JPS61272577A - Method of refining he - Google Patents

Method of refining he

Info

Publication number
JPS61272577A
JPS61272577A JP11286485A JP11286485A JPS61272577A JP S61272577 A JPS61272577 A JP S61272577A JP 11286485 A JP11286485 A JP 11286485A JP 11286485 A JP11286485 A JP 11286485A JP S61272577 A JPS61272577 A JP S61272577A
Authority
JP
Japan
Prior art keywords
impure
flow path
impurities
heat exchanger
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11286485A
Other languages
Japanese (ja)
Other versions
JPH0566515B2 (en
Inventor
佃 淳二
浅原 一彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11286485A priority Critical patent/JPS61272577A/en
Publication of JPS61272577A publication Critical patent/JPS61272577A/en
Publication of JPH0566515B2 publication Critical patent/JPH0566515B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、不純He中の不純物を凝縮乃至凝固させるこ
とによってHeを精製する方法に関し。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for purifying He by condensing or solidifying impurities in impure He.

詳細には長期に亘り安定的にHeの精製を行なうことが
でき、且つ不純He(以下原料Heと言うこともある)
に純度の変動があっても安定した精製機能を発揮するH
e精製方法に関するものである。
In detail, He can be purified stably over a long period of time, and impure He (hereinafter sometimes referred to as raw material He) can be purified.
H exhibits stable purification function even when there are fluctuations in purity.
This relates to e-purification methods.

[従来の技術] 不純He中から水、二酸化炭素、空気等の不純物を除去
し精製Heを得る方法を大別すると、吸着法と凝固法に
分けられる。このうち凝固法は設備をコンパクト化でき
且つ操作性が良好である等の長所がある為、吸着法に比
べて広く実用化されている。この様な凝固法によるHe
精製方法の代表例としては例えば特公昭52−4517
号を挙げることができる。
[Prior Art] Methods for obtaining purified He by removing impurities such as water, carbon dioxide, and air from impure He can be roughly divided into adsorption methods and coagulation methods. Among these, the coagulation method has advantages such as compact equipment and good operability, and is therefore more widely put into practical use than the adsorption method. He by this type of coagulation method
A representative example of a purification method is, for example, Japanese Patent Publication No. 52-4517.
I can list the numbers.

即ち該He精製方法は、第1He流路と第2He流路の
間で熱交換を行なう様に構成した浄化熱交換器を用いる
方法であり、不純Heを精製するに当たっては第1He
流路に不純Heを流す一方、第2He流路に精製済みの
低温)1e(例えばHe液化・冷凍装置の低圧He管路
から抜き出されたHe)を導入して不純物を冷却Φ凝固
させ、第1He流路の壁面等に析出・付着させる。こう
して得た高純度Heを需要部(例えば前出のHeの液化
・冷凍装置における高圧側He管路)へ供給する。そし
て上記精製運転によって第1He流路内の不純物凝固蓄
aIkが増大すると、不純Heに対する流通抵抗が大き
くなるのでこれを第1Heの流路内の圧力変化によって
検知し精製工程を停止する。その後凝固不純物の排出工
程に移るが、このときは第1及び第2He流路へのHe
供給を中断し、特に第2He流路については高温Heの
導入に切換えて第1He流路内を昇温させ該流路内の凝
固不純物を昇温・融解させ系外へ排出する。
That is, the He purification method uses a purification heat exchanger configured to exchange heat between a first He flow path and a second He flow path.
While impure He flows through the flow path, purified low-temperature He (for example, He extracted from a low-pressure He pipe of a He liquefaction/refrigeration device) is introduced into the second He flow path to cool and solidify the impurities. It is deposited and attached to the wall surface of the first He channel. The high-purity He obtained in this way is supplied to a demand section (for example, the high-pressure side He conduit in the aforementioned He liquefaction/refrigeration system). When the impurity coagulation accumulation aIk in the first He flow path increases due to the purification operation, the flow resistance to impure He increases, so this is detected by the pressure change in the first He flow path and the purification process is stopped. After that, the process moves on to the discharge process of solidified impurities, but at this time, He is pumped into the first and second He channels.
The supply is interrupted, and especially for the second He channel, the introduction of high-temperature He is switched to raise the temperature in the first He channel, and the solidified impurities in the channel are heated and melted, and then discharged to the outside of the system.

しかるに上記公告発明方法を含めて従来の汎用凝固法で
は除去し得る限りの不純物を全て凝固させて取り除くと
いう考え方に立っているから凝固の完結の為には相当多
くの寒冷を与える必要が生じ、また不純物は全て不純H
a流路(第1He流路)で凝固させるので不純物が多い
ときには凝固不純物によって該流路が短時間のうちに閉
塞してしまう、即ち液化工程が短時間の運転で破過に至
り、すぐに第1He流路の浄化即ち凝固不純物の融解・
排出工程に切換えなければならないのでHe精製効率の
低迷を余儀なくされている。しかもこの工程では凝固不
純物を取り出す為にこれを液化又は気化するまで昇温さ
せる必要があり、これには相当の熱量及び時間が費され
る。そして前′述の全ffi凝固に使う寒冷コストの増
大のみならず浄化−再生のサイクルを繰返す毎に冷却と
昇温を縁返すことになり熱経済的に見ても極めてロスが
大きい。
However, conventional general-purpose coagulation methods, including the method disclosed above, are based on the concept of coagulating and removing all impurities that can be removed, so it is necessary to apply a considerable amount of cooling to complete coagulation. Also, all impurities are impurity H
Since solidification is performed in the a flow path (first He flow path), if there are many impurities, the flow path will be blocked by the solidified impurities in a short period of time. Purification of the first He channel, i.e., melting of solidified impurities.
Since it is necessary to switch to the discharge process, the He purification efficiency is forced to decline. Moreover, in this step, in order to remove solidified impurities, it is necessary to raise the temperature until they liquefy or vaporize, which requires a considerable amount of heat and time. Not only does the cost of refrigeration used for the above-mentioned total FFI solidification increase, but also the cooling and heating are repeated each time the purification-regeneration cycle is repeated, resulting in an extremely large loss from a thermoeconomic perspective.

[発明が解決しようとする問題点] 本発明者等はこうした事態を解消すべく種々検討を重ね
た結果、He精製効率の低迷並びに熟エネルギーの無駄
等を生ずる原因が、不純物の全てを凝固状態とした上で
原料Heから分離していたという点にあることに気が付
いた。
[Problems to be Solved by the Invention] As a result of various studies aimed at resolving these situations, the present inventors have discovered that the cause of low He purification efficiency and waste of heating energy is that all impurities are in a solidified state. It was noticed that the helium was separated from the raw material He.

即ち除去すべき不純物は原料He中において気体状態で
存在するが、これを第1He流路内で冷却していくと、
あるもの(002等)は−気に凝固するが、他のあるも
の(H20や空気等)は一旦凝縮して液状となった後さ
らに冷却されて凝固する。従って気体Heとの分離だけ
を考えるならば後者のH2Oや空気、特にH2Oは凝縮
した時点で既に気体Heと分離可能な状態にあるのであ
るが、従来の手段では液状のまま第1He流路から取出
すという考えがなかったし、元々極低温としなければ捕
捉し切れない空気等を含め不純物を一括して捕捉しよう
という考え方に支配されていた為、これら液状成分を更
にわざわざ極低温まで冷却して凝固させていたと考えら
れる。
That is, the impurities to be removed exist in the gaseous state in the raw material He, but when this is cooled in the first He flow path,
Some substances (such as 002) solidify in -air, while others (such as H20 and air) once condense into a liquid state and then are further cooled and solidify. Therefore, if only the separation from gaseous He is considered, the latter H2O and air, especially H2O, are already in a state where they can be separated from gaseous He at the time of condensation, but with conventional means, they are still in liquid form from the first He flow path. There was no thought to take it out, and the original idea was to capture all impurities including air, which could only be captured at extremely low temperatures, so these liquid components were further cooled to extremely low temperatures. It is thought that it had solidified.

本発明者等はこうした第1He流路内における不純物の
凝縮・凝固挙動に注目して研究を進めた結果、不純物の
うち液状での抜出しが可能なものについては更に必要以
上の冷却を付加することなく凝縮温度までの冷却を加え
た段階で抜出す様にすれば冷熱エネルギーの浪費が少な
くなってHe精製効率が向上することを知り、こうした
知見を基にして先に特許出願(特願昭511−2111
2573号)を行なった。
The present inventors conducted research focusing on the condensation and solidification behavior of impurities in the first He flow path, and found that for impurities that can be extracted in liquid form, additional cooling is applied more than necessary. He learned that if He was extracted after cooling to the condensing temperature, the waste of cold energy would be reduced and He purification efficiency would be improved. Based on this knowledge, he filed a patent application (Japanese Patent Application No. 511 -2111
No. 2573).

第2図は該先願発明の詳細な説明する為の概略フロー図
であり、熱交換部Aは1a−1dの4つの熱交換器から
構成され該熱交換部Aに対する冷媒供給源であって精製
Heの需要部ともなるHe液化・冷凍装置!IBがこれ
に組み合わされることによりHe精製装置Sが構成され
ている。尚図示したHe液化・冷凍装!B自体は特異な
ものではなく一般的手法に従って運転される。即ち冷凍
運転に当たっては圧縮機20により加圧して得た高圧H
eを熱交換器21a〜21f(高圧側ライン)内へ順次
通すが、その向低温低圧Heが熱交換器21f〜21a
(低圧側ライン)の順序で返送されているので両者間で
熱交換が行なわれる。又更に高圧Heの一部を膨張機2
2a、22bにおいて断熱膨張させて得た寒冷も熱交換
に供され、これらを経て冷却された高圧Heはさらにジ
ュールトムソン(J’ T )弁23によって冷却・液
化する。こうして得た液体Heを含むHeは極低温環 
   ゛境部24へ供給される。一方極低温環境部24
を冷却し自らは気化した低圧Heは前記の通り熱交換器
21f〜21a(低圧側ライン)を順次通過する間に高
圧Heと熱交換して昇温し圧縮@20の吸入側に返送さ
れる。
FIG. 2 is a schematic flow diagram for explaining the prior invention in detail, and the heat exchange section A is composed of four heat exchangers 1a to 1d, and is a refrigerant supply source for the heat exchange section A. He liquefaction/refrigeration equipment that also serves as a demand unit for purified He! A He purifier S is configured by combining the IB with this. The illustrated He liquefaction/refrigeration system! B itself is not unique and operates according to a general procedure. That is, during refrigeration operation, the high pressure H obtained by pressurizing with the compressor 20
e is sequentially passed into the heat exchangers 21a to 21f (high pressure side line), and the low temperature and low pressure He passes through the heat exchangers 21f to 21a.
(low pressure side line), heat exchange takes place between the two. Furthermore, a part of the high pressure He is sent to the expander 2.
The cold obtained by adiabatic expansion in 2a and 22b is also subjected to heat exchange, and the high-pressure He cooled through these is further cooled and liquefied by a Joule-Thomson (J' T ) valve 23. The He containing the liquid He thus obtained is a cryogenic ring.
It is supplied to the boundary section 24. On the other hand, the cryogenic environment section 24
As mentioned above, the low-pressure He that has cooled and vaporized itself exchanges heat with the high-pressure He while sequentially passing through the heat exchangers 21f to 21a (low-pressure side line) to raise the temperature and is returned to the suction side of the compressor @ 20. .

上記He精製装置Sを用いてHeの精製を行なうに当た
っては、バルブ14,16.18を開放しくバルブ10
は閉鎖、バルブ19は開放しておく)、He液化冷凍装
置Bの低圧側ラインから抜き出された低温低圧Heを媒
体流路3d〜3aへ順次導入し、さらにバルブ16を経
由して圧縮機20の吸入側へ戻す、一方不純He6につ
いては圧縮機4で加圧した後、バルブ19.18を経由
して熱交換器1a−1dへ順次通し不純物を凝縮、凝固
して除去する。ところでHe液化・冷凍装置lBから供
給される低温冷媒は熱交換器1d〜1aにおいて夫々不
純Heと熱交換してこれを冷却し、自らは昇温するもの
であるから熱交換器内の不純He温度は冷媒温度が低い
熱交換器1dで最も低く熱交換器1aへ行く程高くなっ
ている。
When purifying He using the He purifier S, the valves 14, 16, and 18 are opened and the valve 10 is opened.
is closed, and valve 19 is left open), low-temperature, low-pressure He extracted from the low-pressure side line of He liquefaction refrigeration system B is sequentially introduced into the medium flow paths 3d to 3a, and further passed through valve 16 to the compressor. On the other hand, impure He6 is returned to the suction side of 20, and after being pressurized by compressor 4, it is sequentially passed through valves 19 and 18 to heat exchangers 1a to 1d, where impurities are condensed, solidified, and removed. By the way, the low-temperature refrigerant supplied from the He liquefaction/refrigeration system 1B exchanges heat with impure He in the heat exchangers 1d to 1a to cool it down, and the temperature rises, so the impure He in the heat exchanger The temperature is the lowest in the heat exchanger 1d, where the refrigerant temperature is low, and increases toward the heat exchanger 1a.

そして本例では熱交換器1aにおける不純He温度を約
0℃、熱交換器1b、lc、Ldにおける不純He温度
を夫々約−100℃、約−205℃、約−240℃とな
る様に設計する。これにより熱交換器1aにおいては水
分を凝縮させてトラップ5aに貯留し、熱交換i1bに
おいては残りの水分及び二酸化炭素を凝固させて熱交換
器lb内に付着させ、熱交換器1cにおいては酸素や窒
素等を凝縮させてトラップ5bに貯留し、さらに熱交換
器1dにおいては残りの不純ガスを凝固させて熱交換器
Ld内に付着させる。尚トラ−2プ5a、5bに貯留し
た液状物は適宜抜出す、この様に不純ガスを除去して得
た精製Heはバルブ14を経由してHe液化・冷凍装置
すの高圧側ラインへ導入される。尚25は温度制御装置
を示し、精製運転中に精製He導入ライン26の温度が
設定値より高くなると圧縮機4出口部の電磁パルプ19
を閉鎖し、冷媒によって専ら熱交換部A内を冷却し、上
記温度が設定値より低下すると電磁バルブ19を開放し
てHe精製を再開する機能を発揮する。これによって所
定温度(30″K)以下に冷却された精製HeはHe液
化・冷凍装置Bへ導入される。
In this example, the impure He temperature in heat exchanger 1a is designed to be approximately 0°C, and the impure He temperatures in heat exchangers 1b, lc, and Ld to be approximately -100°C, approximately -205°C, and approximately -240°C, respectively. do. As a result, in the heat exchanger 1a, moisture is condensed and stored in the trap 5a, in the heat exchanger i1b, the remaining moisture and carbon dioxide are solidified and deposited inside the heat exchanger lb, and in the heat exchanger 1c, the remaining moisture and carbon dioxide are solidified and deposited in the heat exchanger lb. , nitrogen, etc. are condensed and stored in the trap 5b, and further, in the heat exchanger 1d, the remaining impure gas is solidified and deposited in the heat exchanger Ld. The liquid stored in the traps 5a and 5b is drawn out as appropriate, and the purified He obtained by removing impurity gas in this way is introduced into the high-pressure side line of the He liquefaction/refrigeration equipment via the valve 14. be done. Reference numeral 25 indicates a temperature control device, and when the temperature of the purified He introduction line 26 becomes higher than the set value during refining operation, the electromagnetic pulp 19 at the outlet of the compressor 4
is closed, the inside of the heat exchange section A is exclusively cooled by the refrigerant, and when the temperature falls below the set value, the electromagnetic valve 19 is opened to resume He purification. The purified He cooled to a predetermined temperature (30″K) or lower is introduced into the He liquefaction/refrigeration device B.

次に熱交換部A殊に熱交換器1b又はLd内の不純He
流路に凝固不純物が蓄積して流路抵抗が大きく劣ると、
バルブ18,14.18を閉鎖し且つバルブ10.10
aを開放し、さらに真空ポンプ15を稼動する。こうす
ることにより圧縮機20によって加圧された常温高圧H
eの一部(熱媒)はバルブ17を経由して熱交換部Aに
至り、媒体流路3a〜3dを順次通過してHe液化冷凍
装置Bの低圧Heラインに導入される。一方熱交換部A
内の不純He流路は真空ポンプ15により吸引されてか
なりの低圧状態にあり、不純He流路内に付着した凝固
不純物は熱媒による加温と圧力低下によって一気に気化
(昇華)し真空ポンプ15を通して系外へ排出される。
Next, the impure He in the heat exchange section A, especially the heat exchanger 1b or Ld,
If solidified impurities accumulate in the flow path and the flow path resistance becomes significantly lower,
Close valves 18, 14.18 and close valve 10.10.
a is opened, and the vacuum pump 15 is operated. By doing this, the normal temperature and high pressure H pressurized by the compressor 20
A portion of e (heat medium) reaches the heat exchange section A via the valve 17, passes through the medium channels 3a to 3d in sequence, and is introduced into the low-pressure He line of the He liquefaction refrigeration system B. On the other hand, heat exchange part A
The impure He flow path inside is in a considerably low pressure state as it is sucked by the vacuum pump 15, and the solidified impurities adhering to the impure He flow path are vaporized (sublimated) at once due to the heating and pressure reduction by the heating medium, and the vacuum pump 15 is discharged from the system through the

この先願発明では、上記の様に不純物を夫々に適した温
度で凝縮又は凝固させ、しかも凝縮した不純物は液状で
抜出すようにしたので、不純He流路内への不純物の凝
固付着量が少なくて済み、He精製を長時間に亘り安定
して行なうことができる。又凝固不純物を除去して熱交
換部Aを浄化するに当っては、凝固不純物が減圧条件ド
に加熱されることになるので気化(昇華)が急速に進行
し、短時間で浄化を完了することができる。
In this prior invention, as described above, the impurities are condensed or solidified at the appropriate temperature, and the condensed impurities are extracted in liquid form, so that the amount of solidified impurities adhering to the impurity He flow path is small. Therefore, He purification can be performed stably for a long period of time. In addition, when removing solidified impurities and purifying the heat exchange section A, the solidified impurities are heated under reduced pressure conditions, so vaporization (sublimation) progresses rapidly and the purification is completed in a short time. be able to.

但しこの方法では、一時的にせよ凝固物除去の為に熱交
換器を加熱するから、熱交換部A側で若干の寒冷ロスが
生じることは否めない。
However, in this method, since the heat exchanger is heated, even temporarily, to remove the coagulated material, it cannot be denied that some cooling loss occurs on the heat exchange section A side.

本発明はこの様な事情に着目してなされたものであって
、その目的は前記先願発明の特長を維持しつつしかも熱
交換部浄化時の寒冷ロスを最少限に抑えることのできる
He精製方法を提供しようとするものである。
The present invention has been made in view of these circumstances, and its purpose is to provide a He purification method that maintains the features of the prior invention and also minimizes cold loss during purification of the heat exchange section. It is intended to provide a method.

[問題点を解決する為の手段] 上記の様な目的を達成し得た本発明に係るHe精製方法
の構成は、不純He流路内に凝固残留した不純物を除去
するに当たっては上記不純He流路内をいったん封圧し
1次いで上流側又は下流側から減圧力を作用させて凝固
残留不純物を熱交換器外へ排出し液化又は気化して除去
するところに要旨を有するものである。
[Means for Solving the Problems] The configuration of the He purification method according to the present invention that has achieved the above-mentioned objects is that when removing impurities solidified and remaining in the impure He flow path, the impure He flow is The gist is that the inside of the passage is once sealed, and then a reduced pressure is applied from the upstream or downstream side to discharge solidified residual impurities out of the heat exchanger and remove them by liquefying or vaporizing them.

[作用] 不純He中に含まれる不純物のうち代表的成分の1気圧
下における凝縮点、凝固点、昇華点を比較すると、下記
第1表の通りとなる。
[Function] A comparison of the condensation point, freezing point, and sublimation point of representative components of impurities contained in impure He under 1 atm is as shown in Table 1 below.

第1表 (”O) 即ち0℃までの温度で大部分の水分を凝縮させることが
でき、又−209,88℃までの温度であれば酸素及び
窒素を凝縮させることができる。従ってとりあえず水分
を液状段階で抜出そうとするならば1例えば前記の様に
構成された熱交換器内における0℃までの冷却温度に水
分抜出ラインを接続し、該ラインにトラップ等の気液分
離機構を介設すればよい、又熱交換器における−209
.88℃までの冷却温度区域に液分抜出ラインを接続し
、該ラインに気液分離機構を付設しておけば、液体窒素
及び液体酸素を一括して抜出すことができる。その結果
He中に残留する不純物の量が著しく減少するので、従
来通り熱交換器内の不純He流路に凝固付着させたとし
ても、He精製ラインが短時間のうちに閉塞される様な
ことはなくなる。しかも本発明では、追って詳述する如
く凝固不純物の除去工程でHe精製ラインに一切熱を加
えず、不純凝固物の付着したラインを一旦封圧した後こ
の部分に減圧力を作用させることによって該凝固不純物
を当該熱交換器外へ排出し、液化又は気化させて除去す
るものであり、浄化工程における寒冷ロスも最小限に抑
えることができる。
Table 1 ("O)" In other words, most of the water can be condensed at temperatures down to 0°C, and oxygen and nitrogen can be condensed at temperatures up to -209.88°C. If you want to extract it in the liquid stage, 1. For example, connect a moisture extraction line to the cooling temperature down to 0°C in the heat exchanger configured as described above, and connect a gas-liquid separation mechanism such as a trap to the line. -209 in the heat exchanger
.. If a liquid extraction line is connected to the cooling temperature area up to 88° C. and a gas-liquid separation mechanism is attached to the line, liquid nitrogen and liquid oxygen can be extracted all at once. As a result, the amount of impurities remaining in He is significantly reduced, so even if impure He is solidified and deposited in the flow path in the heat exchanger as before, the He purification line will not be blocked in a short time. will disappear. Moreover, in the present invention, as will be described in detail later, no heat is applied to the He purification line in the step of removing solidified impurities, and the line on which the impurity solidified substances are adhered is once sealed and then a reduced pressure is applied to this area. Solidified impurities are discharged outside the heat exchanger and removed by liquefaction or vaporization, and cooling loss in the purification process can also be minimized.

[実施例] 第1図は本発明の実施例を示す概略フロー図であり、本
質的な構成は第2図に示した先願発明の構成と同一であ
るので、同一の部分には同一・の符合を付しffi複説
明は割愛する。
[Embodiment] FIG. 1 is a schematic flow diagram showing an embodiment of the present invention, and the essential configuration is the same as that of the prior invention shown in FIG. The ffi double explanation is omitted.

第1図の例では、第2図におけるトラップ5a、5bに
接続した真空ポンプ15が省略されると共に、凝固不純
物を除去する際に使用される加圧精製Heガス抜出し惨
返送ライン及びバルブ17が省略されており、これらに
代わって、熱交換部への最上流側(即ちバルブ18のす
ぐ下流側)にバルブ30を介してガスバッグ31が接続
されている。該ガスバッグ31の形状や構造は一切制限
されない。
In the example of FIG. 1, the vacuum pump 15 connected to the traps 5a and 5b in FIG. In place of these, a gas bag 31 is connected via a valve 30 to the most upstream side of the heat exchange section (that is, immediately downstream of the valve 18). The shape and structure of the gas bag 31 are not limited at all.

この装置を用いたHeの精製は、第2図の例と同様バル
ブ19.xa、is及び14を開、バルブ10,10a
及び31を閉とし、圧縮機4で加圧した不純Heを熱交
換器1a−1dに順次流しながら、He液化・冷凍装置
Bから抜き出される低温Heの一部を熱交換器1d−1
a方向へ順次流し、不純Heを冷却することによってこ
の中の不純物を除去する。具体的には熱交換器1aにお
ける不純He温度が約θ℃、熱交換機1b。
Purification of He using this device is performed using the valve 19, similar to the example shown in FIG. Open xa, is and 14, valves 10, 10a
and 31 are closed, and while the impure He pressurized by the compressor 4 is sequentially flowing to the heat exchangers 1a-1d, a part of the low-temperature He extracted from the He liquefaction/refrigeration device B is transferred to the heat exchanger 1d-1.
By sequentially flowing in the direction a and cooling the impure He, impurities therein are removed. Specifically, the impure He temperature in the heat exchanger 1a is about θ°C, and the temperature in the heat exchanger 1b.

lc、ldにおける不純He温度が夫々約−100℃約
−205℃、約−240℃となる様に操業条件を設定し
ておき、熱交換器1a部分では水分を凝縮させてトラッ
プ5aに貯留し、熱交換器1b部分では残りの水分及び
二酸化炭素を凝固させて熱交換器lb内の管路内壁に付
着させ、熱交換器IC部分では酸素や窒素等を凝縮させ
てトラップ5bに貯留し、更に熱交換器1d部分では残
りの不純ガスを凝固させて管路内壁に付着させ、精製さ
れたHeは順次液化・冷凍波RBへ送り込む、トラップ
5a、5bに貯留した液状物は適宜系外へ抜き出す。
The operating conditions are set so that the impure He temperatures in lc and ld are about -100°C, about -205°C and about -240°C, respectively, and moisture is condensed in the heat exchanger 1a and stored in the trap 5a. In the heat exchanger 1b section, the remaining moisture and carbon dioxide are solidified and attached to the inner wall of the pipe inside the heat exchanger 1b, and in the heat exchanger IC section, oxygen, nitrogen, etc. are condensed and stored in the trap 5b, Furthermore, in the heat exchanger 1d section, the remaining impure gas is solidified and attached to the inner wall of the pipe, and the purified He is sequentially sent to the liquefaction/refrigeration wave RB.The liquid material stored in the traps 5a and 5b is appropriately discharged from the system. Pull it out.

次に熱交換部A殊に熱交?ntb又はld内の不純He
流路に凝固不純物が蓄積して流路抵抗が大きくなると、
バルブ!4,16.18を閉鎖することによって熱交換
部Aを封圧し、次いでパルプ30を開く、そうすると不
純)Ie流路内は瞬時に減圧状態となり、該流路内のガ
スはガスバッグ31に流入してくる。このとき熱交換器
1b。
Next is the heat exchange section A, especially the heat exchanger? Impure He in ntb or ld
When solidified impurities accumulate in the flow path and flow path resistance increases,
valve! 4, 16, 18 is closed to seal the heat exchange part A, and then the pulp 30 is opened. Then, the inside of the impurity (Ie) flow path instantly becomes depressurized, and the gas in the flow path flows into the gas bag 31. I'll come. At this time, the heat exchanger 1b.

ldの壁面に付着した不純凝固物は、加圧雰囲気下で該
凝固物自身の内部に混入していたHeガスの膨張によっ
て粉砕され、且つガスバッグ31方向へのガスの流れに
乗って流路内を高温側(即ちHe精製工程における上流
側)へ輸送される。そして該高温部で加熱を受けて液化
し、或は後述する如く該浄化処理後回び該流路内へ導入
される不純Heガスにより加熱されて液化し、トラップ
5a及び5b内へ液状物として捕集される。この場合、
トラップ5a、5bの不純Heガス入口部にフィルタを
設けておけば、浄化工程で輸送されてきた不純凝固物が
該フィルタで濾取されてトラップ5a、5b内に確実に
捕捉されるので好ましい、この様にしてトラップ5a、
5b内に捕捉された不純物は、パルプ10,10aから
適宜抜き山せばよい、こうして不純He流路の浄化を終
えた後は、パルプ30を閉、パルプ14,18゜18を
開として再び不純Heの精製を行なう、この精製の初期
段階で、該流路の上流側へ輸送され未液化状態で残った
不純凝固物は不純Heガスにより加熱されて液化し、ト
ラップ5a、5b内に捕集された後バルブ10,10a
から適宜系外へ、抜き出される。尚精製再開の初期段階
でガスバッグ31を圧搾し、浄化工程で捕集されたHe
ガスをパルプ30から精製ラインへ返送する様にすれば
、不純Heガスのロスをなくすことができるので好まし
い、上記の精製工程と浄化工程を適当な周期で繰返し実
施することによって、Heの精製を長時間継続して円滑
に遂行することができる。
The impure solidified material adhering to the wall surface of the LD is crushed by the expansion of the He gas mixed inside the solidified material itself under a pressurized atmosphere, and is carried along the flow path in the direction of the gas bag 31. is transported to the high temperature side (that is, the upstream side in the He purification process). Then, it is heated and liquefied in the high-temperature section, or as described later, is heated and liquefied by the impure He gas introduced into the flow path after the purification treatment, and is then liquefied into the traps 5a and 5b as a liquid. be captured. in this case,
It is preferable to provide a filter at the impure He gas inlet of the traps 5a and 5b, since the impure coagulates transported in the purification process are filtered out by the filter and reliably captured in the traps 5a and 5b. In this way, the trap 5a,
The impurities captured in the pulp 5b can be appropriately extracted from the pulp 10, 10a. After the impurity He channel has been purified in this way, the pulp 30 is closed and the pulps 14, 18° 18 are opened to remove the impurities again. During the initial stage of purification of He, the impure solidified matter transported to the upstream side of the channel and remaining in an unliquefied state is heated by impure He gas and liquefied, and is collected in the traps 5a and 5b. After the valve 10, 10a
It is extracted from the system as appropriate. In addition, the gas bag 31 is compressed at the initial stage of restarting refining, and the He collected in the purification process is
It is preferable to return the gas from the pulp 30 to the purification line because it eliminates the loss of impure He gas. By repeating the above purification and purification steps at appropriate intervals, He can be purified. Able to perform smoothly for long periods of time.

殊に本発明では浄化工程で精製ラインを外部から全く加
熱することなく流路内の不純凝固物を除去することがで
きるので寒冷ロスを生じることがなく、また浄化工程は
前述の如く瞬間的な減圧処理によって行なうことができ
ので浄化に要する時間が極めて短かく、精製工程の時間
的比率を最大限に高めることができる。
In particular, in the present invention, impurity coagulation in the flow path can be removed during the purification process without heating the purification line from the outside at all, so there is no cooling loss, and the purification process is instantaneous as described above. Since this can be carried out by reduced pressure treatment, the time required for purification is extremely short, and the time ratio of the purification process can be maximized.

本発明は例えば以との様に構成されるが、図は代表例を
示したものであって本発明を限定する性質のものではな
く、前・後記の趣旨に適合し得る範囲で色々変更して実
施することもできる0例えば第1図では4基の熱交換器
を直列に配列した例を示したが、熱交換器の組合せ数は
必要に応じて任意に変更することができる。またガスバ
ッグの取付は位置も図示した位置に限定される訳ではな
く、例えば不純凝固物の堆積した流路の直上流側或は下
流側に接続したり、更にはトラップに直結させることも
できる。更にガスバッグに代えて単なる減圧ラインのみ
で代用することも可能であり、要は熱交換器内における
不純He流路内で凝固した不純物を一旦熱交換器外へ排
出した後液化乃至気化して除去し得るものであればすべ
て本発明の技術的範囲に含まれる。
The present invention is configured as shown below, for example, but the drawings are representative examples and are not intended to limit the present invention, and various changes may be made within the scope of the spirit of the preceding and following descriptions. For example, FIG. 1 shows an example in which four heat exchangers are arranged in series, but the number of combinations of heat exchangers can be changed as desired. Furthermore, the mounting position of the gas bag is not limited to the position shown in the figure; for example, it can be connected directly upstream or downstream of the flow path where impurity coagulum has accumulated, or it can also be connected directly to the trap. . Furthermore, it is also possible to use a simple decompression line instead of a gas bag, and the point is that the impurities solidified in the impure He flow path inside the heat exchanger are discharged outside the heat exchanger and then liquefied or vaporized. Anything that can be removed is included within the technical scope of the present invention.

実施例1 第1図に示した設備を使用して、水分1%、空気成分2
0%の不純Heを精製したところ、純度99.999%
以上の精製Heを88.5%の回収率で得ることができ
、このときの液化量の減少率は30%にすぎなかった。
Example 1 Using the equipment shown in FIG.
When 0% impure He was purified, the purity was 99.999%.
The above purified He could be obtained with a recovery rate of 88.5%, and the rate of decrease in the amount of liquefaction at this time was only 30%.

[発明の効果] 本発明は以上の様に構成されており、その効果を要約す
れば次の通りである。
[Effects of the Invention] The present invention is configured as described above, and its effects can be summarized as follows.

(1)不純He中の不純物を、凝固及び凝縮の両手法で
除去する方法を採用しており、凝縮物は精製工程で順次
抜出することができるので、不純He流路内における凝
固不純物の蓄積速度が遅く、長時間に亘ってHe精製を
継続することができる。
(1) A method for removing impurities in impure He using both coagulation and condensation methods is adopted, and the condensate can be sequentially extracted during the purification process, so that the coagulation impurities in the impure He flow path can be removed. The accumulation rate is slow and He purification can be continued for a long time.

(2)不純He流路内に蓄積した凝固不純物は、瞬間的
な減圧処理により熱交換器外へ排出することによって液
化又は気化し排出することができ、流路の浄化をすみや
かに完了することができる。
(2) The solidified impurities accumulated in the impure He channel can be liquefied or vaporized and discharged by being discharged outside the heat exchanger through instantaneous pressure reduction treatment, and the purification of the channel can be completed promptly. I can do it.

(3)浄化工程で外部から流路を加熱する必要がないの
で寒冷ロスがない。
(3) There is no need to heat the channel from the outside during the purification process, so there is no cooling loss.

(0凝縮及び凝固による個別排出方式であるから、原料
となる不純Heの純度が変動してもHe精製効率に対す
る影響が少なく、原料ガスの適用範囲が広くなる。又高
純度のHeを高収率で回収することができる。
(Since it is an individual discharge method by condensation and coagulation, even if the purity of impure He used as a raw material fluctuates, it has little effect on He purification efficiency, and the range of application of raw material gas is widened. Also, high-purity He can be produced in high yields. It can be recovered at a certain rate.

【図面の簡単な説明】[Brief explanation of drawings]

f51図は本発明の実施例を示す概略フロー図、第2図
は本発明の基本となった先願発明の精製法を例示する概
略フロー図である。 1.1a〜1d・・・熱交換器 3,3a〜3d・・・
熱媒流路4・・・圧wI機     5a、5b・・・
トラップ10.10a、14,16,18.30−・−
バルブ3!・・・ガスバッグ
Figure f51 is a schematic flow diagram showing an example of the present invention, and Figure 2 is a schematic flow diagram illustrating the purification method of the prior invention, which is the basis of the present invention. 1.1a-1d...Heat exchanger 3,3a-3d...
Heat medium flow path 4...pressure wI machine 5a, 5b...
Trap 10.10a, 14, 16, 18.30--
Valve 3! ...gas bag

Claims (1)

【特許請求の範囲】[Claims] 媒体流路と不純He流路を夫々内包する熱交換器を用い
てHeの精製を行なうに当たり、Heの精製に際しては
媒体流路に冷媒を導入することによって不純He中の不
純物を冷却し、一部は凝縮させ液状物として系外へ排出
し、残部は熱交換器の不純He流路内で凝固させてHe
から分離する方法であって、不純He流路内に凝固残留
した不純物を除去するに当たっては上記不純He流路内
をいったん封圧し、次いで上流側又は下流側から減圧力
を作用させて凝固残留不純物を熱交換器外へ排出し液化
又は気化して除去することを特徴とするHeの精製方法
When refining He using a heat exchanger that includes a medium flow path and an impure He flow path, impurities in the impure He are cooled by introducing a refrigerant into the medium flow path. A portion is condensed and discharged outside the system as a liquid, and the remaining portion is solidified in the impure He flow path of the heat exchanger and becomes He.
In this method, in order to remove the solidified residual impurities in the impure He flow path, the inside of the impure He flow path is once sealed, and then reduced pressure is applied from the upstream or downstream side to remove the solidified residual impurities. A method for purifying He, characterized by discharging He to the outside of a heat exchanger and removing it by liquefying or vaporizing.
JP11286485A 1985-05-24 1985-05-24 Method of refining he Granted JPS61272577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11286485A JPS61272577A (en) 1985-05-24 1985-05-24 Method of refining he

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11286485A JPS61272577A (en) 1985-05-24 1985-05-24 Method of refining he

Publications (2)

Publication Number Publication Date
JPS61272577A true JPS61272577A (en) 1986-12-02
JPH0566515B2 JPH0566515B2 (en) 1993-09-21

Family

ID=14597436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11286485A Granted JPS61272577A (en) 1985-05-24 1985-05-24 Method of refining he

Country Status (1)

Country Link
JP (1) JPS61272577A (en)

Also Published As

Publication number Publication date
JPH0566515B2 (en) 1993-09-21

Similar Documents

Publication Publication Date Title
KR100192874B1 (en) Air separation
CN100394132C (en) Process and device for the production of at least one gaseous high pressure fluid such as oxygen, nitrogen or argon
JPH08196853A (en) Method and apparatus for manufacturing highly purified gas by means of cascade of membranes each with different selectivity
MXPA02004856A (en) Nitrogen rejection method.
KR100618735B1 (en) Air separator and operation method thereof
JP2007147113A (en) Nitrogen manufacturing method and device
JP3737611B2 (en) Method and apparatus for producing low purity oxygen
JPS61272577A (en) Method of refining he
JP2005221199A (en) Air separation device
JPS61272576A (en) Method of refining he
EP0016043A4 (en) Cryogenic apparatus and method of removing freezing impurities from a cryogenic fluid.
JPS61140778A (en) Method of refining he
JP7105085B2 (en) Air-to-liquid separation device and method for stopping operation of air-to-liquid separation device
JP2008279377A (en) Voc cooling/recovery device
JPS61272578A (en) Method of refining he
US2517134A (en) Process of and apparatus for separating gas mixtures
EP0855565A2 (en) Air separation method and apparatus
JP2997939B2 (en) Recovery and utilization of evaporative gas in low-temperature storage tank
JPS5844190B2 (en) Kuukino Ekikabunrihouhou
JP2631809B2 (en) Carbon dioxide recovery and liquefaction equipment from industrial exhaust gas
JP2008279376A (en) Voc cooling/recovery device
JP2005090915A (en) Air separator and air separating method
JP3703943B2 (en) Method and apparatus for producing low purity oxygen
JPH0792326B2 (en) Air liquefaction separation method
JP2917033B2 (en) Air liquefaction separation method and apparatus