JPS61274299A - Solidification of radioactive waste - Google Patents

Solidification of radioactive waste

Info

Publication number
JPS61274299A
JPS61274299A JP11535085A JP11535085A JPS61274299A JP S61274299 A JPS61274299 A JP S61274299A JP 11535085 A JP11535085 A JP 11535085A JP 11535085 A JP11535085 A JP 11535085A JP S61274299 A JPS61274299 A JP S61274299A
Authority
JP
Japan
Prior art keywords
radioactive waste
waste
solidification
present
ash
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11535085A
Other languages
Japanese (ja)
Inventor
鬼沢 秀夫
西原 幸夫
柏井 俊彦
均 宮本
船越 俊夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11535085A priority Critical patent/JPS61274299A/en
Publication of JPS61274299A publication Critical patent/JPS61274299A/en
Pending legal-status Critical Current

Links

Landscapes

  • Processing Of Solid Wastes (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、原子力発電所などから発生する放射性廃棄物
の安定固定化(固化)方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for stably immobilizing (solidifying) radioactive waste generated from nuclear power plants and the like.

(従来の技術) 従来、これら放射性廃棄物は、セメント、アスファルト
等で固化した後、保管されている。
(Prior Art) Conventionally, these radioactive wastes are stored after being solidified with cement, asphalt, or the like.

このうち、セメント固化体については多孔質であるため
、浸水した場合に放射性核種の浸出量が多い欠点がある
Among these, solidified cement is porous, so it has the disadvantage that a large amount of radionuclides leach out when it is submerged in water.

さらに、減容比が高くとれないばかシでなく、結晶水を
含むため、強熱時、割れ等が発生する欠点がある。
Furthermore, it does not have a high volume reduction ratio, and since it contains crystallization water, it has the disadvantage of cracking when heated.

アスファルト固化体については膨潤することがらシ、ま
た耐熱、耐火性に関しては期待できないという欠点があ
る。
Solidified asphalt has disadvantages in that it tends to swell and cannot be expected to have heat resistance or fire resistance.

近年、尿素樹脂等プラスチックポリマーによる固化法も
提案されているが、石炭/石油化学合成物質であるため
、高価で、かつ数十〜数百年にわたる安定性という点に
おいて信頼性が乏しいと言われている。さらに、これら
は高分子物質であるため、放射線劣化が生じる等の欠点
を有している。
In recent years, solidification methods using plastic polymers such as urea resin have been proposed, but because they are coal/petrochemical synthetic materials, they are expensive and are said to be unreliable in terms of stability over tens to hundreds of years. ing. Furthermore, since these are polymeric substances, they have drawbacks such as radiation deterioration.

一方、特に高レベル放射性廃棄物を対象とし、ケイ酸及
びアルカリ金属塩等と加熱溶融し、ガラス状物質として
固化する方法もあるが、エネルギーコストが高く、操作
が複雑である等の欠点を有する。
On the other hand, there is a method that targets particularly high-level radioactive waste and involves heating and melting it with silicic acid, alkali metal salts, etc. and solidifying it as a glassy substance, but this method has disadvantages such as high energy costs and complicated operations. .

最近、ケイ酸塩粉末をアルカリ水溶液とともに、熱水条
件下で圧縮すれば、水熱反応によυ放射性廃棄物が容易
に人造岩石化できることが報告−提案されている(特願
昭57−231250号明細書、同59−10868号
明細書、特開昭58−165100号公報、特開昭58
−204395号公報)。
Recently, it has been reported and proposed that if silicate powder is compressed together with an alkaline aqueous solution under hydrothermal conditions, radioactive waste can be easily turned into artificial rock through a hydrothermal reaction (Japanese Patent Application No. 57-231250 Specification of No. 59-10868, JP-A-58-165100, JP-A-Sho 58
-204395 publication).

しかし、本方法では、ケイ酸塩として二酸化ケイ素を主
成分とする、例えば砕石、酸性白土。
However, in this method, silicates containing silicon dioxide as a main component, such as crushed stone or acid clay, are used.

などを用意する必要があ夛、これは、当該固化対象以外
の廃棄物の体積を増加させることになる。
This increases the volume of waste other than those to be solidified.

(発明が解決しようとする問題点) 本発明は、放射性廃棄物を最終処分に耐えられる安定し
た固化体に転換する方法を提供するもので、操作が簡単
で、コストの安い上記方法を提案するものである。
(Problems to be Solved by the Invention) The present invention provides a method for converting radioactive waste into a stable solidified material that can withstand final disposal, and proposes the above-mentioned method that is easy to operate and inexpensive. It is something.

(問題点を解決するための手段) 本発明は、放射性廃棄物を水熱固化法により固化安定化
する方法において、固化反応の基体となる二酸化ケイ素
源として、当該放射性廃棄物より発生する可燃物焼却灰
又は石炭焚火力発電所より発生するフライアッシュを用
いることを特徴とする放射性廃棄物O固化方法に関する
(Means for Solving the Problems) The present invention provides a method for solidifying and stabilizing radioactive waste using a hydrothermal solidification method, in which combustible material generated from the radioactive waste is used as a source of silicon dioxide, which is the base of the solidification reaction. The present invention relates to a radioactive waste O solidification method characterized by using incineration ash or fly ash generated from a coal-fired power plant.

本発明においては、放射性廃棄物と水熱反応を生起せし
めるためのケイ酸源として、当該施設より発生する焼却
灰、あるいは石炭専焼/混焼火力発電所より発生するフ
ライアッシュ、を用いる点に特徴がある。
The present invention is characterized in that incineration ash generated from the facility or fly ash generated from a coal-fired/co-fired thermal power plant is used as the silicic acid source for causing a hydrothermal reaction with radioactive waste. be.

本発明における固化対象たる放射性廃棄物としては、例
えば次のものがあげられる。加圧水型原子力発電所の一
般的廃棄物はホウ酸(HsBOs)であシ、これをpH
調整後焼却またはか焼すればNag B407  (い
わゆるホウ砂)となる。また、沸騰水型原子力発電所の
一般的廃棄物はほう硝(NalSO4)である。通常、
これらが主成分であシ、残シ数2がFe、 Mn、 S
ing 、有機物などである。
Examples of the radioactive waste to be solidified in the present invention include the following: A common waste from pressurized water nuclear power plants is boric acid (HsBOs), which is
If it is incinerated or calcined after conditioning, it becomes Nag B407 (so-called borax). Additionally, a common waste from boiling water nuclear power plants is borax (NalSO4). usually,
These are the main components, and the remaining number 2 is Fe, Mn, S
ing, organic matter, etc.

固化対象放射性廃棄物(以下、単に廃棄物と略す)とア
ルカリ水熱反応を生起するのに必須の成分は、ケイ素を
主体とする固化基質、及びKOH,NaOH,Ca(O
H)z t Ba(OH)、などのアルカリである。な
お、このアルカリは酸化物を水と反応させて水酸化物と
したものを用いることもできる。
The essential components for causing an alkaline hydrothermal reaction with radioactive waste to be solidified (hereinafter simply referred to as waste) are a solidification substrate mainly composed of silicon, and KOH, NaOH, Ca(O
H)z t Ba(OH), and other alkalis. Note that, as the alkali, a hydroxide obtained by reacting an oxide with water can also be used.

本発明においては、上記固化基質としての発電所よυ発
生する焼却灰又はフライアッシュ50〜90重量%に対
し、廃棄物を10〜50重量%添加し、これにアルカリ
(KsOt NI!LxO等)をα4〜4重t%及び当
量の水を加える。廃棄物含有量を10〜50重Ii%と
したのは、第1図に示すように、10重量%以下では廃
棄物を固化する実用的意味が小さく、50重量%以上で
は強度が顕著に低下するからでおる。この量に応じて、
固化基質の量が決定され、さらに対応してアルカリの量
が決まる。
In the present invention, 10 to 50% by weight of waste is added to 50 to 90% by weight of incineration ash or fly ash generated from power plants as the solidification substrate, and an alkali (KsOtNI!LxO, etc.) is added to this. Add α4~4% by weight and an equivalent amount of water. The reason for setting the waste content to 10 to 50% by weight is that as shown in Figure 1, if it is less than 10% by weight, there is little practical significance in solidifying the waste, and if it is more than 50% by weight, the strength will drop significantly. It's because I do it. Depending on this amount,
The amount of solidified substrate is determined and the amount of alkali is determined correspondingly.

これを混錬したのち、第2図に示すように周囲をヒータ
1で囲んだシリンダ2に充てんし、ピストン押し棒3及
びピスト/4にて例えば油圧シリンダ(図示省略)によ
り100〜500kg7ci、好ましくは250〜50
0に9/adに加圧したのち、昇温する。150〜40
0℃、好ましくけ250〜550℃にて20〜30分間
保持すれば、所望の固化体を得ることができる。
After kneading this, as shown in Fig. 2, it is filled into a cylinder 2 surrounded by a heater 1, and then, using a piston push rod 3 and a piston/4, for example, a hydraulic cylinder (not shown) is used to mix 100 to 500 kg, preferably 7 ci. is 250-50
After pressurizing to 0 to 9/ad, the temperature is raised. 150-40
A desired solidified product can be obtained by holding at 0°C, preferably 250 to 550°C, for 20 to 30 minutes.

本発明において、温度を上記のようにするのは、温度は
高いほど反応速度が上がって有利であるが、それに付随
して圧力を上げねばならず(沸とう防止)、また装置製
作上耐熱材を使用する必要がおるからである。また、圧
力を上記のようにするのは、少なくとも当該温度の蒸気
圧が必要であシ、あまシ高すぎると容器製作上不利とな
るからである。
In the present invention, setting the temperature as described above is advantageous because the higher the temperature, the higher the reaction rate, but the pressure must be increased accordingly (to prevent boiling), and heat-resistant materials are used to manufacture the device. This is because it is necessary to use Further, the reason why the pressure is set as above is that a vapor pressure of at least the relevant temperature is required, and if it is too high, it will be disadvantageous in terms of container manufacturing.

なお、第2図中、5は上記の混線物、6はグランドパツ
キンである。
In addition, in FIG. 2, 5 is the above-mentioned interfering object, and 6 is a ground packing.

本発明は、焼却灰又はフライアッシュが化学成分的には
8101 、 KIO,A140@ y F820sな
どを主成分とすることに着目したものである。組成比は
焼却対象により異なるが一般に、焼却灰又はフライアッ
シュ中の5in2含有量は50〜80%であシ、水熱固
化の要件を満たしている。
The present invention focuses on the fact that incineration ash or fly ash mainly contains 8101, KIO, A140@y F820s, etc. in terms of chemical components. The composition ratio varies depending on the object to be incinerated, but in general, the 5in2 content in incinerated ash or fly ash is 50 to 80%, which satisfies the requirements for hydrothermal solidification.

(発明の効果) 本発明により、次の効果を得ることができる。(Effect of the invention) According to the present invention, the following effects can be obtained.

(1)廃棄物の総量が減少する。(1) The total amount of waste will decrease.

従来、焼却灰又はフライアッシュ、その他の廃棄物は、
独立して処理されていた。そのため、廃棄物を固化しよ
うとする場合、セメント、アスファルト、あるいは水熱
固化の場合のケイ酸源を新たに当該処理区域に搬入する
必要があった。本発明の場合、焼却灰又はフライアッシ
ュ中の5101を固化基質に、K!O。
Traditionally, incineration ash or fly ash and other wastes are
were processed independently. Therefore, when solidifying waste, it was necessary to newly transport cement, asphalt, or a silicic acid source in the case of hydrothermal solidification to the processing area. In the case of the present invention, K! O.

Na20などをアルカリとして用いるため、従来に比べ
て廃棄物総、量は約Hに減少する。すなわち、 従来法: 焼却灰   約1+固化剤約1=固化体約2(重量比)
その他の廃棄物 約1−)−1i!i1化剤 約1=固
化体約2(重量比)合計約4(重量比) 本発明法: 焼却灰の絶対量とその他の廃棄物のit比によって減容
率は異なるが、これが当量ある場合 この量比はプラント毎、運転条件毎に異なるが、一般に
は約%に減少する。
Since Na20 or the like is used as an alkali, the total amount of waste is reduced to about 100% compared to the conventional method. That is, conventional method: Incineration ash approximately 1 + solidifying agent approximately 1 = solidified material approximately 2 (weight ratio)
Other waste approximately 1-)-1i! I1 converting agent: Approximately 1 = Solidified material approximately 2 (weight ratio) Total approximately 4 (weight ratio) Method of the present invention: The volume reduction rate varies depending on the absolute amount of incinerated ash and the IT ratio of other waste, but if this is equivalent This ratio varies depending on the plant and operating conditions, but it generally decreases to about %.

もちろん、焼却灰又はフライアッシュ量と、その他の廃
棄物量が、前述した水熱反応に必要な量的比率で発生す
るとは限らず、その場合には過不足が生じるが、その場
合でも、廃棄物の総量が減少するという本発明の趣旨は
そこなわない。
Of course, the amount of incinerated ash or fly ash and the amount of other waste are not necessarily generated in the quantitative ratio required for the hydrothermal reaction described above, and in that case there will be excess or deficiency, but even in that case, the amount of waste The purpose of the present invention, which is to reduce the total amount of , is not impaired.

(2)固化コストが安くなる。(2) Solidification costs are lower.

水熱反応に必要な固化基質は、固化の反応速度を促進す
るため、できるだけ細粒が望ましい。焼却灰又はフライ
アッシュは、その性質上ミクロンオーダの微粉体でちる
ため、この目的にかなっており、粉砕等のエネルギコス
トを節約できる。もちろん、原材料の採石、輸送等のコ
ストも不要である。
The solidification substrate required for the hydrothermal reaction is preferably as fine as possible in order to accelerate the solidification reaction rate. Incineration ash or fly ash is suitable for this purpose because it is ground into fine powder on the order of microns due to its nature, and energy costs such as pulverization can be saved. Of course, costs such as quarrying and transporting raw materials are also unnecessary.

(3)フライアッシュの有効利用が図れる。(3) Effective use of fly ash can be achieved.

火力発電所、特に石炭火力発電所の集じん機に捕集され
る、いわゆるEP灰(フライアッシュ)は、現在、うめ
たて等に一部利用されているが、大部分は野づみされて
おり、粉じん飛散等問題となっている。
The so-called EP ash (fly ash) that is collected in the dust collectors of thermal power plants, especially coal-fired power plants, is currently used in part for purposes such as freshly dumping, but the majority is left in the field. This has caused problems such as dust scattering.

その主成分は、5i0147〜80%(重量比以下同じ
)、Az、o、  10=30%、 Fe1O1(1,
5〜1591;、Cao(lL2〜10%、その他T1
01 s  r1#O、KsO、V、O,などを少量含
む。−例を表−1に示す。
Its main components are 5i0147~80% (same below weight ratio), Az, o, 10=30%, Fe1O1 (1,
5-1591;, Cao (lL2-10%, other T1
01 s r1# Contains small amounts of O, KsO, V, O, etc. - Examples are shown in Table 1.

表−1石炭灰(フライアッシュ)の組成の一例表−1か
ら明らかなようにフライアッシュ中の810.量は焼却
灰中のそれと同程度であシ、本発明の8102源として
充分利用し得るものである。
Table 1 Example of composition of coal ash (fly ash) As is clear from Table 1, 810. The amount is comparable to that in incineration ash and can be fully used as a source of 8102 in the present invention.

従って、従来、有効利用の途が余シなかったフライアッ
シュを、本発明においては有効に利用することができる
。特に、焼却灰と廃棄物の発生量比がアンバランスであ
るとき、焼却灰の代シにフライアンシュを用いることが
できる。
Therefore, fly ash, which conventionally had no way of being effectively used, can be effectively used in the present invention. In particular, when the ratio of generated amount of incinerated ash to waste is unbalanced, fly ash can be used as a substitute for incinerated ash.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明における放射性廃棄物の好ましい含有量
を説明するための図、第2図は本発明において放射性廃
棄物を固化する際の一実施態様例を示す図である。 復代理人  内 1)  明 復代理人  萩 原 亮 − 復代理人  安 西 篤 夫 第1図 放射性廃棄物量(重量%)
FIG. 1 is a diagram for explaining the preferred content of radioactive waste in the present invention, and FIG. 2 is a diagram showing an example of an embodiment when solidifying radioactive waste in the present invention. Sub-agents 1) Meifuku agent Ryo Hagiwara - Sub-agent Atsuo Anzai Figure 1 Amount of radioactive waste (wt%)

Claims (1)

【特許請求の範囲】[Claims] 放射性廃棄物を水熱固化法により固化安定化する方法に
おいて、固化反応の基体となる二酸化ケイ素源として、
当該放射性廃棄物より発生する可燃物焼却灰又は石炭焚
火力発電所より発生するフライアッシュを用いることを
特徴とする放射性廃棄物の固化方法。
In the method of solidifying and stabilizing radioactive waste by hydrothermal solidification, as a source of silicon dioxide, which is the base of the solidification reaction,
A method for solidifying radioactive waste, characterized by using combustible incineration ash generated from the radioactive waste or fly ash generated from a coal-fired power plant.
JP11535085A 1985-05-30 1985-05-30 Solidification of radioactive waste Pending JPS61274299A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11535085A JPS61274299A (en) 1985-05-30 1985-05-30 Solidification of radioactive waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11535085A JPS61274299A (en) 1985-05-30 1985-05-30 Solidification of radioactive waste

Publications (1)

Publication Number Publication Date
JPS61274299A true JPS61274299A (en) 1986-12-04

Family

ID=14660345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11535085A Pending JPS61274299A (en) 1985-05-30 1985-05-30 Solidification of radioactive waste

Country Status (1)

Country Link
JP (1) JPS61274299A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735271A1 (en) * 1995-06-07 1996-12-13 Korea Atomic Energy Res PROCESS FOR TRANSFORMING A VITRIFICATED FORM OF HIGHLY RADIOACTIVE WASTE IN THE PRESENCE OF FLY ASH

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151399A (en) * 1980-03-27 1981-11-24 Ganiero Peeru E Fuisu Entrepri Method of blocking radioative alkaline metal or alkaline earth metal
JPS5811899A (en) * 1981-07-14 1983-01-22 株式会社神戸製鋼所 Method of volume-decreasing and solidifying radioactive waste
JPS59116100A (en) * 1982-12-23 1984-07-04 株式会社新来島どっく Method of sealing radioactive waste by artificial

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56151399A (en) * 1980-03-27 1981-11-24 Ganiero Peeru E Fuisu Entrepri Method of blocking radioative alkaline metal or alkaline earth metal
JPS5811899A (en) * 1981-07-14 1983-01-22 株式会社神戸製鋼所 Method of volume-decreasing and solidifying radioactive waste
JPS59116100A (en) * 1982-12-23 1984-07-04 株式会社新来島どっく Method of sealing radioactive waste by artificial

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2735271A1 (en) * 1995-06-07 1996-12-13 Korea Atomic Energy Res PROCESS FOR TRANSFORMING A VITRIFICATED FORM OF HIGHLY RADIOACTIVE WASTE IN THE PRESENCE OF FLY ASH

Similar Documents

Publication Publication Date Title
US4518508A (en) Method for treating wastes by solidification
Singh et al. Chemically bonded phosphate ceramics for low‐level mixed‐waste stabilization
CN107500580A (en) A kind of method for realizing that heavy metal is efficiently fixed in sludge incineration residue by preparing geo-polymer
CN112466503A (en) Preparation method of glass ceramic body for solidifying Cs-containing soil
McCulloch et al. Cements in radioactive waste disposal: some mineralogical considerations
US4280921A (en) Immobilization of waste material
JPS6120839B2 (en)
Fernández‐Pereira et al. Utilisation of zeolitised coal fly ash as immobilising agent of a metallurgical waste
CN102015135B (en) Method of detoxifying asbestos-containing solid waste
JPS61274299A (en) Solidification of radioactive waste
US5569153A (en) Method of immobilizing toxic waste materials and resultant products
Jeong et al. Cementing the gap between ceramics, cements, and polymers
Barney Fixation of radioactive waste by hydrothermal reactions with clays
Bingham et al. Glass development for vitrification of wet intermediate level waste (WILW) from decommissioning of the Hinkley Point ‘A’site
JPH1029841A (en) Production of artificial aggregate
US5976244A (en) Fixation of hazardous wastes and related products
RU2559205C2 (en) Method of conditioning radioactive wastes of heat-insulating materials
Lamb et al. Development of a pelleted waste form for high-level ICPP zirconia wastes
Kirkbride Development of a pelleted waste form for high-level alumina wastes
RU2131628C1 (en) Method for processing alkali-metal radioactive wastes
WO2005039702A1 (en) A method and composition for stabilizing waste mercury compounds using ladle furnace slag
Singh et al. Stabilization and disposal of Argonne-west low-level mixed wastes in Ceramicrete™ waste forms
JPS6412360B2 (en)
JPH0640157B2 (en) Radioactive waste solidification method
CN101062847A (en) Additive felting material for structure product reproduction by steady waste material assimilation