JPS61272677A - Measuring instrument for length of optical path - Google Patents

Measuring instrument for length of optical path

Info

Publication number
JPS61272677A
JPS61272677A JP60115930A JP11593085A JPS61272677A JP S61272677 A JPS61272677 A JP S61272677A JP 60115930 A JP60115930 A JP 60115930A JP 11593085 A JP11593085 A JP 11593085A JP S61272677 A JPS61272677 A JP S61272677A
Authority
JP
Japan
Prior art keywords
light
light emitting
optical path
atmosphere
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60115930A
Other languages
Japanese (ja)
Other versions
JPH0566992B2 (en
Inventor
Yukio Sai
行雄 佐井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60115930A priority Critical patent/JPS61272677A/en
Publication of JPS61272677A publication Critical patent/JPS61272677A/en
Publication of JPH0566992B2 publication Critical patent/JPH0566992B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To compensate variation in the optical path length of an optical fiber and variation in the phase characteristics of a light emitting and a photodetecting part and to measure the length of an optical path with high precision by performing control arithmetic processing on the basis of a delay time in an atmosphere to be measured and measuring the length of the optical path in the atmosphere. CONSTITUTION:A light emitting means 21 and photodetecting means are connected to one terminal of a directional coupler 31 through the optical fiber and a mirror 33 and a light projecting and photodetecting means 34 are connected to the other terminal; and a light emitting means 22 and a photodetecting means 23 are connected to one terminal of the directional coupler 32 and a mirror 35 and the means 34 are connected to the other terminal. Then, the means 21 is driven to measure the phase difference between a light wave reaching the means 24 and a light wave reaching the means 23 and the means 22 is also driven to measure the phase difference between the light wave reaching the means 23 and the light wave reaching the means 24 by a phase difference measuring means 25 respectively. An optical path length arithmetic processing means 26 calculates the length of the optical path in the atmosphere to be measured on the basis of both phase differences. Consequently, variation in the optical path length of the optical fiber which couples a main measuring instrument body and a projecting and photodetection optical system and variation in phase between the light emitting part and photodetection part are compensated to measure the optical path length precisely.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、光ファイバを介して被測定雰囲気に対し光波
の送受光を行ない、この光波の位相遅れから光波を伝搬
した被測定雰囲気の光路長を測定する光路長測定器に関
し、特に前記光ファイバ等に起因する光路長測定値の誤
差を補償する手段の改良に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention transmits and receives light waves to and from an atmosphere to be measured via an optical fiber, and determines the optical path length of the atmosphere to be measured through which the light waves propagate based on the phase delay of this light wave. The present invention relates to an optical path length measuring device for measuring optical path length, and more particularly to improvements in means for compensating for errors in optical path length measurements caused by the optical fiber and the like.

〔発明の技術的背順およびその問題点〕第3図は従来の
光路長測定器の構成を示す系統図である。変調信号m1
の変調信号S1に応じて発光源2から出射される光波3
は、投光レンズ4を透過して被測定雰囲気A内を伝搬し
、コーナーデユープ5にて反射し、受光レンズ6を透過
して受光部7に到達する。そして、この受光部7にて電
気信号S2に変換されたのち位相差検出部8に送出され
る。この位相差検出部8においては、前記変調信号源1
から与えられる変調信号S1と上記電気信号S2との位
相差が検出され、この位相差に基いて前記光波3が発光
されてから受光されるまでの伝搬時間が求められる。そ
の結果、この光波の伝搬時間に基いて光路長変換部9に
より被測定雰囲気Aの光路長が求められ、光路長測定器
本体10の内部もしくは外部に設けられた表示部11に
表示されるものとなっている。
[Technical disadvantages of the invention and its problems] FIG. 3 is a system diagram showing the configuration of a conventional optical path length measuring device. Modulation signal m1
A light wave 3 emitted from a light emitting source 2 according to a modulation signal S1 of
The light passes through the light projecting lens 4 and propagates in the atmosphere A to be measured, is reflected at the corner duplex 5, passes through the light receiving lens 6, and reaches the light receiving section 7. The light receiving section 7 converts the signal into an electrical signal S2, and then sends it to the phase difference detection section 8. In this phase difference detection section 8, the modulation signal source 1
The phase difference between the modulated signal S1 given by the modulation signal S1 and the electric signal S2 is detected, and based on this phase difference, the propagation time from when the light wave 3 is emitted to when it is received is determined. As a result, the optical path length of the atmosphere A to be measured is determined by the optical path length converting section 9 based on the propagation time of this light wave, and is displayed on the display section 11 provided inside or outside the optical path length measuring device main body 10. It becomes.

しかるに、上述したような光路長測定手段では、発光源
2として使用されるLEDや受光部7の受光素子または
増幅器による遅れ要素を含んだまま被測定雰囲気Aの光
路長を測定しており、測定値には誤差が含まれている。
However, with the optical path length measuring means as described above, the optical path length of the atmosphere A to be measured is measured while including delay elements caused by the LED used as the light emitting source 2, the light receiving element of the light receiving section 7, or the amplifier. Values include errors.

そこで、一般には、発光m2から出射された光波3をチ
ョッパビームスプリッタ12によって時間分割的に測定
光波3aと内部参照光波3bとに分割し、両光波の位相
差に基いて前記遅れ要素による誤差を補償した後、被測
定雰囲気Aの光路長を測定するものとなっている。
Therefore, in general, the light wave 3 emitted from the light emission m2 is divided into a measurement light wave 3a and an internal reference light wave 3b in a time-division manner by the chopper beam splitter 12, and the error caused by the delay element is calculated based on the phase difference between the two light waves. After compensation, the optical path length of the atmosphere A to be measured is measured.

一方、前記被測定雰囲気Aが爆発性のガス雰囲気等のよ
うに電気的エネルギーが好ましくない雰囲気A′の場合
には、測定器本体10を上記雰囲気A′中に設置するこ
とはできない。また、前記チョッパビームスプリッタ1
2も電気的エネルギーを必要とするので同様である。し
たがって、このような場合には、第4図に示すように、
チョッパビームスプリッタ12を含む測定器本体10を
被測定雰囲気A′から離れた場所に設置し、この本体1
0から送受光用レンズ13を備えた投光受光光学系14
までを光ファイバ15によって連結して光波の送受光を
行ない、被測定雰囲気A′における光路長測定を行なう
ものとなっている。
On the other hand, if the atmosphere A to be measured is an atmosphere A' in which electrical energy is unfavorable, such as an explosive gas atmosphere, the measuring device main body 10 cannot be installed in the atmosphere A'. Further, the chopper beam splitter 1
2 also requires electrical energy, so the same is true. Therefore, in such a case, as shown in Figure 4,
The measuring instrument main body 10 including the chopper beam splitter 12 is installed in a place away from the atmosphere A' to be measured, and this main body 1
Light emitting/receiving optical system 14 equipped with a light transmitting/receiving lens 13 from 0
are connected by an optical fiber 15 to transmit and receive light waves, thereby measuring the optical path length in the atmosphere to be measured A'.

しかるに、上記光ファイバ15は温度変化等の環境変化
に起因してファイバ自体の光路長が変化する。たとえば
、光ファイバ15の全長が100m以上の場合、数10
度の温度変化が生じると、ファイバ自体の光路長は数1
0#程度変化する。
However, the optical path length of the optical fiber 15 itself changes due to environmental changes such as temperature changes. For example, if the total length of the optical fiber 15 is 100 m or more, several tens of
When the temperature changes by 1°, the optical path length of the fiber itself is
It changes by about 0#.

したがって、被測定雰囲気A′の光路長を測定器本体1
0内の演算処理手段によって算出しても、この算出値は
誤差を生じるおそれがあり、精度的に問題があった。
Therefore, the optical path length of the atmosphere to be measured A' is
Even if the calculation is performed by an arithmetic processing means within 0, this calculated value may have an error, and there is a problem in terms of accuracy.

〔発明の目的〕[Purpose of the invention]

本発明はこのような事情に基いてなされたものであり、
その目的とするところは、光路長測定器本体と投光受光
光学系とを連結す・る光ファイバの光路長変化を無視す
ることができ、たとえ電気的エネルギーの好ましくない
被測定雰囲気であっても精度よく光路長を測定すること
ができる光路長測定器を提供することにある。
The present invention was made based on these circumstances,
The purpose of this is to be able to ignore changes in the optical path length of the optical fiber that connects the main body of the optical path length measuring instrument and the light emitting/receiving optical system, even if the measurement atmosphere is unfavorable with electrical energy. Another object of the present invention is to provide an optical path length measuring device that can accurately measure optical path length.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、第1の発光手段
と第2の受光手段とを光ファイバを介して第1の方向性
結合器の一端に接続すると共に、他端には第1のミラー
と投光受光手段とを光ファイバを介して接続し、かつ第
2の発光手段と第1の受光手段とを光ファイバを介して
第2の方向性結合器の一端に接続すると共に1.他端に
は第2のミラーと前記投光受光手段とを光ファイバを介
して接続し、前記第1の発光手段を駆動させることによ
り前記第1の方向性結合器を介して第1のミラーで反射
し前記第2の受光手段に至る光波と上記第1の方向性結
合器を介して投光受光手段により被測定雰囲気に出射さ
れ前記第2の方向性結合器を介して第1の受光手段に至
る光波との位相差を測定すると共に、前記第2の発光手
段を駆動させることにより前記第2の方向性結合器を介
して第2のミラーで反射し前記第1の受光手段に至る光
波と上記第2の方向性結合器を介して投光受光手段によ
り被測定雰囲気に出射され前記第1の方向性結合器を介
して第2の受光手段に至る光波との位相差を測定し、こ
の測定された側位相差に基いて前記被測定雰囲気の光路
長を演算処理するようにしたものである。
In order to achieve the above object, the present invention connects a first light emitting means and a second light receiving means to one end of a first directional coupler via an optical fiber, and connects a first directional coupler to the other end. The mirror and the light emitting/receiving means are connected via an optical fiber, and the second light emitting means and the first light receiving means are connected to one end of the second directional coupler via the optical fiber. .. At the other end, a second mirror and the light emitting/receiving means are connected via an optical fiber, and by driving the first light emitting means, the first mirror is connected through the first directional coupler. A light wave is reflected by the light beam and reaches the second light receiving means, and the light beam is emitted through the first directional coupler and is emitted to the atmosphere to be measured by the light receiving means, and the light wave is received by the second light receiving means through the second directional coupler. While measuring the phase difference with the light wave reaching the means, by driving the second light emitting means, the light is reflected by a second mirror via the second directional coupler and reaches the first light receiving means. Measure the phase difference between the light wave and the light wave that is emitted into the atmosphere to be measured by the light emitting/receiving means via the second directional coupler and reaches the second light receiving means via the first directional coupler. The optical path length of the atmosphere to be measured is calculated based on the measured side phase difference.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明を電気的エネルギーが好ましくない被測
定雰囲気A′の光路長測定に適用した一実施例の構成を
示す系統図である。なお、第3図。
FIG. 1 is a system diagram showing the configuration of an embodiment in which the present invention is applied to optical path length measurement in a measurement atmosphere A' where electrical energy is unfavorable. In addition, Fig. 3.

第4図と同一部分には同一符号を付し、詳しい説明は省
略する。第1図において20は光路長測定器本体であっ
て、第1.第2の発光部21.22および第1.第2の
受光部23.24が設けられており、それぞれ発光素子
21a、22aおよび受光素子23a、24aを備えて
いる。上記光路長測定器本体20は被測定雰囲気A′か
ら離れた場所に設置されており、上記被測定雰囲気A′
中に設けられる投光受光光学系30とは光ファイバ41
.42,43.44を介して次の如く接続されている。
Components that are the same as those in FIG. 4 are given the same reference numerals, and detailed explanations will be omitted. In FIG. 1, reference numeral 20 denotes the main body of the optical path length measuring instrument; The second light emitting section 21.22 and the first light emitting section 21.22. Second light receiving sections 23 and 24 are provided, each including light emitting elements 21a and 22a and light receiving elements 23a and 24a. The optical path length measuring device main body 20 is installed in a place away from the atmosphere to be measured A', and
The light emitting/receiving optical system 30 provided inside is an optical fiber 41.
.. The connections are made as follows via 42, 43, and 44.

すなわち、第1の発光部21は、前記投光受光光学系3
0内の第1の2ポ一ト×2ボート方向性結合器(以下、
第1のカプラと略称する)31における一端の一方のポ
ートに前記光ファイバ41によって接続され、第2の発
光部22は、前記投光受光光学系30内の第2の2ポ一
ト×2ボート方向性結合器(以下、第2のカプラと略称
する)32における一端の一方のポートに前記光ファイ
バ42を介して接続されている。また、第1の受光部2
3は、前記第2のカプラ32における一端の他方のポー
トに前記光ファイバ43によって接続され、第2の受光
部24は、前記第1のカプラ31における一端の他方の
ポートに前記光ファイバ44を介して接続されている。
That is, the first light emitting section 21 is connected to the light emitting and receiving optical system 3.
The first 2 points x 2 ports directional coupler (hereinafter referred to as
The second light emitting section 22 is connected to one port at one end of the first coupler (abbreviated as a first coupler) 31 by the optical fiber 41, and the second light emitting section 22 is connected to the second two points in the light emitting/receiving optical system 30. It is connected to one port at one end of a boat directional coupler (hereinafter abbreviated as second coupler) 32 via the optical fiber 42 . In addition, the first light receiving section 2
3 is connected to the other port at one end of the second coupler 32 by the optical fiber 43, and the second light receiving section 24 is connected to the other port at one end of the first coupler 31 by the optical fiber 43. connected via.

一方、上記第1のカプラ31における他端の一方のポー
トは、光ファイバ45を介して第1の内部参照光用ミラ
ー33に接続され、他方のポートは光ファイバ46を介
して投光受光用ミラー34に接続されている。また、第
2のカプラ32における他端の一方のポートは、光ファ
イバ47を介して第2の内部参照光用ミラー35に接続
され、他方のポー1〜は光ファイバ48を介して前記投
光受光用ミラー34に接続されている。
On the other hand, one port at the other end of the first coupler 31 is connected to the first internal reference beam mirror 33 via an optical fiber 45, and the other port is connected via an optical fiber 46 to the light emitting/receiving port. It is connected to mirror 34. Further, one port at the other end of the second coupler 32 is connected to the second internal reference light mirror 35 via an optical fiber 47, and the other ports 1 to 1 are connected to the light emitting light via an optical fiber 48. It is connected to the light receiving mirror 34.

この状態で、前記第1の発光部21から出射された光波
は、光ファイバ41を介して第1のカプラ31に伝送さ
れ、さらに、光ファイバ45および46を介して第1の
内部参照光用ミラー33および投光受光用ミラー34に
伝送される。そして、上記第1の内部参照光用ミラー3
3によって反射された光波は、内部参照光波として光フ
ァイバ45、第1のカプラ31.光ファイバ44を介し
て第2の受光部24に伝送され、ここで電気信号S3に
変換される。一方、投光受光用ミラー34によって投光
された光波は、外部測定光波として投光受光用レンズ3
6によって所定方向に変換されたのちコーナーミラー5
に至り、このコーナーミラー5にて反射されて上記投光
受光用ミラー34に戻り、光ファイバ48.第2のカプ
ラ32゜光ファイバ43を介して第1の受光部23に伝
送され、ここで電気信号S4に変換されるものとなって
いる。
In this state, the light wave emitted from the first light emitting section 21 is transmitted to the first coupler 31 via the optical fiber 41, and is further transmitted to the first internal reference light beam via the optical fibers 45 and 46. The light is transmitted to the mirror 33 and the light emitting/receiving mirror 34. Then, the first internal reference beam mirror 3
The light wave reflected by the optical fiber 45, the first coupler 31 . The signal is transmitted to the second light receiving section 24 via the optical fiber 44, where it is converted into an electrical signal S3. On the other hand, the light wave projected by the light emitting and receiving mirror 34 is transmitted to the light emitting and receiving lens 3 as an external measurement light wave.
After being transformed in a predetermined direction by 6, the corner mirror 5
The light is reflected by the corner mirror 5, returns to the light emitting/receiving mirror 34, and is transmitted to the optical fiber 48. The signal is transmitted to the first light receiving unit 23 via the second coupler 32° optical fiber 43, where it is converted into an electrical signal S4.

また、前記第2の発光部22がら出射された光波は、光
ファイバ42を介して第2のカプラ32に伝送され、さ
らに、光ファイバ47および48を介して第2の内部参
照光用ミラー35および投光受光用ミラー34に伝送さ
れる。そして、上記−〇− 第2の内部参照光用ミラー34によって反射された光波
は、内部参照光波として光ファイバ47゜第2のカプラ
32.光ファイバ43を介して第1の受光部23に伝送
され、ここで電気信号S5に変換される。一方、投光受
光用ミラー34によって投光された光波は、外部測定光
波として投光受光用レンズ36によって所定方向に変換
されたのちコーナーミラー5に至り、このコーナーミラ
ー5にて反射されて上記投光受光用ミラー34に戻り、
光ファイバ46.第1のカプラ31.光ファイバ44を
介して第2の受光部24に伝送され、ここで電気信号S
6に変換されるものとなっている。
Further, the light wave emitted from the second light emitting section 22 is transmitted to the second coupler 32 via the optical fiber 42, and further transmitted to the second internal reference light mirror 35 via the optical fibers 47 and 48. and is transmitted to the light emitting/receiving mirror 34. Then, the light wave reflected by the second internal reference light mirror 34 is transferred to the optical fiber 47 second coupler 32 as an internal reference light wave. The signal is transmitted to the first light receiving section 23 via the optical fiber 43, where it is converted into an electrical signal S5. On the other hand, the light wave projected by the light emitting/receiving mirror 34 is converted into a predetermined direction by the light emitting/receiving lens 36 as an external measurement light wave, and then reaches the corner mirror 5, where it is reflected by the above-mentioned Returning to the light emitting/receiving mirror 34,
Optical fiber 46. First coupler 31. The electrical signal S is transmitted to the second light receiving unit 24 via the optical fiber 44, and
6.

前記各電気信号83〜S6は位相差検出部25に送出さ
れ、ここで電気信号S3と84との位相差Δφ1が検出
されると共に、電気信号S5と86との位相差Δφ2が
検出される。これら位相差Δφ1.△φ2は制御・演算
処理部26に与えられる。この制御・演算処理部26は
、前記第1゜第2の発光部21.22を時間分割的に駆
動させるだめの切換スイッチ27を制御する機能を有す
ると共に、上記位相差△φ1.Δφ2に対して所定の演
算処理および補正を施すことにより被測定雰囲気A′の
光路長を求め、距離信号S7に変換して表示部11に出
力する機能を有している。
Each of the electric signals 83 to S6 is sent to a phase difference detection section 25, where a phase difference Δφ1 between the electric signals S3 and 84 is detected, and a phase difference Δφ2 between the electric signals S5 and 86 is detected. These phase differences Δφ1. Δφ2 is given to the control/arithmetic processing section 26. This control/arithmetic processing section 26 has a function of controlling a changeover switch 27 for driving the first and second light emitting sections 21 and 22 in a time-divisional manner, and also has the function of controlling the changeover switch 27 for driving the first and second light emitting sections 21 and 22 in a time-divisional manner, and also has the function of controlling the changeover switch 27 that drives the first and second light emitting sections 21 and 22 in a time-divisional manner, and also has the function of controlling the changeover switch 27 that drives the first and second light emitting sections 21 and 22 in a time-divisional manner. It has a function of determining the optical path length of the atmosphere to be measured A' by performing predetermined arithmetic processing and correction on Δφ2, converting it into a distance signal S7, and outputting it to the display section 11.

次に本実施例の動作について説明する。まず、制御・演
算処理部26の時間分割的な制御によって切換スイッチ
27が端子27a側に接続されると、第1の発光部21
に対して変調信号源1から変調信号S1が供給され、上
記第1の発光部21が駆動する。そうすると、投光受光
用ミラー34により外部測定光波が被測定雰囲気A′中
に投光され、コーナーミラー5によって反射したのち所
定の経路を経て第1の受光部23に受光され、電気信号
S4に変換される。また、同時に第1の内部参照光用ミ
ラー33によって内部参照光波が反射され、所定の経路
を経て第2の受光部24に受光され、電気信号S3に変
換される。そして、位相差検出部25によって両電気信
号83.84の位相差Δφ1が検出され、制御・演算処
理部26に記憶される。
Next, the operation of this embodiment will be explained. First, when the changeover switch 27 is connected to the terminal 27a side by time-divisional control of the control/arithmetic processing section 26, the first light emitting section 21
A modulation signal S1 is supplied from the modulation signal source 1 to the first light emitting section 21, and the first light emitting section 21 is driven. Then, the external measurement light wave is projected into the measurement atmosphere A' by the light projecting/receiving mirror 34, reflected by the corner mirror 5, and then received by the first light receiving section 23 via a predetermined path, and converted into an electrical signal S4. converted. At the same time, the internal reference light wave is reflected by the first internal reference light mirror 33, is received by the second light receiving section 24 via a predetermined path, and is converted into an electrical signal S3. Then, the phase difference Δφ1 between the electric signals 83 and 84 is detected by the phase difference detection section 25 and stored in the control/arithmetic processing section 26.

次いで、制御・演算処理部26の時間分割的な制御によ
って切換スイッチ27が端子27b側に切換ねると、第
2の発光部22に対して変調信号源1から変調信号S1
が供給され、上記第2の発光部22が駆動する。そうす
ると、投光受光用ミラー34により外部測定光波が被測
定雰囲気A′中に投光され、コーナーミラー5によって
反射したのち所定の経路を経て第2の受光部24に受光
され、電気信号S6に変換される。また、同時に第2の
内部参照光用ミラー35によって内部参照光波が反射さ
れ、所定の経路を経て第1の受光部23に受光され、電
気信@S5に変換される。そして、位相差検出部25に
よって両電気信号85゜S6の位相差△φ2が検出され
、制御・演算処理部26に記憶される。その後、上記制
御・演算処理部26によって両位相差Δφ1.Δφ2に
対し所定の演算および補正が施されて距離信号S7に変
換された後、被測定雰囲気A′の光路長として表示部1
1に表示される。
Next, when the changeover switch 27 is switched to the terminal 27b side by the time-divisional control of the control/arithmetic processing section 26, the modulation signal S1 is transmitted from the modulation signal source 1 to the second light emitting section 22.
is supplied, and the second light emitting section 22 is driven. Then, the external measurement light wave is projected into the measurement atmosphere A' by the light projecting/receiving mirror 34, reflected by the corner mirror 5, and then received by the second light receiving section 24 via a predetermined path, and converted into an electrical signal S6. converted. At the same time, the internal reference light wave is reflected by the second internal reference light mirror 35, is received by the first light receiving section 23 via a predetermined path, and is converted into an electric signal @S5. Then, the phase difference Δφ2 between both electrical signals 85°S6 is detected by the phase difference detection section 25 and stored in the control/arithmetic processing section 26. Thereafter, the control/arithmetic processing section 26 determines the phase difference Δφ1. After Δφ2 is subjected to predetermined calculations and corrections and converted into a distance signal S7, it is displayed on the display unit 1 as the optical path length of the atmosphere to be measured A'.
1 is displayed.

このように、第1の発光部21と第2の発光部22とを
時間分割的に駆動し、それぞれの内部参照光波と外部測
定光波に応じた電気信号S3とS4およびS5とS6の
位相差Δφ1.Δφ2を検出してこれらに所定の演算を
施すと、発光部21.22、受光部23.24および光
ファイバ41〜48による遅延を無視でき、被測定雰囲
気用される電気信号83〜S6の一例を示す図である。
In this way, the first light emitting section 21 and the second light emitting section 22 are driven in a time-division manner, and the phase differences between the electric signals S3 and S4 and S5 and S6 are determined according to the respective internal reference light waves and external measurement light waves. Δφ1. When Δφ2 is detected and predetermined calculations are performed on these, delays due to the light emitting section 21.22, the light receiving section 23.24, and the optical fibers 41 to 48 can be ignored, and an example of the electrical signals 83 to S6 used in the atmosphere to be measured is FIG.

同図においてt1〜t4は第1.第2の発光部21.2
2および第1.第2の受光部23゜24による信号の遅
延時間、T1〜T4は光ファイバ41〜44による光波
の遅延時間、TXは投光受光用レンズ36からコーナー
ミラー5までの被測定雰囲気A′による光波の片道の遅
延時間を示している。なお、光ファイバ45〜48によ
る遅延時間は、この光ファイバ45〜48が前記光ファ
イバ41〜44に比べて十分に短く、光路長のドリフト
が小さくて無視できるため、定数として最終的な結果か
ら補正すればよい。
In the figure, t1 to t4 are the first. Second light emitting section 21.2
2 and 1st. The delay time of the signal by the second light receiving unit 23° 24, T1 to T4 are the delay times of the light wave by the optical fibers 41 to 44, and TX is the light wave by the atmosphere A' to be measured from the light emitting/receiving lens 36 to the corner mirror 5. shows the one-way delay time. Note that the delay time caused by the optical fibers 45 to 48 is sufficiently short compared to the optical fibers 41 to 44, and the drift of the optical path length is small and can be ignored, so it can be taken as a constant from the final result. Just correct it.

第2図から明らかなように、第1の発光部21を駆動し
た場合の第1の受光部23における出力(電気信号)8
4の全遅延時間U11はU11=t1+TI+T3+t
3+2TX  ・・・(1)となる。また、このときの
第2の受光部24における出力(電気信号)S3の全遅
延時間U12はU12=t1+T1+T4+t4   
   ・・・(2)となる。したがって、両者の遅延時
間差△U1はΔU1=U11−U12 = 73 + t 3−1−2 T x−T 4− t
 4−八L+2TX          ・・・(3)
となる。ただし、ΔL=T3+t3−T4−t4とする
As is clear from FIG. 2, the output (electrical signal) 8 at the first light receiving section 23 when the first light emitting section 21 is driven
The total delay time U11 of 4 is U11=t1+TI+T3+t
3+2TX...(1). Further, the total delay time U12 of the output (electrical signal) S3 in the second light receiving section 24 at this time is U12=t1+T1+T4+t4
...(2) becomes. Therefore, the delay time difference ΔU1 between the two is ΔU1=U11-U12=73+t 3-1-2 T x-T 4- t
4-8L+2TX...(3)
becomes. However, it is assumed that ΔL=T3+t3-T4-t4.

同様に、第2の発光部22を駆動した場合の第1の受光
部23における出力(電気信号)S5の全遅延時間U2
1は U21=t 2+T2+T3+t3      ・・・
(4)となる。また、このときの第2の受光部24にお
ける出力(電気信号)86の全遅延時間U22はU22
=t2+72+T4+t4+2Tx  ・・・(5)と
なる。したがって、両者の遅延時間差ΔU2はΔU 2
 = U 21− U 22 = T 3 + t 3− T 4.− t 4.−2
 T x−八L−2TX          ・・・(
6)となる。
Similarly, the total delay time U2 of the output (electrical signal) S5 at the first light receiving section 23 when the second light emitting section 22 is driven.
1 is U21=t 2+T2+T3+t3...
(4) becomes. Further, the total delay time U22 of the output (electrical signal) 86 in the second light receiving section 24 at this time is U22
=t2+72+T4+t4+2Tx (5). Therefore, the delay time difference ΔU2 between the two is ΔU 2
= U 21- U 22 = T 3 + t 3- T 4. -t4. -2
T x-8L-2TX...(
6).

ここで、上記(3)式および(6)式にて求めたΔU1
゜△U2は第1図におCプる位相差検出器25の出力で
あり、これら出力を制御・演算処理部26にて減算する
と ΔU1−ΔU 2 = 4. T x        
 =−(7)となる。したがって、上記制御・演算処理
部26にて処理された結果は、被測定雰囲気A′による
光波の遅延時間Txのみとなり、発光部21゜22、受
光部23.24および光ファイバ41〜44による遅延
時間の変化に影響されない。
Here, ΔU1 calculated using the above equations (3) and (6)
゜△U2 is the output of the phase difference detector 25 shown in FIG. Tx
=-(7). Therefore, the result processed by the control/arithmetic processing section 26 is only the delay time Tx of the light wave due to the atmosphere to be measured A', and the delay due to the light emitting section 21, 22, the light receiving section 23, 24, and the optical fibers 41 to 44. Not affected by changes in time.

このように本実施例によれば、被測定−雰囲気A′によ
る遅延時間T×のみに基いて制御・演算処理部26にて
被測定雰囲気A′の光路長を測定しているので、例えば
気温変化によって光ファイバ41〜44の光路長が変化
しても何等影響されず、測定値に誤差が生じるおそれは
ない。したがって、爆発性のガス雰囲気等のように電気
的エネルギーが好ましくない雰囲気においても、光路長
測定を精度よく行なうことができる。
According to this embodiment, the optical path length of the atmosphere to be measured A' is measured in the control/arithmetic processing section 26 based only on the delay time Tx due to the atmosphere to be measured, so that, for example, the temperature Even if the optical path lengths of the optical fibers 41 to 44 change due to the change, this will not be affected in any way, and there is no possibility that an error will occur in the measured value. Therefore, even in an atmosphere where electrical energy is unfavorable, such as an explosive gas atmosphere, optical path length measurement can be performed with high accuracy.

なお、本発明は前記実施例に限定されるものではなく、
本発明の要旨を越えない範囲で種々変形実施可能である
のは勿論である。
Note that the present invention is not limited to the above embodiments,
Of course, various modifications can be made without departing from the gist of the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳述したように本発明は、第1の発光手段と第2の
受光手段とを光ファイバを介して第1の方向性結合器の
一端に接続すると共に、他端には第1のミラーと投光受
光手段とを光ファイバを介して接続し、かつ第2の発光
手段と第1の受光手段とを光ファイバを介して第2の方
向性結合器の一端に接続すると共に、他端には第2のミ
ラーと前記投光受光手段とを光ファイバを介して接続し
、前記第1の発光手段を駆動させることにより前記第1
の方向性結合器を介して第1のミラーで反射し前記第2
の受光手段に至る光波と上記第1の方向性結合器を介し
て投光受光手段により被測定雰囲気に出射され前記第2
の方向性結合器を介して第1の受光手段に至る光波との
位相差を測定すると共に、前記第2の発光手段を駆動さ
ゼることにより前記第2の方向性結合器を介して第2の
ミラーで反射し前記第1の受光手段に至る光波と上記第
2の方向性結合器を介して投光受光手段により被測定雰
囲気に出射され前記第1の方向性結合器を介して第2の
受光手段に至る光波どの位相差を測定し、この測定され
た両位相差に基いて前記被測定雰囲気の光路長を演算処
理するようにしたものである。
As detailed above, the present invention connects the first light emitting means and the second light receiving means to one end of the first directional coupler via an optical fiber, and connects the first mirror to the other end. and the light emitting and receiving means are connected via an optical fiber, and the second light emitting means and the first light receiving means are connected to one end of the second directional coupler via the optical fiber, and the other end is connected to the second directional coupler. The second mirror and the light emitting/receiving means are connected via an optical fiber, and the first light emitting means is driven.
The second mirror is reflected by the first mirror through the directional coupler.
The light waves reaching the light receiving means are emitted into the atmosphere to be measured by the light emitting and receiving means via the first directional coupler, and are emitted into the atmosphere to be measured by the light receiving means.
By measuring the phase difference between the light wave and the light wave reaching the first light receiving means via the directional coupler, and driving the second light emitting means, the light wave reaches the first light receiving means via the second directional coupler. The light wave is reflected by the second mirror and reaches the first light receiving means, and the light wave is emitted to the atmosphere to be measured by the light emitting and receiving means through the second directional coupler, and is transmitted through the first directional coupler to the first light receiving means. The phase difference between the light waves reaching the second light receiving means is measured, and the optical path length of the atmosphere to be measured is calculated based on the measured phase differences.

したがって本発明によれば、光路長測定器本体と投光受
光光学系とを連結する光ファイバの光路長変化および発
光部、受光部の位相特性変化を補償することができ、た
とえ電気的エネルギーの好ましくない被測定雰囲気であ
っても精度よく光路長を測定することができる光路長測
定器を提供できる。
Therefore, according to the present invention, it is possible to compensate for changes in the optical path length of the optical fiber that connects the main body of the optical path length measuring device and the light emitting/receiving optical system, as well as changes in the phase characteristics of the light emitting section and the light receiving section. It is possible to provide an optical path length measuring device that can accurately measure the optical path length even in an unfavorable measurement atmosphere.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示1系統図、第2図
は同実施例の作用効果を説明するだめの図、第3図およ
び第4図は従来例を説明覆るだめの図である。 71・・・変調信号源、5・・・コーナーミラー、11
・・・表示部、20・・・光路長測定器本体、21.2
2・・・第1.第2の発光部、23.24・・・第1.
第2の受光部、25・・・位相差検出器、26・・・制
御・演算処理部、30・・・投光受光光学系、31.3
2・・・第1.第2の2×2方向方向性器〈第1.第2
のカプラ〉、 33.35・・・第1.第2の内部参照光用ミラー、3
4・・・投光受光用ミラー、36・・・投光受光用レン
ズ、41〜48・・・光ファイバ。
Fig. 1 is a system diagram showing the configuration of an embodiment of the present invention, Fig. 2 is a diagram for explaining the function and effect of the embodiment, and Figs. 3 and 4 are diagrams for explaining the conventional example. It is a diagram. 71... Modulation signal source, 5... Corner mirror, 11
... Display section, 20 ... Optical path length measuring instrument main body, 21.2
2... 1st. second light emitting section, 23.24...first.
Second light receiving unit, 25... Phase difference detector, 26... Control/arithmetic processing unit, 30... Light emitting/receiving optical system, 31.3
2... 1st. Second 2x2 directional genitalia <1st. Second
coupler〉, 33.35... 1st. Second internal reference beam mirror, 3
4...Mirror for light emission/reception, 36...Lens for light emission/reception, 41-48...Optical fiber.

Claims (1)

【特許請求の範囲】[Claims] 第1、第2の発光手段および第1、第2の受光手段と、
前記第1の発光手段と第2の受光手段とを光ファイバを
介して一端に接続し、他端には第1のミラーと投光受光
手段とを光ファイバを介して接続する第1の方向性結合
器と、前記第2の発光手段と第1の受光手段とを光ファ
イバを介して一端で接続し、他端には第2のミラーと前
記投光受光手段とを光ファイバを介して接続する第2の
方向性結合器と、前記第1の発光手段を駆動させること
により前記第1の方向性結合器を介して第1のミラーで
反射し前記第2の受光手段に至る光波と上記第1の方向
性結合器を介して投光受光手段により被測定雰囲気内に
出射され前記第2の方向性結合器を介して第1の受光手
段に至る光波との位相差を測定し、かつ前記第2の発光
手段を駆動させることにより前記第2の方向性結合器を
介して第2のミラーで反射し前記第1の受光手段に至る
光波と上記第2の方向性結合器を介して投光受光手段に
より被測定雰囲気内に出射され前記第1の方向性結合器
を介して第2の受光手段に至る光波との位相差を測定す
る位相差測定手段と、この位相差測定手段により測定さ
れた両位相差に基いて前記被測定雰囲気の光路長を演算
処理する光路長演算処理手段とを具備したことを特徴と
する光路長測定器。
first and second light emitting means and first and second light receiving means;
A first direction in which the first light emitting means and the second light receiving means are connected at one end via an optical fiber, and the first mirror and the light emitting/receiving means are connected at the other end via an optical fiber. The optical coupler, the second light emitting means and the first light receiving means are connected at one end via an optical fiber, and the second mirror and the light emitting/receiving means are connected at the other end via an optical fiber. A second directional coupler to be connected, and a light wave that is reflected by a first mirror via the first directional coupler and reaches the second light receiving means by driving the first light emitting means. measuring the phase difference between a light wave that is emitted into the atmosphere to be measured by the light emitting and receiving means via the first directional coupler and reaches the first light receiving means via the second directional coupler; By driving the second light emitting means, a light wave is transmitted through the second directional coupler, reflected by the second mirror, and reaching the first light receiving means, and the light wave is transmitted through the second directional coupler. a phase difference measuring means for measuring a phase difference between a light wave emitted by the light projecting light receiving means into the atmosphere to be measured and reaching the second light receiving means via the first directional coupler; and this phase difference measuring means. An optical path length measuring device comprising: an optical path length calculating means for calculating the optical path length of the atmosphere to be measured based on both phase differences measured by the method.
JP60115930A 1985-05-29 1985-05-29 Measuring instrument for length of optical path Granted JPS61272677A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60115930A JPS61272677A (en) 1985-05-29 1985-05-29 Measuring instrument for length of optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60115930A JPS61272677A (en) 1985-05-29 1985-05-29 Measuring instrument for length of optical path

Publications (2)

Publication Number Publication Date
JPS61272677A true JPS61272677A (en) 1986-12-02
JPH0566992B2 JPH0566992B2 (en) 1993-09-22

Family

ID=14674706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60115930A Granted JPS61272677A (en) 1985-05-29 1985-05-29 Measuring instrument for length of optical path

Country Status (1)

Country Link
JP (1) JPS61272677A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127541A (en) * 2005-11-04 2007-05-24 Sokkia Co Ltd Electronic distance meter
JP2010504509A (en) * 2006-09-20 2010-02-12 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Method and system for capturing a 3D image of a scene
JP2012202944A (en) * 2011-03-28 2012-10-22 Topcon Corp Light wave distance meter

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007127541A (en) * 2005-11-04 2007-05-24 Sokkia Co Ltd Electronic distance meter
JP2010504509A (en) * 2006-09-20 2010-02-12 アイイーイー インターナショナル エレクトロニクス アンド エンジニアリング エス.エイ. Method and system for capturing a 3D image of a scene
JP2012202944A (en) * 2011-03-28 2012-10-22 Topcon Corp Light wave distance meter

Also Published As

Publication number Publication date
JPH0566992B2 (en) 1993-09-22

Similar Documents

Publication Publication Date Title
US6463393B1 (en) Device for calibrating distance-measuring apparatus
US4356396A (en) Fiber optical measuring device with compensating properties
EP0346589B1 (en) Optical position sensor
US6329648B1 (en) Phase locked loop fiber optic sensor system
US20210026014A1 (en) Apparatus and method for ascertaining a distance to an object
JPS6343716B2 (en)
AU663792B2 (en) Method and apparatus for measuring meteorological visibility and scattering of light said apparatus utilizing common optics for transmission and reception
EP0168182A2 (en) Optical measurement apparatus
JPH1054872A (en) Ultrasonic distance meter
JPS6223264B2 (en)
JPS61272677A (en) Measuring instrument for length of optical path
JPH0550710B2 (en)
US3552860A (en) Refraction measuring apparatus
JPH11110673A (en) Pressure measuring device using non acoustic optical pressure sensor, or tdm(time division multiple transmission) array of non acoustic optical pressure sensor and method therefor
JP2005181039A (en) Laser distance-measuring device
JPS60138484A (en) Distance measuring device
JPH02278181A (en) Temperature compensating method for ultrasonic range finder
JPH0435997Y2 (en)
GB2199135A (en) Optical sensing arrangements
JPH06186333A (en) Laser radar
RU2018866C1 (en) Radio range finder
JPH079114Y2 (en) Laser distance sensor
JPS58117475A (en) Light wave range measuring apparatus
JPH05126569A (en) Optical displacement measuring method and optical displacement gauge using it
JPS6148748A (en) Optical measuring device