JPH02174224A - Heat treatment device - Google Patents

Heat treatment device

Info

Publication number
JPH02174224A
JPH02174224A JP32994888A JP32994888A JPH02174224A JP H02174224 A JPH02174224 A JP H02174224A JP 32994888 A JP32994888 A JP 32994888A JP 32994888 A JP32994888 A JP 32994888A JP H02174224 A JPH02174224 A JP H02174224A
Authority
JP
Japan
Prior art keywords
gas
introduction
introduction pipe
gases
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32994888A
Other languages
Japanese (ja)
Inventor
Yasushi Yagi
靖司 八木
Mitsuaki Komino
光明 小美野
Shinji Miyazaki
伸治 宮崎
Akemichi Suekura
末倉 明道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tokyo Electron Sagami Ltd
Original Assignee
Toshiba Corp
Tokyo Electron Sagami Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Electron Sagami Ltd filed Critical Toshiba Corp
Priority to JP32994888A priority Critical patent/JPH02174224A/en
Publication of JPH02174224A publication Critical patent/JPH02174224A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the emergence of dust in the introduction process of a treated gas and improve a yielding rate by introducing at least into one introduction pipe independently a plurality of different sorts of respective reaction gases and flowing a plurality of these reaction gases into a reaction vessel after mixing these gases in the process of flowing in the introduction pipe. CONSTITUTION:A plurality of L-shaped source gas introduction pipes 10-12 are installed at the lower end outside circumference of a reaction vessel 1 by causing respective gas discharge parts to protrude in an internal cylinder 3. Further, an SiH2Cl2 gas introduction pipe 11 which is used for the introduction of reaction gases, e.g. the SiH2Cl2 gas, an NH3 gas introduction pipe 12 which is used for the introduction of the NH3 gas, and a gas mixing introduction pipe 10 through which SiH2Cl2 and NH3 gases are introduced separately and are discharged after mixing the above gases in the process of flowing in respective pipes are installed all in one plane. An N2 gas introduction pipe 13 which is used for introduction of inactive gases, e.g. the N2 gas into the reaction vessel 1 with the completion of treatment is installed after inserting the gas discharge part into a gap between internal and external cylinders. Even in the case where treatment is performed at uniform temperature conditions, uniform and high quality films are formed; besides, emergence of dust is prevented in the introduction process of a treated gas and yielding rate is improved.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、熱処理装置、に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a heat treatment apparatus.

(従来の技術) 近年、半導体デバイスの製造工程における熱拡散工程や
成膜工程で使用される熱処理装置として、省スペース化
、省エネルギー化、被処理物である半導体ウェハの大口
径化および自動化への対応が容品であること等の理由か
ら縦型熱処理装置が開発されている。
(Conventional technology) In recent years, heat treatment equipment used in the thermal diffusion process and film formation process in the semiconductor device manufacturing process has been developed to save space, save energy, increase the diameter of semiconductor wafers to be processed, and increase automation. Vertical heat treatment equipment has been developed because it is compatible with containers and other reasons.

このような縦型熱処理装置では、石英等からなる円筒状
の反応容器およびこの周囲を囲繞する如く設けられたヒ
ータ、均熱管、断熱材などがら構成された反応炉本体は
ほぼ垂直に配設されており、石英等からなるウェハボー
トに多数の半導体ウェハを所定の間隔で棚積み配列して
、例えば上下動可能とされた搬送機構によって、反応容
器内下方から半導体ウェハをロード・アンロードするよ
うに構成されている。
In such a vertical heat treatment apparatus, the reactor body, which is composed of a cylindrical reaction vessel made of quartz or the like, a heater, a soaking tube, a heat insulating material, etc. installed around the vessel, is arranged almost vertically. In this system, a large number of semiconductor wafers are stacked on shelves at predetermined intervals on a wafer boat made of quartz or the like, and the semiconductor wafers are loaded and unloaded from below inside the reaction vessel using a transport mechanism that can move up and down, for example. It is composed of

ところで、このような縦型熱処理装置を用いた処理では
、各半導体ウェハに成膜された薄膜の膜質を均一とする
ために、反応容器内の処理温度を均一に保持し、所定の
反応ガスを反応容器の所定のガス導入部例えば反応容器
下方に設けられたガス導入管から導入して処理すること
が行われている。
By the way, in processing using such a vertical heat processing apparatus, in order to make the quality of the thin film formed on each semiconductor wafer uniform, the processing temperature in the reaction vessel is maintained uniformly, and a predetermined reaction gas is Processing is carried out by introducing the gas through a predetermined gas introduction part of the reaction vessel, for example, a gas introduction pipe provided below the reaction vessel.

(発明が解決しようとする課題) しかしながら、上述した従来の縦型熱処理装置では、反
応ガス導入部から離れる程反応ガス中の反応成分の濃度
が低くなるため、反応ガス導入部から離れて配置された
半導体ウェハ即ち反応容器上部に配置された半導体ウェ
ハの成膜量が、反応ガス導入部近傍に配置された半導体
ウェハ即ち反応容器下部に配置された半導体ウェハより
も少なくなり、均一な成膜が行えないという問題があっ
た。
(Problem to be Solved by the Invention) However, in the conventional vertical heat treatment apparatus described above, the concentration of the reaction component in the reaction gas decreases as the distance from the reaction gas introduction part increases. The amount of film formed on semiconductor wafers placed in the upper part of the reaction vessel, that is, semiconductor wafers placed in the upper part of the reaction vessel, is smaller than that on semiconductor wafers placed near the reaction gas introduction part, that is, semiconductor wafers placed in the lower part of the reaction vessel, and uniform film formation is not achieved. The problem was that I couldn't do it.

さらに、反応ガスは流通過程で塵埃を発生する原因とな
ることがあり、120〜130℃以下の温度では、副反
応生成物であるN114CI粒子を析出し、これらポリ
シリコン粒子やN)1.01粒子が反応ガスとともに反
応容器内に塵埃となって飛散して半導体ウェハ群に付着
し、歩留り低下を招く原因となるという問題があった。
Furthermore, the reaction gas may cause dust to be generated during the flow process, and at temperatures below 120 to 130°C, N114CI particles, which are side reaction products, are precipitated, and these polysilicon particles and N)1.01 There is a problem in that the particles become dust in the reaction container together with the reaction gas and are scattered and adhere to the group of semiconductor wafers, causing a decrease in yield.

本発明は、上述した問題点を解決するためになされたも
ので、均一温度条件下の処理においても均一かつ良質な
成膜が行え、さらに、処理ガス導入過程における塵埃の
発生を防止して歩留り向上が図れる熱処理装置を提供す
ることを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and enables uniform and high-quality film formation even during processing under uniform temperature conditions, and further improves yield by preventing the generation of dust during the process of introducing processing gases. The object of the present invention is to provide a heat treatment apparatus that can be improved.

[発明の構成] (課題を解決するための手段) 本発明の熱処理装置は、所定の間隔で配列された被処理
物を収容する反応容器と、この反応容器内に所定の反応
ガスを導入する如く設けられた複数の反応ガス導入管を
備えた熱処理装置において、前記複数の反応ガス導入管
のうち少なくとも一つの導入管内に相異なる複数種の反
応ガスを夫々独立して導入しこれら複数の反応ガスを上
記導入管内流通過程で混合して上記反応容器内に流出す
るように構成したことを特徴とするものである。
[Structure of the Invention] (Means for Solving the Problems) The heat treatment apparatus of the present invention includes a reaction vessel for accommodating objects to be treated arranged at predetermined intervals, and a predetermined reaction gas introduced into the reaction vessel. In a heat treatment apparatus equipped with a plurality of reaction gas introduction pipes arranged as described above, a plurality of different reaction gases are independently introduced into at least one of the plurality of reaction gas introduction pipes, and a plurality of reaction gases are independently introduced into the plurality of reaction gas introduction pipes. The present invention is characterized in that the gases are mixed during the flow process in the introduction pipe and flowed into the reaction vessel.

尚、上記反応ガス混合用の導入管におけるガス混合部の
位置を、導入した複数種の反応ガスが反応して塵埃を発
生させないような温度領域に位置させて、処理ガス導入
過程における塵埃の発生を防止するように構成してもよ
い。
In addition, the position of the gas mixing part in the introduction tube for mixing the reaction gases is located in a temperature range where the introduced multiple types of reaction gases do not react and generate dust, thereby preventing the generation of dust during the process of introducing the processing gas. It may be configured to prevent this.

(作 用) 本発明の熱処理装置は、複数の反応ガス導入管のうち少
なくとも一つの導入管内に相異なる複数種の反応ガスを
夫々独立して導入しこれら複数の反応ガスを導入管内流
通過程で混合して反応容器内に吐出するガス混合用導入
管を設けることで、均一温度条件下の処理においても均
一かつ良質な成膜が行うことができ、さらに、上記ガス
混合用導入管のガス混合部の位置を、反応容器内の所定
の温度領域に位置させることで処理ガス導入過程におけ
る塵埃の発生を防止して歩留り向上を図ることが可能と
なる。
(Function) The heat treatment apparatus of the present invention independently introduces a plurality of different reaction gases into at least one of the plurality of reaction gas introduction tubes, and flows these plurality of reaction gases through the introduction tube. By providing a gas mixing inlet tube that mixes and discharges the gas into the reaction vessel, uniform and high-quality film formation can be performed even during processing under uniform temperature conditions. By locating the part in a predetermined temperature range within the reaction vessel, it is possible to prevent the generation of dust during the process of introducing the processing gas and to improve the yield.

(実施例) 以下、本発明を窒化膜成膜用の縦型熱処理装置に適用し
た一実施例について図を参照して説明する。
(Example) Hereinafter, an example in which the present invention is applied to a vertical heat treatment apparatus for forming a nitride film will be described with reference to the drawings.

反応容器1は、例えば石英からなる内径240mmの外
筒2と、この外筒2内に同心的に間隔を設けて収容され
た例えば石英からなる内径20ha 、長さ111の内
筒3とから構成された二重管構造となっている。そして
この反応容器1を囲繞する如(加熱用ヒータ4、断熱材
5が配設されている。
The reaction vessel 1 is composed of an outer cylinder 2 made of, for example, quartz and having an inner diameter of 240 mm, and an inner cylinder 3 made of, for example, quartz and having an inner diameter of 20 ha and a length of 111, which is housed concentrically and spaced apart within the outer cylinder 2. It has a double-tube structure. A heater 4 and a heat insulating material 5 are disposed to surround the reaction vessel 1.

この反応容器1の下端部は、ステンレス等からなる円盤
状のフランジ6により密閉されており、このフランジ6
上に内筒3と所定の間隙を保持して反応容器1内の熱を
断熱するための保温筒7が内挿されている。そして保温
筒7上には、多数の半導体ウェハ8を所定の間隔で配列
収容した例えば石英からなるウェハボート9が搭載され
る如く設けられている。このウェハボート9にはウェハ
移載機によりウェハキャリアから半導体ウェハを例えば
100枚移載し、ボートキャリアにより上記保温筒7上
に自動的に搬送される構成になっている。これらウェハ
ボート9、保温筒7は、図示を省略した昇降機構例えば
ボートエレベータによりロード・アンロードされるよう
に構成されている。
The lower end of the reaction vessel 1 is sealed with a disc-shaped flange 6 made of stainless steel or the like.
A heat insulating cylinder 7 is inserted above to maintain a predetermined gap with the inner cylinder 3 and insulate the heat inside the reaction vessel 1 . A wafer boat 9 made of quartz, for example, in which a large number of semiconductor wafers 8 are arranged and housed at predetermined intervals is mounted on the heat-insulating tube 7 . For example, 100 semiconductor wafers are transferred from a wafer carrier to this wafer boat 9 by a wafer transfer device, and the wafers are automatically transferred onto the heat-insulating cylinder 7 by the boat carrier. The wafer boat 9 and the heat insulating cylinder 7 are configured to be loaded and unloaded by a lifting mechanism (not shown), such as a boat elevator.

また、反応容器1の下端部外周壁には複数のL字状ソー
スガス導入管10.11.12が夫々ガス吐出部を内筒
3内に突出させて設けられており、本実施例では反応ガ
ス例えば5ill 2 C12ガスを導入するための5
ill 2 CI2ガス導入管11、N113ガスを導
入するためのNH3ガス導入管12、SIH2C12ガ
スおよびNH3ガスを個別に導入しガス流通過程でこれ
らをミキシングして吐出するガスミキシング用導入管1
0が夫々同一平面上に設けられており、また処理終了後
に反応容器1内に不活性ガス例えばN2ガスを導入する
ためのN2ガス導入管13がそのガス吐出部を内筒3と
外筒2との間隙に挿入させて設けられている。
In addition, a plurality of L-shaped source gas introduction pipes 10, 11, 12 are provided on the outer circumferential wall of the lower end of the reaction vessel 1, with their respective gas discharge portions protruding into the inner cylinder 3. 5 for introducing gas e.g. 5ill 2 C12 gas
ill 2 CI2 gas introduction pipe 11, NH3 gas introduction pipe 12 for introducing N113 gas, gas mixing introduction pipe 1 for introducing SIH2C12 gas and NH3 gas individually and mixing and discharging them during the gas distribution process.
0 are provided on the same plane, and an N2 gas introduction pipe 13 for introducing an inert gas, such as N2 gas, into the reaction vessel 1 after the completion of the treatment connects its gas discharge portion to the inner cylinder 3 and the outer cylinder 2. It is inserted into the gap between the

これら各ソースガス導入管10.11.12より反応容
″ri1内に導入された処理ガスは排気管14より図示
を省略した真空ポンプへと排出される。
The processing gases introduced into the reaction volume "ri1" through these source gas introduction pipes 10, 11, 12 are discharged from the exhaust pipe 14 to a vacuum pump (not shown).

上述した各ソースガス導入管10.11.12のさらに
詳細な構造を以下、第3図および第4図を参照して説明
する。
A more detailed structure of each of the source gas introduction pipes 10, 11, 12 described above will be described below with reference to FIGS. 3 and 4.

ガスミキシング用導入管10は第3図に示すように、例
えば石英部材からなるL字状の管で、内径例えば4■で
内筒3内に挿入された導入管垂直部Vの下部はY字状に
分岐された二股形状となって導入管水平部Hに接続され
、2つのガス導入ボー1m1、m2を構成している。こ
れら各ガス導入ボートm1、m2から夫々ソースガスが
例えばガス導入ボートm1からは5ill 2 CI2
ガスがそしてガス導入ボーhm2からはN113ガスが
導入され、合流部10aでミキシングされた後、導入管
垂直部Vの側壁に所定のピッチ例えば50〜15(1m
o+のピッチで穿設された複数のガス吐出孔例えば口径
0.7w+mのガス吐出口10bから吐出される。
As shown in FIG. 3, the gas mixing introduction pipe 10 is an L-shaped pipe made of, for example, a quartz member, and has an inner diameter of, for example, 4 mm, and the lower part of the vertical part V of the introduction pipe inserted into the inner cylinder 3 is Y-shaped. It has a bifurcated shape and is connected to the horizontal part H of the introduction pipe, forming two gas introduction bows 1m1 and 1m2. The source gas from each of these gas introduction boats m1 and m2 is, for example, 5ill 2 CI2 from the gas introduction boat m1.
After the gas and N113 gas are introduced from the gas introduction bow hm2 and mixed at the merging part 10a, they are placed on the side wall of the vertical part V of the introduction pipe at a predetermined pitch, for example, 50 to 15 (1 m
The gas is discharged from a plurality of gas discharge holes drilled at a pitch of o+, for example, gas discharge ports 10b having a diameter of 0.7w+m.

このガスミキシング用導入管10の垂直部Vの高さは、
ウェハボート9に収容された半導体ウェハ群8の最上部
と路間等の高さまで延設されており、本実施例では、導
入管垂直部Vの長さを約1060+u+とじた。
The height of the vertical portion V of this gas mixing introduction pipe 10 is:
It extends to a height between the top of the group of semiconductor wafers 8 housed in the wafer boat 9 and the path, and in this embodiment, the length of the vertical portion V of the introduction tube is approximately 1060+u+.

また、ガス吐出孔10bは、ウェハボート9に収容され
る半導体ウェハ群8の中段部から上段側に対面した部位
に穿設されており、その穿設ピッチは上方に向って粗か
ら密となるように形成されている。これら穿設ピッチは
、用法、処理内容、処理雰囲気により適宜選択される。
Further, the gas discharge holes 10b are bored at a portion facing from the middle to the upper side of the group of semiconductor wafers 8 housed in the wafer boat 9, and the pitch of the holes increases from sparse to dense in the upward direction. It is formed like this. These drilling pitches are appropriately selected depending on usage, processing details, and processing atmosphere.

さらに、ガスミキシング用導入管10のガス合流部10
aの位置は、反応容器1内において、SIH2CI2ガ
スが熱分解する温度以下でかつNH3と反応してNH,
CIが生成される温度以上の温度領域例えば300〜4
00℃の温度領域に設けられており、本実施例では、こ
の温度領域が反応容器1内の保温筒7下部側面に相当す
る位置であるため、この位置に対応するように導入管水
平部Hから約45m5の位置に導入管のガス合流部10
aを設けた。
Furthermore, the gas confluence part 10 of the gas mixing introduction pipe 10
The position a is located at a temperature below the temperature at which SIH2CI2 gas thermally decomposes in the reaction vessel 1 and reacts with NH3 to form NH,
Temperature range above the temperature at which CI is generated, e.g. 300-4
In this embodiment, since this temperature region corresponds to the lower side surface of the heat-insulating cylinder 7 in the reaction vessel 1, the horizontal part H of the inlet pipe is arranged to correspond to this position. The gas confluence section 10 of the inlet pipe is located approximately 45 m5 from the
A was set up.

一方、51112 C12ガスを導入するための5il
l 2 CI2ガス導入管11は、第4図に示すように
、例えば石英部材からなるL字状の管で、水平部Hにガ
ス導入ボートnが形成されている。このガス導入ボート
nから導入されたSi82 C12ガスは、内筒3内に
挿入された導入管垂直部V先端のガス吐出孔11aから
吐出される。
On the other hand, 5il for introducing 51112 C12 gas
As shown in FIG. 4, the l 2 CI2 gas introduction pipe 11 is an L-shaped pipe made of, for example, a quartz member, and has a gas introduction boat n formed in the horizontal portion H thereof. The Si82 C12 gas introduced from the gas introduction boat n is discharged from the gas discharge hole 11a at the tip of the vertical portion V of the introduction tube inserted into the inner cylinder 3.

このSIH2CI2ガス導入管11の垂直部Vのガス吐
出孔11aの位置は、反応容器1内において、SIH2
C12ガスが熱分解する。温度以下でかつNH3と反応
してNH,CIが生成される温度以上の温度領域例えば
300〜400℃の温度領域に設けられており、本実施
例では、この温度領域が反応容器1内の保温筒7下部側
面に相当する位置であるため、この位置に対応するよう
に導入管水平部Hから約45a+mの位置までガス導入
管11の垂直部先端を延設した。
The position of the gas discharge hole 11a in the vertical part V of this SIH2CI2 gas introduction pipe 11 is
C12 gas is thermally decomposed. For example, the temperature range is set in a temperature range of 300 to 400°C, which is below the temperature and above the temperature at which NH and CI are generated by reacting with NH3. Since this position corresponds to the lower side surface of the cylinder 7, the tip of the vertical part of the gas introduction pipe 11 was extended to a position approximately 45 a+m from the horizontal part H of the introduction pipe so as to correspond to this position.

また、Nll3ガスを導入するための113ガス導入管
12は、SIH2C12ガス導入管から所定の角度θ例
えば45度以上の角度間隔をおいて設けられており、上
述第4図に示したSiH2C12ガス導入管11と同様
に例えば石英部材からなるL字状の管で、その水平部H
にガス導入ボートnが形成されている。このガス導入ボ
ートnからNH3ガスが導入され、内筒内に挿入された
導入管垂直部V先端のガス吐出孔12aから吐出される
。このN113ガス導入管12の垂直部Vのガス吐出孔
12aの位置は、低温領域に設けられており、本実施例
では、反応容器1内の保温筒7下部側面が最も低温であ
るため、この位置に対応するように垂直部Vの高さを約
1Ofl111とした。
In addition, the 113 gas introduction pipe 12 for introducing the Nll3 gas is provided at a predetermined angle θ, for example, 45 degrees or more, from the SIH2C12 gas introduction pipe, and the SiH2C12 gas introduction pipe shown in FIG. Like the tube 11, it is an L-shaped tube made of, for example, a quartz member, and its horizontal portion H
A gas introduction boat n is formed at. NH3 gas is introduced from this gas introduction boat n and is discharged from the gas discharge hole 12a at the tip of the vertical portion V of the introduction tube inserted into the inner cylinder. The position of the gas discharge hole 12a in the vertical part V of the N113 gas introduction pipe 12 is provided in a low temperature region, and in this embodiment, the lower side of the heat insulating tube 7 in the reaction vessel 1 is at the lowest temperature. The height of the vertical portion V was set to approximately 1 Ofl111 to correspond to the position.

また、N2ガスを導入するためのN2ガス導入管は、上
述第4図に示したSIH2CI2ガス導入管11と同様
に例えば石英部材からなるL字状の管で、その水平部H
にガス導入ボートnが形成されている。このガス導入ポ
ートnからN2ガスが導入され、内筒3と外筒2との間
隙に挿入された導入管垂直部V先端のガス吐出孔13a
から吐出される。
Further, the N2 gas introduction pipe for introducing N2 gas is an L-shaped pipe made of, for example, a quartz member, similar to the SIH2CI2 gas introduction pipe 11 shown in FIG.
A gas introduction boat n is formed at. N2 gas is introduced from this gas introduction port n, and the gas discharge hole 13a at the tip of the vertical part V of the introduction pipe inserted into the gap between the inner cylinder 3 and the outer cylinder 2
It is discharged from.

このN2ガス導入管13の垂直部先端のガス吐出孔13
aの位置は、保温筒7から出来るだけ離れた位置が良く
、また内筒壁や外筒壁にSi3N4膜が形成されていな
い部分が好ましい。この理由は、保温筒7近傍の内筒壁
や外筒壁面は温度が低いため、NH4C1膜が形成され
易く、N2ガス導入時に、このNH4C1膜を巻き上げ
て塵埃発生の原因となるからであり、また、内筒壁や外
筒壁にSi3N4膜が形成されている場合にも同様にこ
のSi3N4膜を巻き上げて塵埃発生の原因となるから
である。
Gas discharge hole 13 at the tip of the vertical part of this N2 gas introduction pipe 13
The position a is preferably located as far away from the heat insulating cylinder 7 as possible, and is preferably a portion where no Si3N4 film is formed on the inner cylinder wall or outer cylinder wall. The reason for this is that the temperature of the inner cylinder wall and outer cylinder wall near the heat insulation cylinder 7 is low, so an NH4C1 film is easily formed, and when N2 gas is introduced, this NH4C1 film is rolled up, causing dust generation. Further, even if a Si3N4 film is formed on the inner cylinder wall or the outer cylinder wall, this Si3N4 film will similarly be rolled up, causing dust generation.

本実施例では、N2ガス導入管13の垂直部Vの長さを
約12hmとして、垂直部先端のガス吐出孔13aが保
温筒中央部と路間等の高さとなるように設定した。
In this example, the length of the vertical portion V of the N2 gas introduction pipe 13 is approximately 12 hm, and the gas discharge hole 13a at the tip of the vertical portion is set at a height such as between the center portion of the heat-insulating cylinder and the gap.

このような構成の縦型熱処理装置の動作は、まず半導体
ウェハ群8を収容したウェハボート9を図示を省略した
ボートエレベータにより内筒3内に挿入し、この後反応
容器1内を所定の真空度例えば0.17Torrに保持
しながら各ソースガス導入管10,11.12からN1
!3ガスおよびSl!l 2 C12ガス処理を導入し
、ヒータ機構4により、半導体ウェハ群8を所定の処理
温度例えば700〜850℃まで昇温させて窒化膜の成
膜処理を行う。このときの温度制御は、反応容器1全体
即ち半導体ウェハ群8全体が一定の温度となるように制
御する。
The operation of the vertical heat treatment apparatus having such a configuration is as follows: First, a wafer boat 9 containing a group of semiconductor wafers 8 is inserted into the inner cylinder 3 using a boat elevator (not shown), and then the inside of the reaction vessel 1 is set to a predetermined vacuum. N1 from each source gas inlet pipe 10, 11.12 while maintaining the temperature at, for example, 0.17 Torr.
! 3 gas and Sl! l 2 C12 gas treatment is introduced, and the semiconductor wafer group 8 is heated to a predetermined treatment temperature, for example, 700 to 850° C., by the heater mechanism 4 to form a nitride film. At this time, temperature control is performed so that the entire reaction vessel 1, that is, the entire semiconductor wafer group 8, is kept at a constant temperature.

処理中の各処理ガスの流れは、第5図に示すように、ガ
スミキシング用導入管10は半導体ウェハ群8の上段側
に対してミキシングガスg1を吐出し、一方5ill 
2 C12ガス導入管11およびN113ガス導入管1
2は、夫々半導体つエノ\群8の下方向からSi22 
CI2ガスg2、NH3N3ガスを吐出する。
The flow of each processing gas during processing is as shown in FIG.
2 C12 gas introduction pipe 11 and N113 gas introduction pipe 1
2 are Si22 from the bottom of semiconductor group 8, respectively.
Discharge CI2 gas g2 and NH3N3 gas.

このように半導体ウニへ群8の上方と下方の両方からソ
ースガスを吐出することで、反応容器1内のガス濃度が
均一化するため、均一な温度条件下で各半導体ウェハ8
問および個々の半導体ウェハ8において均一性に優れた
成膜が可能となる。
By discharging the source gas to the semiconductor wafers from both above and below the group 8, the gas concentration in the reaction vessel 1 is made uniform, so that each semiconductor wafer 8 is discharged under uniform temperature conditions.
It is possible to form a film with excellent uniformity on each semiconductor wafer 8 and on each semiconductor wafer 8.

さらには、各半導体ウェハ8が同一温度条件下で処理さ
れることにより、各半導体ウェハ8間の膜質し等しくな
る。
Furthermore, since each semiconductor wafer 8 is processed under the same temperature conditions, the film quality between each semiconductor wafer 8 becomes equal.

ところで、5ill 2 CI2ガスは、減圧下例えば
0.1Torrでは、約400℃以上の温度で熱分解し
てポリシリコン粒子が生成される。また、120〜13
0℃以下の温度では、NH3ガスと反応してNH4C1
粒子が生成される。そしてこれらポリシリコン粒子やN
H4C1粒子はソースガスとともに反応容器1内に塵埃
となって飛散して半導体ウェハ群8に付着し、歩留り低
下を招く原因となるが、本実施例では、5ill 2 
C12ガス導入管11とNH3ガス導入管12の各ガス
吐出孔11a、12aの位置を反応容器1内の300〜
400℃の温度領域即ち保温筒7下部側面に相当する位
置に設定しているため、このような塵埃の発生を防止で
きる。
By the way, 5ill 2 CI2 gas is thermally decomposed at a temperature of about 400° C. or higher under reduced pressure, for example, 0.1 Torr, and polysilicon particles are generated. Also, 120-13
At temperatures below 0℃, it reacts with NH3 gas to form NH4C1.
Particles are generated. These polysilicon particles and N
The H4C1 particles scatter as dust in the reaction vessel 1 together with the source gas and adhere to the semiconductor wafer group 8, causing a decrease in yield, but in this example, 5ill 2
The positions of the gas discharge holes 11a and 12a of the C12 gas introduction pipe 11 and the NH3 gas introduction pipe 12 are set at 300 to 300 in the reaction vessel 1.
Since it is set in a temperature region of 400° C., that is, in a position corresponding to the lower side surface of the heat retaining cylinder 7, generation of such dust can be prevented.

また、ガスミキシング用導入管10のガス吐出孔10b
は、反応容器1の上方に設定されているため、処理温度
と同程度の高温例えば780℃の温度雰囲気下にあるが
、吐出ガスg1は、反応容器1内の300〜400℃の
温度領域に位置した導入管10のガス合流部10aにて
予め混合されているため、ガス吐出部10bでは既にS
i3N4状態になっており、ポリシリコン粒子による塵
埃の問題はない。
Moreover, the gas discharge hole 10b of the gas mixing introduction pipe 10
Since it is set above the reaction vessel 1, it is under a high temperature atmosphere similar to the processing temperature, for example, 780°C, but the discharged gas g1 is in the temperature range of 300 to 400°C inside the reaction vessel 1. Since the gases are mixed in advance at the gas merging section 10a of the inlet pipe 10, S is already mixed at the gas discharge section 10b.
It is in i3N4 state and there is no problem of dust caused by polysilicon particles.

こうして、成膜処理を完了後、N2ガス導入管13より
N2ガスを反応容器1内にパージしながら、図示を省略
したボートエレベータを下降させ、ウェハボート9を反
応容器1外に取出し、成膜作業が終了する。
After completing the film forming process in this way, while purging N2 gas into the reaction vessel 1 from the N2 gas introduction pipe 13, the boat elevator (not shown) is lowered, the wafer boat 9 is taken out of the reaction vessel 1, and the film is formed. The work is finished.

尚、本発明に用いるガスミキシング用導入管10の形状
は、前述第3図に示した形状に限定されるものではなく
、例えば第6図に示すように合流部10aからガス導入
ポートm1、m2までの形状が等しい形状のものでもよ
(、各ガス導入ポ−トml、m2からの処理ガスが合流
部10aで均一にミキシングされるような形状であれば
どのようなものでもよい。
The shape of the gas mixing introduction pipe 10 used in the present invention is not limited to the shape shown in FIG. 3, for example, as shown in FIG. It may be of any shape as long as the processing gas from each gas introduction port ml, m2 is uniformly mixed at the confluence portion 10a.

[発明の効果] 以上説明したように、本発明の縦型熱処理装置によれば
、処理ガス導入過程における塵埃の発生が防止できるの
で歩留り向上が図れ、さらに、均一温度条件下の処理に
おいても均一かつ良質な成膜を行うことが可能となる。
[Effects of the Invention] As explained above, according to the vertical heat treatment apparatus of the present invention, it is possible to prevent the generation of dust during the process of introducing the processing gas, thereby improving the yield. Moreover, it becomes possible to form a film of high quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例の縦型熱処理装置の縦断面を示す図、第
2図は第1図の底面方向平面図、第3図は実施例のガス
ミキシング用導入管を示す図、第4図は実施例のソース
ガス導入管を示す図、第5図は実施例のソースガスの流
れを示す図、第6図はガスミキシング用導入管の他の形
状の一例を示す図である。 1・・・・・・反応容器、2・・・・・・外筒、3・・
・・・・内筒、4・・・・・・ヒータ機構、7・・・・
・・保温筒、8・・・・・・半導体ウェハ群、9・・・
・・・ウェハボート、10・・・・・・ガスミキシング
用導入管、11・・・・・・5ill 2 C12用導
入管、12・・・・NI+3ガス用導入管、13・・・
・・・N2ガス用導入管。
Fig. 1 is a longitudinal cross-sectional view of the vertical heat treatment apparatus of the embodiment, Fig. 2 is a bottom plan view of Fig. 1, Fig. 3 is a diagram showing the gas mixing inlet pipe of the embodiment, and Fig. 4. 5 is a diagram showing the source gas introduction pipe of the embodiment, FIG. 5 is a diagram showing the flow of the source gas of the embodiment, and FIG. 6 is a diagram showing an example of another shape of the gas mixing introduction pipe. 1...Reaction container, 2...Outer cylinder, 3...
... Inner cylinder, 4 ... Heater mechanism, 7 ...
...Heat insulation tube, 8...Semiconductor wafer group, 9...
...Wafer boat, 10...Introduction pipe for gas mixing, 11...Introduction pipe for 5ill 2 C12, 12...Introduction pipe for NI+3 gas, 13...
...Introduction pipe for N2 gas.

Claims (1)

【特許請求の範囲】 所定の間隔で配列された被処理物を収容する反応容器と
、この反応容器内に所定の反応ガスを導入する如く設け
られた複数の反応ガス導入管を備えた熱処理装置におい
て、 前記複数の反応ガス導入管のうち少なくとも一つの導入
管内に相異なる複数種の反応ガスを夫々独立して導入し
これら複数の反応ガスを上記導入管内流通過程で混合し
て上記反応容器内に流出するように構成したことを特徴
とする熱処理装置。
[Claims] A heat treatment apparatus comprising a reaction vessel containing objects to be treated arranged at predetermined intervals, and a plurality of reaction gas introduction pipes provided to introduce a predetermined reaction gas into the reaction vessel. In this step, a plurality of different types of reaction gases are independently introduced into at least one of the plurality of reaction gas introduction pipes, and these plurality of reaction gases are mixed during a flow process in the introduction pipe, and are then introduced into the reaction vessel. A heat treatment apparatus characterized in that the heat treatment apparatus is configured such that the flow of water flows into the heat treatment apparatus.
JP32994888A 1988-12-27 1988-12-27 Heat treatment device Pending JPH02174224A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32994888A JPH02174224A (en) 1988-12-27 1988-12-27 Heat treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32994888A JPH02174224A (en) 1988-12-27 1988-12-27 Heat treatment device

Publications (1)

Publication Number Publication Date
JPH02174224A true JPH02174224A (en) 1990-07-05

Family

ID=18227050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32994888A Pending JPH02174224A (en) 1988-12-27 1988-12-27 Heat treatment device

Country Status (1)

Country Link
JP (1) JPH02174224A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491393A2 (en) * 1990-12-19 1992-06-24 Kabushiki Kaisha Toshiba Vertically oriented CVD apparatus including gas inlet tube having gas injection holes
JPH0477228U (en) * 1990-11-16 1992-07-06
US5704981A (en) * 1995-04-05 1998-01-06 Tokyo Electron Ltd. Processing apparatus for substrates to be processed

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0477228U (en) * 1990-11-16 1992-07-06
EP0491393A2 (en) * 1990-12-19 1992-06-24 Kabushiki Kaisha Toshiba Vertically oriented CVD apparatus including gas inlet tube having gas injection holes
EP0491393B1 (en) * 1990-12-19 1996-03-27 Kabushiki Kaisha Toshiba Vertically oriented CVD apparatus including gas inlet tube having gas injection holes
US5704981A (en) * 1995-04-05 1998-01-06 Tokyo Electron Ltd. Processing apparatus for substrates to be processed

Similar Documents

Publication Publication Date Title
KR100539890B1 (en) Substrate processing apparatus
KR100260120B1 (en) Heat treatment apparatus
KR100319494B1 (en) Apparatus for Deposition of thin films on wafers through atomic layer epitaxial process
US6444262B1 (en) Thermal processing unit and thermal processing method
JP2839720B2 (en) Heat treatment equipment
JP2007109711A (en) Processing apparatus and method, and storage medium
JPH02138473A (en) Treating device and treating method
US20160064190A1 (en) Substrate processing apparatus
KR20180001453A (en) Apparatus and method for processing gas, and storage medium
JPH02174224A (en) Heat treatment device
US4548159A (en) Chemical vapor deposition wafer boat
JPH065533A (en) Heat treatment furnace
JPH07106255A (en) Vertical heat treatment equipment
JP2012136743A (en) Substrate treatment device
JPH05211122A (en) Vertical type depressurized chemical vapor deposition equipment
JPH04184923A (en) Heat-treating equipment
KR20020022579A (en) Processing apparatus and processing system
JPS6168393A (en) Hot wall type epitaxial growth device
JPH0193130A (en) Vertical furnace
JP3076268B2 (en) Low pressure vapor phase growth equipment
JP3305818B2 (en) Semiconductor manufacturing equipment
JP3269883B2 (en) Semiconductor manufacturing equipment
JPS61182218A (en) Treating method and device of wafer
JP2004095940A (en) Method of manufacturing semiconductor device
JPH0774104A (en) Reaction chamber