理装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat treatment apparatus for semiconductor articles that can eliminate the above-mentioned problems, prevent the occurrence of concentration differences in gases supplied to semiconductor articles, and perform uniform heat treatment.

(問題点を解決するための手段) 本発明は、上記問題点を解決するために、半導体物品の
熱処理装置において、炉芯管を二重の管構造とし、その
一方は一部分は多孔質SiC焼結体により構成された内
部管とし、その内部管の外側にガスを流すためのガスの
流入、排出が可能な外部管を設けるようにしたものであ
る。
(Means for Solving the Problems) In order to solve the above problems, the present invention provides a heat treatment apparatus for semiconductor articles in which the furnace core tube has a double tube structure, one of which is partially made of porous SiC sintered material. The inner tube is made of a solid body, and an outer tube is provided outside the inner tube through which gas can flow in and out.

(作用) 本発明によれば、外部管24に流入したガスは内部管2
5の多孔質SiC焼結体から成る通気部25aから内部
管25内に流入し、半導体ウェハ22に対して円周方向
から平行にしかも均一に注がれ、十分に回り込んだ後、
前記通気部25aから排出される。つまり、内部管25
内においてはガス濃度が均等化され、ガスはゆっくりと
置換されるため、半導体ウェハ22の位置にかかわらず
半導体ウェハの処理面は均一なガスによって晒され、熱
処理される。
(Function) According to the present invention, the gas flowing into the outer pipe 24 is transferred to the inner pipe 24.
It flows into the inner tube 25 from the ventilation part 25a made of porous SiC sintered body No. 5, is uniformly poured from the circumferential direction parallel to the semiconductor wafer 22, and has sufficiently circulated around the semiconductor wafer 22.
It is discharged from the ventilation section 25a. In other words, the inner tube 25
Since the gas concentration is equalized inside and the gas is slowly replaced, the processing surface of the semiconductor wafer is exposed to a uniform gas and heat-treated regardless of the position of the semiconductor wafer 22.

(実施例) 以下、本発明の実施例を図面に基づいて詳細に説明する
(Example) Hereinafter, an example of the present invention will be described in detail based on the drawings.

第1図は本発明に係る半導体物品の熱処理装置の断面図
、第2図は第1図におけるn−n ’線断面図、第3図
は第1図におけるm−m ’線断面図である。
FIG. 1 is a sectional view of a heat treatment apparatus for semiconductor articles according to the present invention, FIG. 2 is a sectional view taken along line n-n' in FIG. 1, and FIG. 3 is a sectional view taken along line m-m' in FIG. .

これらの図において、21は拡散用ボード、22は半導
体ウェハ、23はヒータ、24は石英SiCなどの材質
から成る外部管、25は内部管であり、25aは内部管
25の一部を構成し、半導体ウェハ22が設置される周
囲に位置する多孔1jsic焼結体から成る管状の通気
部、25bは前記通気部25a以外の密閉部、26は内
部管25に設けられる脚であり、外部管24に接するよ
うに配置される。27は外部管24へのガス流入口、2
8はガス配管、29はガスシステム、30は内部管25
のキャップ、31は外部管のキャップ、32はキャンプ
30の脚、33は排気口である。
In these figures, 21 is a diffusion board, 22 is a semiconductor wafer, 23 is a heater, 24 is an external tube made of a material such as quartz SiC, 25 is an internal tube, and 25a constitutes a part of the internal tube 25. , a tubular ventilation section made of a porous 1jsic sintered body located around the semiconductor wafer 22, 25b is a sealed section other than the ventilation section 25a, 26 is a leg provided on the inner tube 25, and the outer tube 24 It is placed so that it is in contact with the 27 is a gas inlet to the external pipe 24;
8 is a gas pipe, 29 is a gas system, 30 is an internal pipe 25
31 is the cap of the external pipe, 32 is the leg of the camp 30, and 33 is the exhaust port.

次に内部管の構造と素材について説明する。Next, the structure and material of the inner tube will be explained.

第1図及び第3図に示されるように、半導体ウェハ22
が位置する周辺部に内部管25の多孔質SiC焼結体か
ら成る通気部25aが配置される。
As shown in FIGS. 1 and 3, a semiconductor wafer 22
A ventilation section 25a made of a porous SiC sintered body of the inner tube 25 is arranged around the area where the inner tube 25 is located.

この多孔質SiC焼結体としては、例えば、rイビセラ
ム」 (商品名・イビデン株式会社製)を用いることが
できる。
As this porous SiC sintered body, for example, "r Ibiceram" (trade name, manufactured by Ibiden Corporation) can be used.

次に、この多孔質SiC焼結体について詳細に説明する
。 第4図はこの多孔質SiC焼結体の拡大構造図であ
り、図中、33はSiCバーであり、その長さは約10
0μm134は気孔部であり、気孔径は約100〜20
0μmである。
Next, this porous SiC sintered body will be explained in detail. FIG. 4 is an enlarged structural diagram of this porous SiC sintered body. In the figure, 33 is a SiC bar, the length of which is about 10
0 μm 134 is the pore part, and the pore diameter is about 100 to 20
It is 0 μm.

この種の焼結体は高純度β型SiCを基材として製造さ
れたものであり、β型微粉末のもつ焼結特性を生かし板
状結晶が複雑に絡み合った三次元綱目構造を有し、全体
的にみて均一な気孔部が分布している点に大きな特徴を
有している。
This type of sintered body is manufactured using high-purity β-type SiC as a base material, and has a three-dimensional mesh structure in which plate-shaped crystals are intricately intertwined, taking advantage of the sintering properties of β-type fine powder. A major feature is that the pores are uniformly distributed throughout.

その他に従来のセラミック多孔体(α型)に比べて、(
1)優れた強度と耐熱性(16003Cまで使用可)が
あり、(2)化学的に安定で汚染がなく、(3)気孔径
、気孔率或いは比表面積を広範囲に製造可能であり、(
4)各種任意形状の製品が製造可能であるという利点を
も有している。
In addition, compared to conventional ceramic porous bodies (α type), (
1) It has excellent strength and heat resistance (can be used up to 16003C), (2) It is chemically stable and free from contamination, (3) It can be manufactured with a wide range of pore diameters, porosity, and specific surface areas, and (
4) It also has the advantage that products of various arbitrary shapes can be manufactured.

このような多孔質StC焼結体を内部管の前記通気部2
5aに用い、密閉部25bは、例えば、この焼結体の気
孔部34を金属Siを含浸させて充填したもので構成す
る。この密閉部−25bは、第1図及び第2図に示され
ているように、外部管24の内側に脚26を介して配設
される。ここで留意すべきことはガスが流入する側には
必ずこの焼結体の気孔部が充填された密閉部25bが設
置されないとガスが素通りしてガス流入側から直接半導
体ウェハに当たることになり、従来技術の問題点を解決
できないことになる。従って、少なくともガスの流入口
側は焼結体は通気性がないように充填する必要がある。
Such a porous StC sintered body is used in the ventilation section 2 of the inner tube.
5a, and the sealed portion 25b is constructed by, for example, filling the pores 34 of this sintered body with metal Si. As shown in FIGS. 1 and 2, the sealing portion 25b is disposed inside the outer tube 24 via legs 26. It should be noted here that unless a sealed part 25b filled with the pores of this sintered body is installed on the gas inflow side, the gas will pass through and directly hit the semiconductor wafer from the gas inflow side. This means that the problems of the prior art cannot be solved. Therefore, it is necessary to fill the sintered body so that there is no air permeability at least on the gas inlet side.

なお、上記焼結体の気孔径は約10μm〜200μm間
で適宜選定することができる。
Note that the pore diameter of the sintered body can be appropriately selected from about 10 μm to 200 μm.

次にこの熱処理装置の動作について説明する。Next, the operation of this heat treatment apparatus will be explained.

まず、外部管24にはガスを流しておき、内部管25内
にキャンプ30を開いて拡散用ボード21上に搭載した
半導体ウェハ22を搬入する。この場合、内部管25の
多孔質SiC焼結体からなる通気部25aの位置に半導
体ウェハ22が位置するようにセットする。このように
セットされた内部管25は外部管24のキャップ31を
開口して、そこから搬入され、外部管24に収容される
First, gas is allowed to flow through the outer tube 24, the camp 30 is opened in the inner tube 25, and the semiconductor wafer 22 mounted on the diffusion board 21 is carried in. In this case, the semiconductor wafer 22 is set so as to be located at the ventilation portion 25a of the internal tube 25 made of a porous SiC sintered body. The inner tube 25 set in this manner is carried in through the cap 31 of the outer tube 24 and accommodated in the outer tube 24.

そこで、ガス流入口27より流入したガスは外部管24
と内部管25の間を通り、多孔質SiC焼結体からなる
通気部25aのみからガスが内部管25の内部に流入さ
れる。この場合、ガスは第3図において矢印で示される
ように半導体ウェハ22に対して平行でかつ円周方向か
ら均一に注がれてゆっくりと回り込んだ後、排出される
。つまり、内部管25内においては半導体ウェハ22に
対して直角方向のガスの流れは発生しない、従って、半
導体ウェハ22は均一なガスに十分に晒されることにな
る。
Therefore, the gas flowing in from the gas inlet 27 is transferred to the external pipe 24.
Gas passes between the inner tube 25 and the inner tube 25 and flows into the inner tube 25 only from the ventilation section 25a made of a porous SiC sintered body. In this case, the gas is uniformly poured from the circumferential direction parallel to the semiconductor wafer 22 as shown by arrows in FIG. 3, slowly circulates around the semiconductor wafer 22, and then is discharged. That is, there is no gas flow in the direction perpendicular to the semiconductor wafer 22 within the inner tube 25, so that the semiconductor wafer 22 is sufficiently exposed to a uniform gas.

また、上記構成の拡散炉においては、外部管24の排気
側において内部管25の開口部がキャップ30で完全に
密閉されているので外気が内部管25の半導体ウェハ2
2の部分に混入することがなく外気混入による拡散のば
らつきも防止することができる。
In addition, in the diffusion furnace configured as described above, since the opening of the internal tube 25 is completely sealed with the cap 30 on the exhaust side of the external tube 24, the outside air is transferred to the semiconductor wafer 2 in the internal tube 25.
It does not mix into the part 2, and it is possible to prevent variations in diffusion due to the mixing of outside air.

なお、上記実施例においては、半導体ウェハの拡散処理
について述べたが、これに限定されるものではなく、半
導体物品の酸化、焼鈍−又は合金化処理に適用可能であ
る。
In the above embodiments, the diffusion treatment of semiconductor wafers has been described, but the present invention is not limited thereto, and can be applied to oxidation, annealing, or alloying treatment of semiconductor articles.

また、本発明は上記実施例に限定されるものではなく、
本発明の趣旨に基づいて種々の変形が可能であり、それ
らを本発明の範囲から排除するものではない。
Furthermore, the present invention is not limited to the above embodiments,
Various modifications are possible based on the spirit of the present invention, and these are not excluded from the scope of the present invention.

(発明の効果) 以上、詳細に説明したように本発明によれば、ガスが導
入されかつ排気される外部管と、該外部管の内側に半導
体物品が収容され、該半導体物品が前記ガスに晒されて
熱処理される内部管とを設け、かつ、前記内部管の前記
半導体物品を包囲する部分には多孔質炭化珪素焼結体か
ら成る通気部を設けるようにしたので、 (1)半導体物品の拡散や酸化など熱処理を行うための
ガスの濃度差の発生を防ぎ、半導体物品への均一なガス
を供給することができ、半導体物品の設置場所に拘わら
ず、均一な熱処理を行うことができる。
(Effects of the Invention) As described above in detail, according to the present invention, there is an external tube into which gas is introduced and exhausted, and a semiconductor article is housed inside the external tube, and the semiconductor article is exposed to the gas. (1) Semiconductor article It is possible to prevent the occurrence of concentration differences in the gas for heat treatment such as diffusion and oxidation, and to supply a uniform gas to semiconductor products, allowing uniform heat treatment to be performed regardless of the location where the semiconductor product is installed. .

(2)炉芯管を外部管と内部管の二重構造にしているた
め外気が内部管に混入することがなく、外気混入による
熱処理のばらつきを防止することができる。
(2) Since the furnace core tube has a double structure of an outer tube and an inner tube, outside air does not mix into the inner tube, and it is possible to prevent variations in heat treatment due to outside air mixing.

(3)前記した多孔質SiC焼結体の種々の特徴、特に
優れた化学的安定性、及び機械的強度に着目して炉芯管
の通気部として用いることにより安定で、かつ長寿命の
熱処理装置を提供することができる。
(3) Focusing on the various characteristics of the porous SiC sintered body described above, especially its excellent chemical stability and mechanical strength, it can be used as a vent for a furnace core tube to achieve stable and long-life heat treatment. equipment can be provided.

このように本発明は、種々の利点を有し、それによって
もたらされる効果は顕著である。
As described above, the present invention has various advantages, and the effects brought about by it are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る半導体物品の熱処理装置の断面図
、第2図は第1図におけるn−n ’線断面図、第3図
は第1図におけるm−m ’線断面図、第4図は多孔質
SiC焼結体の拡大構造図、第5図は従来の半導体物品
の熱処理装置の断面図、第6図は従来の他の半導体物品
の熱処理装置の断面図である。 21・・・拡散用ボード、22・・・半導体ウェハ、2
3・・・ヒータ、24・・・外部管、25・・・内部管
、25a・・・通気部、25b・・・密閉部、2G・・
・内部管の脚、27・・・ガス流入口、28・・・ガス
配管、29・・・ガスシステム、30・・・内部管のキ
ャップ、31・・・外部管のキャップ、32・・・キャ
ップ30の脚、33・・・排気口。
FIG. 1 is a cross-sectional view of a heat treatment apparatus for semiconductor articles according to the present invention, FIG. 2 is a cross-sectional view taken along line n-n' in FIG. 1, and FIG. FIG. 4 is an enlarged structural diagram of a porous SiC sintered body, FIG. 5 is a sectional view of a conventional heat treatment apparatus for semiconductor articles, and FIG. 6 is a sectional view of another conventional heat treatment apparatus for semiconductor articles. 21... Diffusion board, 22... Semiconductor wafer, 2
3... Heater, 24... External tube, 25... Internal tube, 25a... Ventilation part, 25b... Sealed part, 2G...
- Inner tube leg, 27... Gas inlet, 28... Gas piping, 29... Gas system, 30... Inner tube cap, 31... External tube cap, 32... Legs of cap 30, 33...exhaust port.

Claims (2)

【特許請求の範囲】[Claims] (1)ガスが導入されかつ排気される外部管と、該外部
管の内側に半導体物品が収容され、該半導体物品が前記
ガスに晒されて熱処理される内部管とを設け、かつ、前
記内部管の前記半導体物品を包囲する部分には多孔質炭
化珪素焼結体から成る通気部を設けるようにしたことを
特徴とする半導体物品の熱処理装置。
(1) An outer tube into which a gas is introduced and exhausted, and an inner tube in which a semiconductor article is housed, and where the semiconductor article is exposed to the gas and heat-treated; 1. A heat treatment apparatus for a semiconductor article, characterized in that a ventilation section made of a porous silicon carbide sintered body is provided in a portion of the tube surrounding the semiconductor article.
(2)前記多孔質炭化珪素焼結体の気孔径が10μm乃
至200μmであることを特徴とする特許請求の範囲第
1項記載の半導体物品の熱処理装置。
(2) The heat treatment apparatus for a semiconductor article according to claim 1, wherein the porous silicon carbide sintered body has a pore diameter of 10 μm to 200 μm.
JP11437685A 1985-05-29 1985-05-29 Apparatus for heat-treating semiconductor product Pending JPS61274318A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11437685A JPS61274318A (en) 1985-05-29 1985-05-29 Apparatus for heat-treating semiconductor product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11437685A JPS61274318A (en) 1985-05-29 1985-05-29 Apparatus for heat-treating semiconductor product

Publications (1)

Publication Number Publication Date
JPS61274318A true JPS61274318A (en) 1986-12-04

Family

ID=14636138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11437685A Pending JPS61274318A (en) 1985-05-29 1985-05-29 Apparatus for heat-treating semiconductor product

Country Status (1)

Country Link
JP (1) JPS61274318A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080801A (en) * 2019-06-14 2020-12-15 北京北方华创微电子装备有限公司 Lower hearth assembly, growth furnace and mounting method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080801A (en) * 2019-06-14 2020-12-15 北京北方华创微电子装备有限公司 Lower hearth assembly, growth furnace and mounting method thereof

Similar Documents

Publication Publication Date Title
US3951587A (en) Silicon carbide diffusion furnace components
US11648537B2 (en) Supported catalyst for organic substance decomposition and organic substance decomposing apparatus
CN101029797A (en) Pedestal for furnace
JPS6366927A (en) Thermal treatment equipment
JPS61274318A (en) Apparatus for heat-treating semiconductor product
JPS61274319A (en) Apparatus for heat-treating semiconductor product
US4203387A (en) Cage for low pressure silicon dioxide deposition reactors
JP2002343788A (en) Gas inlet member of plasma treatment equipment
JPH0674192B2 (en) Method for manufacturing ceramic-metal multilayer structure
US5178534A (en) Controlled diffusion environment capsule and system
JPS61274320A (en) Apparatus for heat-treating semiconductor product
JP3450033B2 (en) Heat treatment equipment
JPS62140413A (en) Vertical type diffusion equipment
JP3412735B2 (en) Wafer heat treatment equipment
KR102466392B1 (en) Manufacturing Apparatus For Uniform Insulating Layer Coated Soft Magenetic Alloy Powder Using Selective Oxidation Heat Treatment And Method Thereof
JPH09260363A (en) Manufacturing apparatus for semiconductor
JPH02281729A (en) Gas mixer of gas introduction pipe of diffusion furnace for semiconductor
JPH05291161A (en) Vertical type diffusion device
JPS62202524A (en) Apparatus for processing semiconductor wafer
JPH02174224A (en) Heat treatment device
JPS6142153A (en) Heat-resisting jig
JPS635517A (en) Diffusion and oxidation furnace
JP4159066B2 (en) Process tube
JPH08288232A (en) Gas control jig of semiconductor heat treatment furnace
JP2003297910A (en) Wafer loading method in wafer heat treatment device