JPS6127343B2 - - Google Patents
Info
- Publication number
- JPS6127343B2 JPS6127343B2 JP19142081A JP19142081A JPS6127343B2 JP S6127343 B2 JPS6127343 B2 JP S6127343B2 JP 19142081 A JP19142081 A JP 19142081A JP 19142081 A JP19142081 A JP 19142081A JP S6127343 B2 JPS6127343 B2 JP S6127343B2
- Authority
- JP
- Japan
- Prior art keywords
- cement
- wood
- board
- parts
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000004568 cement Substances 0.000 claims description 67
- 239000002023 wood Substances 0.000 claims description 67
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 30
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 241000894007 species Species 0.000 claims description 10
- 229910019142 PO4 Inorganic materials 0.000 claims description 8
- 239000007983 Tris buffer Substances 0.000 claims description 8
- 239000010452 phosphate Substances 0.000 claims description 8
- 239000011148 porous material Substances 0.000 claims description 7
- 241000534018 Larix kaempferi Species 0.000 claims description 5
- UJSSNDKVUQJEGE-UHFFFAOYSA-N dichloro propyl phosphate Chemical compound CCCOP(=O)(OCl)OCl UJSSNDKVUQJEGE-UHFFFAOYSA-N 0.000 claims description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 4
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 4
- ANHAEBWRQNIPEV-UHFFFAOYSA-N 2-chloroethyl dihydrogen phosphate Chemical compound OP(O)(=O)OCCCl ANHAEBWRQNIPEV-UHFFFAOYSA-N 0.000 claims description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 claims description 2
- 235000011613 Pinus brutia Nutrition 0.000 claims description 2
- 241000018646 Pinus brutia Species 0.000 claims description 2
- 125000001188 haloalkyl group Chemical group 0.000 claims 1
- 238000011282 treatment Methods 0.000 description 26
- 239000000463 material Substances 0.000 description 22
- 239000003795 chemical substances by application Substances 0.000 description 18
- 238000002156 mixing Methods 0.000 description 18
- 238000002485 combustion reaction Methods 0.000 description 17
- 238000012360 testing method Methods 0.000 description 17
- 239000003063 flame retardant Substances 0.000 description 16
- 241000218652 Larix Species 0.000 description 14
- 235000005590 Larix decidua Nutrition 0.000 description 14
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 13
- 239000000779 smoke Substances 0.000 description 12
- 230000020169 heat generation Effects 0.000 description 11
- 238000005452 bending Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 239000002994 raw material Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 230000000704 physical effect Effects 0.000 description 6
- HQUQLFOMPYWACS-UHFFFAOYSA-N tris(2-chloroethyl) phosphate Chemical compound ClCCOP(=O)(OCCCl)OCCCl HQUQLFOMPYWACS-UHFFFAOYSA-N 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- -1 phosphate ester Chemical class 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 239000003513 alkali Substances 0.000 description 3
- 229940057995 liquid paraffin Drugs 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000012071 phase Substances 0.000 description 3
- 239000005871 repellent Substances 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 239000002699 waste material Substances 0.000 description 3
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 2
- 240000000731 Fagus sylvatica Species 0.000 description 2
- 235000010099 Fagus sylvatica Nutrition 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 239000012796 inorganic flame retardant Substances 0.000 description 2
- 239000010687 lubricating oil Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000002940 repellent Effects 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 210000002268 wool Anatomy 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 240000005109 Cryptomeria japonica Species 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 235000000405 Pinus densiflora Nutrition 0.000 description 1
- 240000008670 Pinus densiflora Species 0.000 description 1
- YYQRGCZGSFRBAM-UHFFFAOYSA-N Triclofos Chemical compound OP(O)(=O)OCC(Cl)(Cl)Cl YYQRGCZGSFRBAM-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- SWLVFNYSXGMGBS-UHFFFAOYSA-N ammonium bromide Chemical compound [NH4+].[Br-] SWLVFNYSXGMGBS-UHFFFAOYSA-N 0.000 description 1
- 235000019270 ammonium chloride Nutrition 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 238000003763 carbonization Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001723 curing Methods 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000011121 hardwood Substances 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000010721 machine oil Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 239000010705 motor oil Substances 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000009965 odorless effect Effects 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003464 sulfur compounds Chemical class 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 229960001147 triclofos Drugs 0.000 description 1
- XHTMGDWCCPGGET-UHFFFAOYSA-N tris(3,3-dichloropropyl) phosphate Chemical compound ClC(Cl)CCOP(=O)(OCCC(Cl)Cl)OCCC(Cl)Cl XHTMGDWCCPGGET-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/18—Waste materials; Refuse organic
- C04B18/24—Vegetable refuse, e.g. rice husks, maize-ear refuse; Cellulosic materials, e.g. paper, cork
- C04B18/28—Mineralising; Compositions therefor
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Civil Engineering (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical And Physical Treatments For Wood And The Like (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
Description
【発明の詳細な説明】
本発明は原料からまつ等のセメント硬化不良樹
種の木質(木毛、木片、木粉等)を難燃性と撥水
性を併有する特定の有機リン酸エステルで前処理
し、しかる後にセメント、水と混合成型し、から
まつ等のセメント硬化不良樹種木質から難燃性、
耐水性及び強度を向上させた木質セメント板を製
造する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention involves pre-treating the wood (wood wool, wood chips, wood powder, etc.) of wood species with poor cement hardening, such as pine trees, with a specific organic phosphate ester that has both flame retardancy and water repellency. After that, it is mixed with cement and water and molded, and it is made of wood that has poor cement hardening, such as karamatsu, and is flame retardant.
The present invention relates to a method of manufacturing a wood cement board with improved water resistance and strength.
従来木質セメント板は原料木質に水、セメント
及び硬化剤を混合し、成型、養生、乾燥の工程を
経て製造されている。また、その製品としては木
毛セメント板、普通木片セメント板、硬質木片セ
メント板等があり、建築物の屋根材、天井材、内
外壁材等に単独であるいは複合し使用されてい
る。これらは建築基準法の適用を受け、たとえば
屋根壁の防耐火構造は材料の強度等物性における
規格の他に、難燃規格においても準不燃グレード
の性能が要求されている。この難燃規格には不
燃、準不燃、難燃があり、それぞれ試験方法は異
つている。準不燃には表面試験、穿孔試験、ガス
有害性試験とがあり、このうち表面試験では発熱
指数(Tdθ)100℃・分以下、発煙指数(C.A)
60以下、残炎時間30秒以内等の規格があり、準不
燃材料はこれらすべてに合格することが義務づけ
られている。 Conventionally, wood-cement boards are manufactured by mixing raw material wood with water, cement, and a hardening agent, followed by molding, curing, and drying processes. Products include wood wool cement boards, ordinary wood cement boards, hard wood cement boards, etc., which are used singly or in combination for roofing, ceiling, interior and exterior wall materials, etc. of buildings. These are subject to the Building Standards Act, and for example, the fireproof structure of roof walls is required to have quasi-incombustible grade performance in terms of flame retardant standards, in addition to standards for physical properties such as material strength. This flame retardant standard includes non-flammable, semi-non-flammable, and flame retardant, and the test methods for each are different. There are surface tests, perforation tests, and gas toxicity tests for quasi-noncombustibility. Among these tests, the surface tests require heat generation index (Tdθ) of 100℃・min or less, smoke generation index (CA)
There are standards such as 60 or less and afterflame time of 30 seconds or less, and semi-noncombustible materials are required to pass all of these standards.
木質セメント板は木質と無機質の結合材である
セメントを混合、成型し製造するため、難燃性に
は優れた材料である。しかし、ボードの難燃性能
は主として木質と無機質であるセメントの配合比
に左右されている。このため、ボードの用途によ
り、難燃性を向上させるためには、その製造工程
でセメントの配合比を高めるかあるいは防火剤で
処理する等の何らかの手段を講ずる必要がある。
このことはボード比重を高めたり、あるいは強度
等ボードの物性を低下させる等の原因となる。ま
た、製品価格の上昇にもつながるため、それらの
手段はボードの使用範囲を狭くする要因となる。 Wood cement boards are manufactured by mixing and molding cement, which is a binding material between wood and inorganic materials, so they are a material with excellent flame retardancy. However, the flame retardant performance of the board is mainly influenced by the mixing ratio of wood and cement, which is an inorganic substance. Therefore, depending on the use of the board, in order to improve the flame retardance, it is necessary to take some measures such as increasing the blending ratio of cement in the manufacturing process or treating the board with a fire retardant.
This causes an increase in the specific gravity of the board or a decrease in the physical properties of the board such as strength. Furthermore, since these measures lead to an increase in product prices, they become a factor that narrows the range of use of the board.
一般に、木質材料の難燃化処理には燐酸アンモ
ニウム、硫酸アンモニウム、塩化アンモニウム、
臭化アンモニウム等の主として無機系の防炎剤が
用いられている。しかし、これらのアンモニウム
塩を木質セメント板の難燃処理に用いた場合、ボ
ード製造工程の木質、水、セメント混合時に、セ
メントゲルのアルカリと反応し、分解してアンモ
ニアガスを発生する。このため、これら水溶性の
防炎剤の処理はボード製造工程の作業性を悪く
し、また、ボードの難燃性能も十分に向上できな
い。また、混合工程で分解反応を起こさない他の
無機系防炎剤のなかにはセメントの硬化を阻害し
たりボードの強度等物性を低下させるものが多
い。 In general, flame retardant treatments for wood materials include ammonium phosphate, ammonium sulfate, ammonium chloride,
Mainly inorganic flame retardants such as ammonium bromide are used. However, when these ammonium salts are used for flame-retardant treatment of wood-cement boards, they react with the alkali of the cement gel and decompose to generate ammonia gas when wood, water, and cement are mixed in the board manufacturing process. For this reason, treatment with these water-soluble flame retardants impairs the workability of the board manufacturing process, and the flame retardant performance of the board cannot be sufficiently improved. Furthermore, among other inorganic flame retardants that do not cause a decomposition reaction during the mixing process, there are many that inhibit the hardening of cement or reduce physical properties such as the strength of the board.
以上のことから、木質セメント板の軸化不良を
防止しながら、且つ、難燃性能を向上させるため
にはその製造工程の木質、水、セメント混合時
に、分解せず、セメントの硬化が正常で、その上
ボードの強度等物性を損わない防炎剤の処理が有
効と考えられる。 Based on the above, in order to prevent poor axisization of wood cement boards and improve flame retardant performance, it is necessary to prevent decomposition during the mixing of wood, water, and cement in the manufacturing process, and to ensure that the cement hardens normally. Moreover, it is considered effective to treat the board with a flame retardant that does not impair its physical properties such as strength.
特にからまつ、ラワン、ぶな、すぎ等の樹種で
は他の原料木材にくらべて水溶性糖類のような有
機物を多量に含有しており、この有機物がセメン
トとの混合時に溶出し、セメントの硬化を阻害
し、ボードの製造が不可能であつた。 In particular, tree species such as Karamatsu, Lauan, Beech, and Sugi contain large amounts of organic substances such as water-soluble sugars compared to other raw materials, and these organic substances elute when mixed with cement and prevent the hardening of cement. Therefore, it was impossible to manufacture the board.
殊にからまつ材は、本道では気候、風土に適し
た樹種であり、その植林も多く、全国トツプの本
道林業中でも主要な樹種であり、その成木は建築
材、家具、パルプ等に用途も広いものであるが、
その育成のためには、間伐が必須であり、その間
伐材の利用の面で色々と考えられて来たが、価格
の面で問題があつた。今度本発明の完成によつて
この有効利用が解決され、今後の本道林業に大き
な希望がかなえられたものである。 Karamatsu wood in particular is a tree species suited to the climate and topography of Hondo, and many trees are planted there, making it a major tree species in the nation's top Hondo forestry industry, and its mature trees are used for construction materials, furniture, pulp, etc. Although it is wide,
For its growth, thinning is essential, and various ideas have been made regarding the use of thinned wood, but there have been problems in terms of price. With the completion of the present invention, this effective use has been resolved, and great hopes have been fulfilled for the future of forestry.
即ち、本発明の方法は、からまつ等のセメント
硬化不良樹種材の木質に難燃性と撥水性を併有す
る特定の有機リン酸エステルを噴霧、混合処理
し、セメントの硬化不良を防止し乍ら、ボードの
難燃性と耐水性及び強度を向上させることを特徴
とするものである。 That is, the method of the present invention sprays and mixes a specific organic phosphoric acid ester that has both flame retardancy and water repellency on the wood of wood species with poor cement hardening, such as Karamatsu, to prevent poor cement hardening. It is characterized by improving the flame retardancy, water resistance, and strength of the board.
本発明で使用する有機リン酸エステルは、トリ
クロロエチルホスフエート及びトリスクロロプロ
ピルホスフエートからなる群から選択されるトリ
スハロゲンアルキルホスフエートである。 The organic phosphate ester used in the present invention is a trishalogen alkyl phosphate selected from the group consisting of trichloroethyl phosphate and trischloropropyl phosphate.
本発明の方法はスプレーでこの処理剤を細粒化
し、木質との混合により、木質の開口した細孔に
充填するものである。細粒化した処理剤は毛管現
象により、開口した細孔に容易に充填する。 In the method of the present invention, this treatment agent is made into fine particles by spraying, and mixed with wood to fill the open pores of the wood. The finely divided treatment agent easily fills the opened pores due to capillary action.
この充填された処理剤は木質、水、セメント混
合時に、容易に離脱することはない。また、処理
剤は撥水性であるので、セメントのアルカリと反
応し分解したり、セメントの硬化に悪影響を与え
ることはない。更に、セメントの硬化後、処理剤
は細孔内に留まるため、木質の細孔内やその表面
部分で撥水性を発揮する。 This filled treatment agent does not easily come off when mixing wood, water, and cement. Furthermore, since the treatment agent is water repellent, it will not react with the alkali of cement and decompose, nor will it have an adverse effect on the hardening of cement. Furthermore, since the treatment agent remains within the pores of the cement after it hardens, it exhibits water repellency within the pores of the wood and on its surface.
このため、比較的小量、すなわち木質重量の数
%程度でボードのセメントの硬化不良を防止並び
に難燃性と耐水性及び強度を向上するものであ
る。 Therefore, a relatively small amount, ie, about a few percent of the weight of the wood, prevents poor hardening of the cement of the board and improves flame retardancy, water resistance, and strength.
一般に、木質材料の難燃処理には燐、硫黄化合
物等の鉱酸の塩とバロゲン化合物の処理がある。 Generally, flame retardant treatment of wood materials includes treatment with mineral acid salts such as phosphorus and sulfur compounds and balogen compounds.
その難燃化機構をみると、前者は加熱時に分解
し、酸を生成、木質の脱水炭化を促進することに
より、可燃物を減少し、熱分解反応を抑制するも
のであり、後者は加熱時に分解し、燃焼反応の方
向を変え、反応の停止作用をし、また、気化して
気相における可燃性ガスと反応し、不燃物を生成
する作用を示す。このため、主として鉱酸塩は発
熱量の減少に、ハロゲン化物は残炎時間の減少の
ために用いられている。しかし、木質材料の難燃
化処理にこれらの防炎剤を単独で用いても効果は
小さく、十分な難燃性をあげるには多量の処理が
必要である。しかしながら、鉱酸の塩とハロゲン
化物を併用して処理した場合、それらは可燃物の
固相から気相にわたる各相で燃焼反応を抑制する
ため、相乗効果をもたらし、比較的小量の処理
で、優れた効果を示すものである。 Looking at the flame retardant mechanism, the former decomposes when heated, produces acid, and promotes dehydration and carbonization of wood, thereby reducing combustibles and suppressing thermal decomposition reactions, while the latter decomposes when heated. It decomposes, changes the direction of the combustion reaction, and stops the reaction. It also vaporizes and reacts with combustible gas in the gas phase to produce nonflammable substances. For this reason, mineral salts are mainly used to reduce the calorific value, and halides are used to reduce the afterflame time. However, even if these flame retardants are used alone for flame retardant treatment of wood materials, the effect is small, and a large amount of treatment is required to achieve sufficient flame retardancy. However, when mineral acid salts and halides are used in combination, they inhibit the combustion reaction in each phase of the combustible material, from the solid phase to the gas phase, resulting in a synergistic effect and a relatively small amount of treatment. , which shows excellent effects.
本発明の方法によれば、処理剤は水に不溶なた
め、セメントの硬化不良物質をセメントに溶出さ
せないで、その分子内に木質の燃焼反応の抑制に
必要な鉱酸とハロゲン分子を多く含む化合物であ
る。このため、処理剤は加熱時に分解し、それら
の分子が相乗的に作用するので、ボードの発熱量
と燃焼の伝播速度を減少させ、残炎時間の大幅な
減少をもたらすものである。更に、本発明による
処理は燃焼時の煙の発生量が極めて小さいことも
認められた。 According to the method of the present invention, since the treatment agent is insoluble in water, it does not allow substances with poor hardening of cement to be eluted into the cement, and the treatment agent contains many mineral acids and halogen molecules necessary for suppressing the combustion reaction of wood in its molecules. It is a compound. For this reason, the treatment agent decomposes when heated, and their molecules act synergistically, reducing the amount of heat generated by the board and the propagation speed of combustion, resulting in a significant reduction in the afterflame time. Furthermore, it has been observed that the process according to the invention produces very little smoke during combustion.
木質セメント板の製造において、原料樹種や太
陽光に永くさらされたり、腐朽した材等によつて
はセメントが硬化不良を起こすことが知られて
る。 In the production of wood cement boards, it is known that cement may fail to harden depending on the raw material tree species, long exposure to sunlight, rotten wood, etc.
本発明の方法によれば、処理剤が撥水性物質で
あり、木質の細孔内やその表面部分に存在するた
め、木質、水、セメント混合工程で、木質中のセ
メント硬化阻害物質のセメントゲル中への移行を
阻止、あるいはその量を減少させる。このため、
本発明の製造はカラマツ材、ラワン材、ぶな、す
ぎ材等のセメント硬化不良を起こす材を原料とす
ることができることが認められた。また、これら
の原料木質の含有率が高い場合でもセメントの硬
化は正常で、ボード強度は向上する。このため、
原料木質は乾燥する必要はない。 According to the method of the present invention, since the treatment agent is a water-repellent substance and is present in the pores of the wood and on its surface, the cement gel of the cement hardening inhibitor in the wood is removed during the wood, water, and cement mixing process. Prevent migration into the body or reduce its amount. For this reason,
It has been found that the production of the present invention can be made from materials that cause poor hardening of cement, such as larch wood, lauan wood, beech wood, and oak wood. Furthermore, even when the content of these raw materials wood is high, the cement hardens normally and the board strength improves. For this reason,
The wood material does not need to be dried.
なお、本発明の処理剤のトリスハロゲンホスフ
エートの有効な粘度は、1.0cpsから800cpsの範
囲のものであり、その処理条件の噴霧圧は、1
Kg/cm2〜300Kg/cm2である。 The effective viscosity of the tris halogen phosphate used as the treatment agent of the present invention is in the range of 1.0 cps to 800 cps, and the spray pressure under the treatment conditions is 1.0 cps to 800 cps.
Kg/ cm2 to 300Kg/ cm2 .
本発明者等は、上記条件に加えるに、流動パラ
フイン、機械油、潤滑油等の鉱油やその廃油処理
により、カラマツ材等のセメント硬化不良を防止
する方法をも見い出した。しかし、製品の用途に
よつては油処理量を高めたり、より高い難燃化が
求められる場合も考えられる。 In addition to the above-mentioned conditions, the present inventors have also discovered a method for preventing poor hardening of cement such as larch wood by treating mineral oils such as liquid paraffin, machine oil, lubricating oil, and their waste oils. However, depending on the application of the product, it may be necessary to increase the amount of oil treated or to provide higher flame retardancy.
本発明による方法は処理剤(前記ホスフエー
ト)を流動パラフインや潤滑油およびその廃油と
の混合処理して使用しても有効である。 The method according to the present invention is also effective when the processing agent (the above-mentioned phosphate) is mixed with liquid paraffin, lubricating oil, and its waste oil.
特にこの処理は、ホスフエートが固相であつた
り、あるいは工業的に迅速に実施するときに有効
である。 This treatment is particularly effective when the phosphate is in a solid phase or when it is carried out industrially quickly.
本発明の方法は処理剤が無色透明、無臭、無毒
で化学的にも安定な物質であるため、ボード製造
工程の作業上に障害を生じたり、製品ボードの諸
物性を低下させることはない。このため、この方
法は常法の木質セメント板製造工程に処理剤の噴
霧、混合工程を付加するだけで、原料樹種や木質
状態を選択せず、高含水率の原料を用いて木質セ
メント板のセメント硬化不良を防止せしめつつ、
且つ、耐水性、難燃性、強度等の物性に優れた製
品の生産が可能である。 In the method of the present invention, since the treatment agent is a colorless, transparent, odorless, non-toxic, and chemically stable substance, it does not cause any trouble in the board manufacturing process or deteriorate the various physical properties of the product board. For this reason, this method simply adds a spraying and mixing process of a treatment agent to the conventional wood cement board manufacturing process, and does not select the raw material tree species or wood condition, and uses raw materials with high moisture content to produce wood cement boards. While preventing poor cement hardening,
In addition, it is possible to produce products with excellent physical properties such as water resistance, flame retardance, and strength.
よつて、本発明の製造はこの種工業の原料樹種
選択の幅の拡大、性能の優れたボード製造が可能
となり、この種製品の需要拡大にもつながる優れ
た工業的効果をもたらすものである。 Therefore, the production of the present invention enables this type of industry to expand the selection of raw material wood species and manufacture boards with excellent performance, bringing about excellent industrial effects that will lead to increased demand for this type of product.
実施例 1
下記組成のカラマツ木片に、トリス・クロロエ
チルホスフエートを噴霧混合し、その後セメント
と水を加えて常法に従つて木質セメント板を得
る。Example 1 Tris-chloroethyl phosphate is spray-mixed onto larch wood chips having the following composition, and then cement and water are added to obtain a wood cement board according to a conventional method.
得られたボードの強度及び燃焼試験結果を示す
と下記のとおりである。 The strength and combustion test results of the obtained board are shown below.
材 料 配合比
カラマツ木片 100 部
トリス・クロロエチルホスフエート 2 部
セメント 300 部
水 150 部
ボードの曲げ強さ 99.8Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 0℃・分
発煙指数(C.A) 0
残炎時間 11秒
実施例 2
下記の組成の材料を実施例1と同様の操作によ
り木質セメント板を得る。 Material composition ratio Larch wood chips 100 parts Tris-chloroethyl phosphate 2 parts Cement 300 parts Water 150 parts Bending strength of board 99.8Kg/ cm2 Combustion test results Heat generation index (Tdθ) 0℃・min Smoke generation index (CA) 0 Afterflame time: 11 seconds Example 2 A wood cement board was obtained using the material with the following composition in the same manner as in Example 1.
材 料 配合比
カラマツ木片 100 部
トリス・クロロエチルホスフエート 4 部
セメント 300 部
水 15 部
ボードの曲げ強さ 93.9Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 7.5℃・分
発煙指数(C.A) 0
残炎時間 14 秒
実施例 3
材 料 配合比
カラマツ木片 100 部
トリス・クロロエチルホスフエート 6 部
セメント 300 部
水 150 部
ボードの曲げ強さ 106.1Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 5.0℃・分
発煙指数(C.A) 0
残炎時間 17 秒
実施例 4
材 料 配合比
カラマツ木片 100 部
トリス・クロロエチルホスフエート 8 部
セメント 300 部
水 150 部
ボードの曲げ強さ 95.5Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 17.5℃・分
発煙指数(C.A) 0
残炎時間 21 秒
実施例 5
材 料 配合比
カラマツ木片 100 部
トリス・ジクロロプロピルホスフエート
2 部
セメント 300 部
水 150 部
ボードの曲げ強さ 98.9Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 0℃・分
発煙指数(C.A) 0
残炎時間 14秒
実施例 6
材 料 配合比
カラマツ木片 100 部
トリス・ジクロロプロピルホスフエート
4 部
セメント 300 部
水 150 部
ボードの曲げ強さ 101.7Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 0℃・分
発煙指数(C.A) 0
残炎時間 10秒
実施例 7
材 料 配合比
カラマツ木片 100 部
トリス・ジクロロプロピルホスフエート
6 部
セメント 300 部
水 150 部
ボードの曲げ強さ 92.9Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 0℃・分
発煙指数(C.A) 0
残炎時間 15秒
実施例 8
材 料 配合比
カラマツ木片 100 部
トリス・ジクロロプロピルホスフエート
8 部
セメント 300 部
水 150 部
ボードの曲げ強さ 150.7Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 11.0℃・分
発煙指数(C.A) 0
残炎時間 21 秒
実施例 9
材 料 配合比
カラマツ木片 100 部
流動パラフイン+トリス・クロロエチルホスフエ
ート混合物 6 部
セメント 300 部
水 150 部
ボードの曲げ強さ 85.0Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 50℃・分
発煙指数(C.A) 1
残炎時間 25秒
実施例 10
材 料 配合比
カラマツ木片 100 部
エンジンオイルの廃油+トリス・クロロエチルホ
スフエートの混合物} 6 部
セメント 300 部
水 150 部
ボードの曲げ強さ 86.6Kg/cm2
燃焼試験結果
発熱指数(Tdθ) 62.5℃・分
発煙指数(C.A) 2.5
残炎時間 18 秒
なお、上記各実施例のセメントはすべて市販の
普通ボルトランドセメントを使用した。カラマツ
小片は生材状態(含水率約60%)のものを用い
た。また、ボードの比重はすべて1.1である。 Material composition ratio Larch wood chips 100 parts Tris-chloroethyl phosphate 4 parts Cement 300 parts Water 15 parts Bending strength of board 93.9Kg/ cm2 Combustion test results Heat generation index (Tdθ) 7.5℃・min Smoke index (CA) 0 Afterflame time 14 seconds Example 3 Material mixing ratio Larch wood chips 100 parts Tris-chloroethyl phosphate 6 parts Cement 300 parts Water 150 parts Bending strength of board 106.1Kg/cm 2 Combustion test results Heat generation index (Tdθ) 5.0℃・Minutes Smoke index (CA) 0 Afterflame time 17 seconds Example 4 Material composition ratio Larch wood chips 100 parts Tris-chloroethyl phosphate 8 parts Cement 300 parts Water 150 parts Bending strength of board 95.5Kg/cm 2 Combustion test Results Heat generation index (Tdθ) 17.5℃・min Smoke index (CA) 0 Afterflame time 21 seconds Example 5 Materials Mixing ratio Larch wood chips 100 parts Tris-dichloropropyl phosphate
2 parts Cement 300 parts Water 150 parts Bending strength of board 98.9Kg/cm 2 Combustion test results Heat generation index (Tdθ) 0℃・min Smoke index (CA) 0 Afterflame time 14 seconds Example 6 Material Mixing ratio Larch wood chips 100 parts Tris dichloropropyl phosphate
4 parts Cement 300 parts Water 150 parts Bending strength of board 101.7Kg/cm 2 Combustion test results Heat generation index (Tdθ) 0℃・min Smoke index (CA) 0 Afterflame time 10 seconds Example 7 Material Mixing ratio Larch wood chips 100 parts Tris dichloropropyl phosphate
6 parts Cement 300 parts Water 150 parts Bending strength of board 92.9Kg/cm 2 Combustion test results Heat generation index (Tdθ) 0℃・min Smoke index (CA) 0 Afterflame time 15 seconds Example 8 Material Mixing ratio Larch wood chips 100 parts Tris dichloropropyl phosphate
8 parts Cement 300 parts Water 150 parts Bending strength of board 150.7Kg/cm 2 Combustion test results Heat generation index (Tdθ) 11.0℃・min Smoke index (CA) 0 Afterflame time 21 seconds Example 9 Material Mixing ratio Larch wood chips 100 parts Liquid paraffin + tris-chloroethyl phosphate mixture 6 parts Cement 300 parts Water 150 parts Bending strength of board 85.0Kg/cm 2 Combustion test results Heat generation index (Tdθ) 50℃・min Smoke index (CA) 1 Afterflame Time 25 seconds Example 10 Materials Mixing ratio Larch wood chips 100 parts Engine oil waste + tris chloroethyl phosphate mixture} 6 parts Cement 300 parts Water 150 parts Bending strength of board 86.6Kg/cm 2 Combustion test results Heat generation Index (Tdθ): 62.5°C/min Smoke index (CA): 2.5 Afterflame time: 18 seconds As the cement in each of the above examples, commercially available ordinary Bortland cement was used. The larch pieces used were in a green state (moisture content about 60%). Also, the specific gravity of all boards is 1.1.
燃焼試験結果はJIS A1321の規格炉で表面試験
を行つたものである。 The combustion test results were obtained by surface testing in a JIS A1321 standard furnace.
(発明の効果)
上述したように、本発明方法によれば、
(1) からまつ等セメント硬化不良樹種の木質に対
しそのボード製造に当りセメントの硬化不良を
防止し乍ら、ボードの難燃性と、耐水性及び強
度の向上をはかることができ、本道の重要産業
であるからまつ材の利用にきわめて大きい効果
がある。(Effects of the Invention) As described above, according to the method of the present invention, (1) when manufacturing boards from wood species with poor cement hardening, such as Japanese pine, the flame retardancy of the board can be improved; It is possible to improve the durability, water resistance, and strength, and since it is an important industry in Japan, the use of pinewood has an extremely large effect.
(2) 本発明の処理操作(撥水性処理剤の噴霧混
合)によつて、セメントの硬化不良木質に対
し、毛細現象によりその木質細孔に処理剤が有
効に充填されるので、木質、水、セメントの混
合工程で、木質中のセメント硬化阻害物質のセ
メントゲル中への移行を阻止し、且つ、充填さ
れた処理剤は容易に離脱することなく、セメン
トのアルカリと反応したり分離したり、セメン
トの硬化に悪影響を与えることはなく、また木
質に撥水性を与えボードの強度は勿論その耐久
力を増大させることができる。(2) By the treatment operation of the present invention (spraying and mixing of the water repellent treatment agent), the treatment agent is effectively filled into the wood pores of poorly hardened cement wood due to the capillary phenomenon. In the cement mixing process, it prevents the cement hardening inhibitors in the wood from migrating into the cement gel, and the filled treatment agent does not easily separate and react with the alkali of the cement or separate. It does not adversely affect the hardening of cement, and it also imparts water repellency to the wood, increasing the strength and durability of the board.
(3) 処理剤の使用量も小量でよく、製造費も少な
くてすみ、且つその製造に当り有害ガス等の発
生はなく安全に操作できる。(3) Only a small amount of processing agent is required, the manufacturing cost is low, and the manufacturing process does not generate harmful gases and can be operated safely.
等の大きな効果を有するものである。It has such great effects.
Claims (1)
に、トリスクロロエチルホスフエート及びトリス
ジクロロプロピルホスフエートからなる群から選
択されるトリスハロゲノアルキルホスフエートを
噴霧混合して木質の細孔内や表面部分を被覆し、
しかる後に、これをセメント及び水と混合し成型
することからなるからまつ等の木質セメント板の
製造法。1. Tris halogenoalkyl phosphate selected from the group consisting of tris chloroethyl phosphate and tris dichloropropyl phosphate is sprayed and mixed into the wood of a tree species with poor cement hardening, such as pine tree, to coat the inside of the pores and the surface of the wood. coated,
After that, this is mixed with cement and water and molded. A method for manufacturing wood cement boards such as Karamatsu.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191420A JPS5895638A (en) | 1981-11-30 | 1981-11-30 | Manufacture of excelsior cement board |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56191420A JPS5895638A (en) | 1981-11-30 | 1981-11-30 | Manufacture of excelsior cement board |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5895638A JPS5895638A (en) | 1983-06-07 |
JPS6127343B2 true JPS6127343B2 (en) | 1986-06-25 |
Family
ID=16274311
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56191420A Granted JPS5895638A (en) | 1981-11-30 | 1981-11-30 | Manufacture of excelsior cement board |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5895638A (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2772745B1 (en) * | 1997-12-18 | 2000-06-09 | Mouly Michel | WOOD CONCRETE CONTAINING CEMENT-COATED WOOD AGGREGATE |
FR2772744A1 (en) * | 1997-12-18 | 1999-06-25 | Michel Mouly | Wood concrete contains an aggregate of industrial wood waste coated with cement |
-
1981
- 1981-11-30 JP JP56191420A patent/JPS5895638A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5895638A (en) | 1983-06-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3398019A (en) | Method for fireproofing cellulosic material | |
JP2003517493A (en) | Flame retardant intumescent coating for lignocellulosic materials | |
JPH04234603A (en) | Method to discard nonflammable composition and wood | |
US4731265A (en) | Method of manufacturing modified wood material | |
US6352786B2 (en) | Fire resistant cellulosic materials | |
AU2002304355B2 (en) | Aqueous fire retardant | |
CN1304183C (en) | Nonconsumable wood flame retardant and its preparation | |
US4132655A (en) | Fire-retardant composition and method of rendering cellulosic materials fire-retardant | |
JP5729718B2 (en) | Flame-retardant treatment method for wood materials and wood fireproof materials | |
JPS6127343B2 (en) | ||
EP1817394A1 (en) | Fire retardant compositions and methods of use | |
US3973074A (en) | Flame-proof cellulosic product | |
US20040006167A1 (en) | Stabilized borax based fire retardant system | |
US2994620A (en) | Method for fireproofing cellulosic materials | |
JPS6212187B2 (en) | ||
JP2010047694A (en) | Aqueous flame retardant | |
CN1126234A (en) | Timber fire retardant and its prepn. method | |
CN107901162A (en) | A kind of water-based fire retardant glued board environment-friendly type composite flame-retardant agent, water-based fire retardant glued board, preparation method and application | |
US4302345A (en) | Flame retarding cellulosic materials with sodium or potassium thiocyanate | |
JPS6127342B2 (en) | ||
JPH03169601A (en) | Fire retardant treatment of wood | |
JP3418821B2 (en) | Composition for flame retarding woody materials and flame retarding treatment method | |
RU2238959C1 (en) | Method of manufacturing nonflammable heat-insulation wood material | |
US3266926A (en) | Moisture stabilized asphalt coated fiberboard and method for making the same | |
JPH0250801A (en) | Manufacture of modified wood |