JPS61272267A - Thermoplastic resin composition - Google Patents

Thermoplastic resin composition

Info

Publication number
JPS61272267A
JPS61272267A JP11317385A JP11317385A JPS61272267A JP S61272267 A JPS61272267 A JP S61272267A JP 11317385 A JP11317385 A JP 11317385A JP 11317385 A JP11317385 A JP 11317385A JP S61272267 A JPS61272267 A JP S61272267A
Authority
JP
Japan
Prior art keywords
silicon nitride
thermoplastic resin
silane
pref
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11317385A
Other languages
Japanese (ja)
Inventor
Haruki Nishimura
西村 春樹
Manabu Yamamoto
学 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP11317385A priority Critical patent/JPS61272267A/en
Publication of JPS61272267A publication Critical patent/JPS61272267A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a composition of high functionality approaching ceramics, especially of both outstanding wear resistance and hardness, for use in structural members, electric and electronic parts, by incorporating thermoplastic resin with silicon nitride and a silane-based coupling agent for silicon nitride. CONSTITUTION:The objective composition can be obtained by incorporating (A) a thermoplastic resin such as ABS resin or styrene resin with (B) 10-80 inner wt% of silicon nitride with a granular size <=100 (pref. <=50)mum, pref. of inexpensive beta-type or low alpha-type and (C) 0.5-3 outer wt% based on the component (B) of a silane coupling agent for silicon nitride, (e.g., 3-aminopropyl triethoxysilane). The process is pref. as follows: the components (B) and (C) are premixed each other followed by blending the component (A) and, if needed, various filler, releasing agent, colorant, etc.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、構造部材として特に有用であり、配線部品、
電気部品、電子部品等にも使用可能な熱可塑性樹脂組成
物に関するもので、その目的は、表面硬度、耐摩耗性、
曲げ強さ、曲げ弾性係倣、寸法安定性、耐熱性、電気絶
縁性、熱伝導性等の諸機能を一挙に付与することにある
[Detailed Description of the Invention] [Industrial Application Field] The present invention is particularly useful as a structural member, and is particularly useful as a wiring component,
This relates to thermoplastic resin compositions that can be used for electrical parts, electronic parts, etc., and its purpose is to improve surface hardness, wear resistance,
The objective is to provide various functions such as bending strength, bending elasticity, dimensional stability, heat resistance, electrical insulation, and thermal conductivity all at once.

〔従来の技術〕[Conventional technology]

従来より、熱可塑性樹脂には、汎用プラスチックとエン
プラとかスーパーエンプラとかよばれているエンジニア
リングプラスチックがあり、後者により高機能化が進め
られているが、おのずと限度があった。一方、セラミッ
クスの分野でも酸化物系の汎用セラミックスから窪化物
、炭化物等の非酸化物系のセラミックスがエンジニアリ
ングセラミックスとして脚光をあびているが、それを製
品化するには、多大な設備と経験等が必要である。
Conventionally, thermoplastic resins include general-purpose plastics and engineering plastics called engineering plastics or super engineering plastics, and although the latter have been improved in functionality, they naturally have their limits. On the other hand, in the field of ceramics, oxide-based general-purpose ceramics and non-oxide-based ceramics such as depressions and carbides are attracting attention as engineering ceramics, but commercializing them requires a great deal of equipment and experience. is necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明者は、プラスチックにセラミックスにより近い高
機能性、特に従来のエンジニアリングプラスチックでは
極めて困難であった耐摩耗性と高硬度性を向上させるこ
とを目的として種々検討した結果、従来の充てん材のか
わりに又は従来の充てん材と共に、窒化珪素と窒化珪素
の表面処理剤とを用いればよいことを見い出し、本発明
を完成した。
As a result of various studies aimed at improving the high functionality of plastics that is closer to that of ceramics, especially the abrasion resistance and high hardness that were extremely difficult to achieve with conventional engineering plastics, the inventors of the present invention found that they could replace conventional fillers. The present invention was completed based on the discovery that it is sufficient to use silicon nitride and a surface treatment agent for silicon nitride in addition to conventional fillers.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、窒化珪素と窒化珪素のシラン系表面処理剤と
を含有してなる熱可塑性樹脂組成物である。
The present invention is a thermoplastic resin composition containing silicon nitride and a silane-based surface treatment agent for silicon nitride.

以下、さらに詳しく本発明忙ついて説明する。Hereinafter, the present invention will be explained in more detail.

窒化珪素には、α型とβ型とがあるが、本発明では、い
ずれの形態のものを用いても同程度の効来が得られるの
で、安価なβ型又は低α型の窒化珪素を用いるのが望ま
しい。また、混線性、充てん性及び成型性の点から、粒
径は100μm以下特に50μm以下とするのが望まし
い。
There are two types of silicon nitride: α-type and β-type. In the present invention, the same degree of effectiveness can be obtained using either form, so the inexpensive β-type or low-α type silicon nitride is used. It is desirable to use Further, from the viewpoints of crosstalk, filling properties, and moldability, the particle size is desirably 100 μm or less, particularly 50 μm or less.

窒化珪素の充てん量は、熱可塑性樹脂に対し内側重量で
10〜85チ程度であるが、寸法安定性、耐摩耗性、耐
熱性、熱伝導性の向上のためには20〜75チ、表面硬
度、曲げ強さ、曲げ弾性係数の向上のためには10〜7
5%とするのが望ましい。10%よりも少量では諸機能
を向上させる効果は小さく、また、85%よりも多量で
は混線性、充てん性及び成型性が悪くなる。以上の諸機
能のう゛ら、耐摩耗性と高硬度性の向上効果は、従来の
エンジニアリングプラスチックでは困難であったもので
ある。
The filling amount of silicon nitride is about 10 to 85 inches on the inside weight of the thermoplastic resin, but in order to improve dimensional stability, abrasion resistance, heat resistance, and thermal conductivity, it is necessary to fill the thermoplastic resin with 20 to 75 inches on the surface. 10 to 7 for improving hardness, bending strength, and bending elastic modulus
It is desirable to set it to 5%. If the amount is less than 10%, the effect of improving various functions will be small, and if the amount is more than 85%, crosstalk, filling properties, and moldability will deteriorate. In addition to the above-mentioned functions, it has been difficult to improve wear resistance and high hardness with conventional engineering plastics.

窒化珪素の表面処理剤は以上の諸機能の付与効果を助長
させるのに必要なものであって、それには、通称、カッ
プリング剤といわれている、シラン系、チタネート系、
アルミネート系、ポラン系などの化合物が用いられるが
、本発明では、シラン系化合物は大きな助長効果を示す
ので好適なものである。
Surface treatment agents for silicon nitride are necessary to promote the effects of imparting the various functions described above, and include silane-based, titanate-based,
Although aluminate-based and poran-based compounds are used, silane-based compounds are preferred in the present invention because they exhibit a large promoting effect.

シラン系化合物としては、例えば、3−(2−アミノエ
チル)アミノプロピルトリメトキシシラン、6−アミノ
プロぎルトリエトキシシラン、6−ゲリシドキシゾロぎ
ルトリメトキシシラン、6−クロロゾロピルトリメトキ
シシラン、3−メタクリロキシプロピルトリメトキシシ
ラン、3−メルカゾトプロtルトリメトキシシラン等、
があげられる。
Examples of silane compounds include 3-(2-aminoethyl)aminopropyltrimethoxysilane, 6-aminoprogyltriethoxysilane, 6-gelisidoxyzologyltrimethoxysilane, 6-chlorozolopyltrimethoxysilane, and 3-methacrylate. Roxypropyltrimethoxysilane, 3-mercazotoprotrimethoxysilane, etc.
can be given.

窒化珪素のシラン系表面処理剤の使用量としては、窒化
珪素に対し外削で0.5〜3重量%が好ましく、この範
囲において、窒化珪素の粒径が小さいもの程多量の添加
が必要となる傾向がみられる。
The amount of the silane-based surface treatment agent for silicon nitride used is preferably 0.5 to 3% by weight based on the silicon nitride for external machining, and within this range, the smaller the particle size of the silicon nitride, the larger the amount required to be added. There is a tendency to

より好ましい使用量は0.7〜1.0重量%である。A more preferable usage amount is 0.7 to 1.0% by weight.

本発明で使用される熱可塑性樹脂としては、AB8樹脂
、スチレン系樹脂、塩化ぎニル系樹脂、ナイロン6、ナ
イロン66、ナイロン12等のポリアミド樹脂、プロピ
レン系樹脂、エチレン系樹脂、フッ素樹脂、−リメタク
リレート系樹脂、アラミド樹脂、ポリフェニレンサルフ
ァイド(PP8 )、ポリエチレンテレフタレー)(P
ET)、ポリブチレンテレフタレート(I’BT)、/
リフエニレンオdotイIF (PI’O)、ポリカー
ボネート(FO)、ポリエーテルエーテルケトン(PI
IiE!K ) 、ポリアセタール(I’OM ) 、
ポリサル7オン(P日)、ポリエーテルサルフオン(I
IKB )等及びこれらの変性物から選ばれた1種以上
であり、粉状、粒塊状(ペレット状)の区別なく使用で
きる。
Thermoplastic resins used in the present invention include AB8 resin, styrene resin, divinyl chloride resin, polyamide resin such as nylon 6, nylon 66, and nylon 12, propylene resin, ethylene resin, fluororesin, - Remethacrylate resin, aramid resin, polyphenylene sulfide (PP8), polyethylene terephthalate) (P
ET), polybutylene terephthalate (I'BT), /
Rifuenylene Odot IF (PI'O), polycarbonate (FO), polyetheretherketone (PI'O), polycarbonate (FO), polyetheretherketone (PI'O),
IiE! K), polyacetal (I'OM),
Polysal 7one (P day), polyether sulfone (I
It is one or more selected from IKB), etc., and modified products thereof, and can be used regardless of powder form or granule form (pellet form).

窒化珪素、雪化珪素のシラン系表面処理剤及び熱可塑性
樹脂の混合方法は、これらを混合機に一括投入して混合
することもできるが、まず、窒化珪素と窒化珪素のシラ
ン系表面処理剤とを混合しておき、それに熱可塑性樹脂
を配合する方法は、均−分散及び窒化珪素と熱可塑性樹
脂との濡れ性吟の点から好ましいことである。
To mix silicon nitride, silicon snow silane surface treatment agent, and thermoplastic resin, they can be mixed by putting them all at once into a mixer, but first, silicon nitride and silicon nitride silane surface treatment agent are mixed. It is preferable to mix the above and then add the thermoplastic resin to the mixture, from the viewpoint of uniform dispersion and wettability between silicon nitride and the thermoplastic resin.

本発明の熱可塑性樹脂組成物には、炭酸カルシウム、炭
酸マグネシウム、水酸化カルシウム、水酸化マグネシウ
ム、ケイ酸カルシウム、メルク、クレー、マイカ、ガラ
スバルーン、カラスヒース、非晶質シリカ、結晶質シリ
カ、アルミナ、炭化珪素、ジルコニア、窒化ホウ素、窒
化アルミニウム等の各稲光てん材や繊維類、離型剤、着
色剤、酸化防止剤、分散剤等の成分は、必要に応じて適
宜使用してもよい。
The thermoplastic resin composition of the present invention includes calcium carbonate, magnesium carbonate, calcium hydroxide, magnesium hydroxide, calcium silicate, Merck, clay, mica, glass balloon, crow heather, amorphous silica, crystalline silica, and alumina. , silicon carbide, zirconia, boron nitride, aluminum nitride, and other lightning reinforcement materials, fibers, mold release agents, colorants, antioxidants, dispersants, and other components may be used as appropriate, as required.

本発明の熱可塑性樹脂組成物の用途としては、熱可塑性
樹脂を用いたこれまでの全ての用途に適用できる。例え
ば、表面硬度、耐摩耗性、曲げ強さ、曲げ弾性係数等の
機械的特性を利用するものとしては、ギア、カム、軸受
は等の部品に、寸法安定性を利用するものとしては、各
種の構造部材や光学レンズの鏡胴等に、また、絶縁性、
熱伝導性、耐熱性、寸法安定性を利用するものとしては
、例えば、半導体チップや抵抗器等の電気・電子部品か
ら発生する熱を放熱するための充てん材や保鰻材などに
適している。
The thermoplastic resin composition of the present invention can be applied to all conventional uses using thermoplastic resins. For example, parts that utilize mechanical properties such as surface hardness, wear resistance, bending strength, and flexural modulus include gears, cams, and bearings, and various parts that utilize dimensional stability. For structural members of optical lenses and barrels of optical lenses, insulation,
For example, materials that utilize thermal conductivity, heat resistance, and dimensional stability are suitable for use as fillers and protective materials for dissipating heat generated from electrical and electronic components such as semiconductor chips and resistors. .

以下、実施例をあげてさらに具体的に説明すも〔実施例
〕 実施例1 窒化珪素と窒化珪素に対して外削で1重量%の窒化珪素
のシラン系表面処理剤とをオムニミキサーで混合し、次
いで、ナイロン6を配合してさらに混合・混線後、粉砕
して熱可塑性樹脂組成物を得た。これを金型に入れ、熱
プレス成型をして170に170に3 x*の平板状成
製品を得た。
The following is a more detailed explanation using examples [Example] Example 1 Mixing silicon nitride and a silane-based surface treatment agent of 1% by weight of silicon nitride by external grinding based on silicon nitride using an omnimixer. Next, nylon 6 was added, mixed and mixed, and then ground to obtain a thermoplastic resin composition. This was put into a mold and hot press molded to obtain a flat plate-shaped product with dimensions of 170 x 170 x 3x*.

この成型品について諸物性を測定した。その結果を第1
表に示す。
Various physical properties of this molded article were measured. The result is the first
Shown in the table.

比較のため、窒化珪素を配合しない場合(実験46)及
び窒化珪素のシラン系表面処理剤を添加しない場合(実
験47)について試験した。
For comparison, tests were conducted in the case where silicon nitride was not added (Experiment 46) and the case where a silane-based surface treatment agent for silicon nitride was not added (Experiment 47).

なお、実施例及び比較例で用いた材料と物性の測定法は
次の通りである。
The materials used in the Examples and Comparative Examples and the methods for measuring physical properties are as follows.

材料 0窪化珪素・・・β型、純度99重量係、粒径44μ以
下(電気化学工業社製部 品名[8N−BJ) 0窒化、珪素のシラン系表面処理剤・・・3−アミノプ
ロtルトリエトキシシラン(チ ッソ社製商品名「サイラエース 8330J ) 0ナイロン6・・・宇部興産社製商品名r1011FJ
物性測定法 0ロツクウ工ル硬度・・・J工8K 7202に準じて
測定した。
Materials 0 Silicon silicide...β type, purity 99 weight ratio, particle size 44μ or less (Denki Kagaku Kogyo Co., Ltd. part name [8N-BJ) 0 Nitride, silicon silane surface treatment agent...3-aminoprot Lutriethoxysilane (trade name: Sila Ace 8330J, manufactured by Chisso Corporation) 0 Nylon 6...trade name, r1011FJ, manufactured by Ube Industries, Ltd.
Physical property measurement method: 0 Rock hardness: Measured according to J-8K 7202.

0曲げ強さ・・・、rxsx 7203に準じて測定し
た。
0 bending strength..., measured according to rxsx 7203.

支点間距離:60n 荷重速度 : 2 tm / m1n O曲げ弾性係数・・・J工EIK 7203に準じて測
定した。
Distance between fulcrums: 60n Loading speed: 2 tm/m1n O bending elastic modulus: Measured according to J Engineering EIK 7203.

0熱変形源度[HDT ] ・、T工8に6911に準
じて測定した。
0 Thermal deformation intensity [HDT] ・Measured in accordance with 6911 for T-work 8.

曲げ応カニ 18−5 k!! f/am20最大たわ
み・・・J工E1m 7203に阜じて測定した。
Bending crab 18-5 k! ! f/am20 maximum deflection: Measured according to J Engineering E1m 7203.

実施例2 熱可塑性樹脂としてPP8 (フィリップスペトロリア
ム社製商品名[ライドン”’−4J、窒化珪素のシラン
系表面処理剤として3−クロロプロピルトリメトキシシ
ラン(チッソ社製商品名[サイラエース8620J及び
窒化珪素として実施例1と同様なものを用いて成型品を
與遺し、熱伝導率、摩耗量、成型収縮率及び線膨張係数
を測定した。
Example 2 As a thermoplastic resin, PP8 (trade name [Rydon'-4J, manufactured by Phillips Petroleum Co., Ltd.] was used; as a silane-based surface treatment agent for silicon nitride, 3-chloropropyltrimethoxysilane (trade name, manufactured by Chisso Corporation, [Sila Ace 8620J and silicon nitride) was used. A molded product was prepared using the same material as in Example 1, and the thermal conductivity, amount of wear, molding shrinkage rate, and coefficient of linear expansion were measured.

その結果を第2表に示す。The results are shown in Table 2.

比較のため、窒化珪素を配合しない場合(実験/161
3 )及び窒化珪素のシラン系表面処理剤を添加しない
場合(実験414 )について試験した。
For comparison, when silicon nitride is not mixed (experiment/161
3) and the case in which a silane-based surface treatment agent for silicon nitride was not added (Experiment 414) were tested.

物性測定法 0熱伝導率・・・熱伝導車測定装置(アグネ社製「AB
C−To −1型」)を用い、 温度20℃において温度傾斜法で 測定した。
Physical property measurement method 0 Thermal conductivity...Heat conduction vehicle measuring device (Agne Co., Ltd. "AB"
C-To-1 type) at a temperature of 20° C. by the temperature gradient method.

0摩耗量・・・J工INK 7204 K準じて測定し
た。
0 wear amount: Measured according to J Engineering INK 7204K.

摩耗輪の種類:O8−17 回転数:1.000回 荷 重=1kl! O成型収縮率・・・金型寸法に対する成型直後の成型品
の収縮量の割合を測定した。
Type of wear wheel: O8-17 Number of revolutions: 1.000 times Load = 1kl! O Molding shrinkage rate: The ratio of the amount of shrinkage of the molded product immediately after molding to the mold dimensions was measured.

A:金型寸法 B:成型品寸法 0線膨張係数・・・高滓製作所社製装置[TMA Jを
用い、温度20〜80℃、荷重 2gの条件で測定した。
A: Mold dimensions B: Molded product dimensions 0 linear expansion coefficient: Measured using a Takashi Manufacturing Co., Ltd. device [TMA J] at a temperature of 20 to 80° C. and a load of 2 g.

〔発明の効果〕〔Effect of the invention〕

本発明の熱可塑性樹脂組成物は、表面硬度、耐摩耗性、
曲げ強さ、曲げ弾性係敬、寸法安定性、耐熱性、電気絶
縁性、熱伝導性等の諸物性にすぐれたものであり、構造
部材、電子・電気部品として使用される。
The thermoplastic resin composition of the present invention has surface hardness, abrasion resistance,
It has excellent physical properties such as bending strength, bending elasticity, dimensional stability, heat resistance, electrical insulation, and thermal conductivity, and is used as structural members and electronic/electrical parts.

特に耐摩耗性と高硬度性の向上は、従来のエンジニアリ
ングプラスチックでは困難なことであったものである。
In particular, it has been difficult to improve wear resistance and high hardness with conventional engineering plastics.

Claims (1)

【特許請求の範囲】[Claims] (1)窒化珪素と窒化珪素のシラン系表面処理剤とを含
有してなる熱可塑性樹脂組成物
(1) Thermoplastic resin composition containing silicon nitride and a silane-based surface treatment agent for silicon nitride
JP11317385A 1985-05-28 1985-05-28 Thermoplastic resin composition Pending JPS61272267A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11317385A JPS61272267A (en) 1985-05-28 1985-05-28 Thermoplastic resin composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11317385A JPS61272267A (en) 1985-05-28 1985-05-28 Thermoplastic resin composition

Publications (1)

Publication Number Publication Date
JPS61272267A true JPS61272267A (en) 1986-12-02

Family

ID=14605403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11317385A Pending JPS61272267A (en) 1985-05-28 1985-05-28 Thermoplastic resin composition

Country Status (1)

Country Link
JP (1) JPS61272267A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016831A1 (en) * 1997-09-30 1999-04-08 Ngk Insulators, Ltd. Plastic/ceramic composite material and process for producing the same
US6472058B2 (en) 1997-12-16 2002-10-29 Ngk Insulators, Ltd. Fiber-composite material and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999016831A1 (en) * 1997-09-30 1999-04-08 Ngk Insulators, Ltd. Plastic/ceramic composite material and process for producing the same
US6472058B2 (en) 1997-12-16 2002-10-29 Ngk Insulators, Ltd. Fiber-composite material and method for producing the same

Similar Documents

Publication Publication Date Title
EP0185555A2 (en) Polybutylene terephthalate resin composition
US20060252873A1 (en) IC trays and compositions thereof
JP3652460B2 (en) Resin composition
JPS61272267A (en) Thermoplastic resin composition
JPH10130494A (en) Polyamide resin composition and vehicle parts for holding miller and body parts for electrical equipment and appliance using the same
KR910005697B1 (en) Polyallylene sulfide composition
KR20050114459A (en) Polycarbonate/abs resin nanocomposites containing montmorillonite
JPH0267326A (en) Fiber-reinforced thermoplastic resin composition with excellent surface flatness
JPH01254766A (en) Electrically conductive polyaylene sulfide resin composition
JP3274886B2 (en) Crystalline polyarylene sulfide resin composite molded article and method for producing the same
JP2605071B2 (en) Injection molding resin composition
JPH11140283A (en) Liquid crystal polyester molded product
JPS59182853A (en) Polyether sulfone resin composition
JPH04264162A (en) Pitch carbon fiber-reinforced polyphenylene sulfide resin composition
JPS61272268A (en) Thermosetting resin composition
JPH02163137A (en) Resin composition for heat exchanger
KR101405258B1 (en) Electrically insulating thermoplastic resin composition with excellent thermal conductivity and warpage
Mohamad et al. Alumina Filled Rubber Composites: Application, Mechanical Properties, Morphological Characteristics and Processability
JPH0264158A (en) Polyarylene sulfide resin composition
KR100435380B1 (en) Fine particle of aluminium hydroxide for filling resin and resin composition using the same
JPH03273039A (en) Sealing material with high thermal conductivity
JPH04272955A (en) Polyester resin composition
JPS6322856A (en) Polyetherimide resin composition
JPH01282255A (en) Resin composition
JPS63183947A (en) Styrenic resin composition