JPS6127190Y2 - - Google Patents

Info

Publication number
JPS6127190Y2
JPS6127190Y2 JP14374585U JP14374585U JPS6127190Y2 JP S6127190 Y2 JPS6127190 Y2 JP S6127190Y2 JP 14374585 U JP14374585 U JP 14374585U JP 14374585 U JP14374585 U JP 14374585U JP S6127190 Y2 JPS6127190 Y2 JP S6127190Y2
Authority
JP
Japan
Prior art keywords
recesses
gate electrode
semiconductor layer
main surface
transfer device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14374585U
Other languages
Japanese (ja)
Other versions
JPS6176974U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14374585U priority Critical patent/JPS6127190Y2/ja
Publication of JPS6176974U publication Critical patent/JPS6176974U/ja
Application granted granted Critical
Publication of JPS6127190Y2 publication Critical patent/JPS6127190Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は電荷転送装置に関し、特に蓄積媒体の
バルク中に情報電荷を蓄積、転送するいわゆる
BCCD(バルクチヤージカツプルド・デバイス)
に関する。
[Detailed description of the invention] [Industrial field of application] The present invention relates to a charge transfer device, and particularly to a so-called charge transfer device that stores and transfers information charges in the bulk of a storage medium.
BCCD (Bulk Charge Coupled Device)
Regarding.

〔従来の技術〕[Conventional technology]

電荷転送装置の代表的なものとしてMOS構造
のCCD装置があるが、これは情報を有する電荷
は酸化膜−シリコン半導体層界面において蓄積さ
れ転送されるものであるために、当該界面に存在
する準位が、転送効果の低下並びに雑音の原因と
なる。かかる欠点を除去するために半導体結晶で
あるバルク中に於て情報電荷を蓄積、転送するい
わゆるBCCD装置が提案されている。
A typical charge transfer device is a CCD device with a MOS structure.In this device, charges containing information are accumulated and transferred at the interface between an oxide film and a silicon semiconductor layer, so the charge transfer device is based on a charge that exists at the interface between the oxide film and the silicon semiconductor layer. This decreases the transfer efficiency and causes noise. In order to eliminate such drawbacks, a so-called BCCD device has been proposed in which information charges are stored and transferred in the bulk of a semiconductor crystal.

第1図に当該装置の1部断面を示す。図のよう
に、低抵抗のN型半導体基板1上に高抵抗のP型
エピタキシヤル半導体層2が設けられており、更
にこの上に酸化膜3を成長させて後、複数のゲー
ト電極G1,G2,…をアレー状に配設してなる構
造である。そして例えば第2図に示す如き2層φ
及びφの刻時電圧をゲート電極にそれぞれ印
加することにより多数キヤリアすなわちホールの
転送がエピタキシヤル層2内においてなされる。
FIG. 1 shows a partial cross section of the device. As shown in the figure, a high-resistance P-type epitaxial semiconductor layer 2 is provided on a low-resistance N-type semiconductor substrate 1, and after growing an oxide film 3 thereon, a plurality of gate electrodes G 1 are formed. , G 2 , ... are arranged in an array. For example, two layers φ as shown in FIG.
Transfer of majority carriers or holes is effected in the epitaxial layer 2 by applying clocked voltages of 1 and φ 2 to the gate electrodes, respectively.

この場合の動作原理の概要を第3図及び第4図
を参照しつつ説明する。例えば所定のゲート電極
(G1)が無バイアス状態すなわち低レベル(L)
状態のときのエネルギバンドは第3図Aの模式図
に示す如く、熱平衡状態にあつて、P型層中には
固定された負の電荷と共に正の自由キヤリヤが存
在するこのときのポテンシヤル分布を第7図Aに
示す。ここにVbiはPN接合部におけるビルトイン
電位差(拡散電位差)であり、P型の濃度によつ
てはSiO2膜とシリコン界面は空乏状態若しくは
それに近い状態にある。
An outline of the operating principle in this case will be explained with reference to FIGS. 3 and 4. For example, when a predetermined gate electrode (G 1 ) is in an unbiased state, that is, at a low level (L)
As shown in the schematic diagram in Figure 3A, the energy band in this state is the potential distribution when there is a fixed negative charge and a positive free carrier in the P-type layer in a thermal equilibrium state. It is shown in FIG. 7A. Here, Vbi is a built-in potential difference (diffusion potential difference) at the PN junction, and depending on the concentration of P type, the SiO 2 film and the silicon interface are in a depleted state or a state close to it.

次に当該ゲート電極(G1)に高レベル(H)の
バイアスが印加されると、酸化膜.シリコン界面
は強く空乏して自由キヤリアである正孔は界面か
らしりぞけられて多数キヤリアはバルク内に追い
やられる。従つて界面には少数キヤリアである電
子がより多く現われて、シリコンの界面における
エネルギバンドは下方に曲がり、N型のシリコン
基板側は濃度が高いためにバイアスの影響はな
く、よつてエネルギバンドは第3図Bのように曲
がることになる。従つて、正の自由電荷を故意に
バルク中に注入するとポテンシヤルエネルギが最
小の場所すなわち界面からWの深さの場所に追わ
れて蓄積される。このときのポテンシヤル分布を
第4図Bに示す。その結果、酸化膜−シリコン界
面からWの深さに相当する蓄積領域となるチヤン
ネル部に沿つた電位分布は第2図に示す如き2相
刻時電圧を印加することにより、第1図の点線4
にて示すような山谷状となつて谷の深い部分に於
て多数キヤリアである正の自由電荷を蓄積するこ
とが可能となる。よつて、これら山谷をシフトさ
せて電荷の転送をなすものである。
Next, when a high level (H) bias is applied to the gate electrode (G 1 ), the oxide film. The silicon interface is strongly depleted, and holes, which are free carriers, are pushed away from the interface, and majority carriers are driven into the bulk. Therefore, more electrons, which are minority carriers, appear at the interface, and the energy band at the silicon interface bends downward, while the concentration on the N-type silicon substrate side is high, so there is no bias effect, so the energy band becomes It will bend as shown in Figure 3B. Therefore, when a positive free charge is deliberately injected into the bulk, potential energy is tracked and stored at a minimum location, ie, a location at a depth of W from the interface. The potential distribution at this time is shown in FIG. 4B. As a result, by applying a two-phase clocked voltage as shown in FIG. 2, the potential distribution along the channel region, which is the accumulation region corresponding to the depth of W from the oxide film-silicon interface, can be changed as shown by the dotted line in FIG. 4
It becomes possible to accumulate positive free charges, which are majority carriers, in the deep part of the valley as shown in the figure. Therefore, charge is transferred by shifting these peaks and valleys.

〔考案が解決しようとする問題点〕[Problem that the invention attempts to solve]

かかるBCCDにおいては、ゲート電極の周辺部
においてゲートバイアスの影響が十分に及ばない
範囲が生じ易く、ポテンシヤルの変化が十分大と
なり得ず、よつて転送されるべき電荷がこれら周
辺部から逃げてしまい、転送効率の低下の一因と
なつている。
In such a BCCD, there tends to be a region around the gate electrode that is not sufficiently affected by the gate bias, and the change in potential cannot be large enough, so that the charge that should be transferred escapes from these peripheral regions. , which is a cause of a decline in transfer efficiency.

〔問題点を解決するための手段〕[Means for solving problems]

本考案の目的はゲート電極周辺部のバイアスの
影響の及ばない部分による電荷の逃げ道を消滅さ
せて転送効率の良好な電荷転送装置を提供するこ
とである。
An object of the present invention is to provide a charge transfer device with good transfer efficiency by eliminating the escape route for charges due to the portions around the gate electrode that are not affected by bias.

本考案の電荷転送装置は、半導体基板と、この
基板の一主要面上に設けられこの基板とPN接合
部を形成する半導体層と、所定情報を示すキヤリ
アを半導体層中の分離された蓄積領域に沿い転送
制御すべく半導体層の主要面上に設けられたゲー
ト電極とを含むいわゆるBCCD装置であつて、各
蓄積領域を情報キヤリヤの転送方向に沿つてはさ
むように設けられ、このキヤリアに対する障壁と
なる凹部列を形成し、この凹部列にゲート電極を
埋設するようにしたことを特徴としている。
The charge transfer device of the present invention includes a semiconductor substrate, a semiconductor layer provided on one main surface of the substrate and forming a PN junction with the substrate, and a separate storage area in the semiconductor layer for carrying carriers representing predetermined information. This is a so-called BCCD device including a gate electrode provided on the main surface of a semiconductor layer to control transfer along the information carrier, and a gate electrode provided on the main surface of the semiconductor layer to control transfer along the information carrier. The present invention is characterized in that a row of recesses is formed, and a gate electrode is buried in this row of recesses.

〔考案の実施例〕[Example of idea]

以下本考案について図面を用いて説明する。 The present invention will be explained below with reference to the drawings.

第5図に本考案の1実施例の構造を示し、Aは
平面図CのA−A線断面図、Bは平面図CのB−
B線断面図、Cは平面図である。例えば高濃度N
型シリコン基板1の−主要面上に低濃度のP型シ
リコン層2をエピタキシヤル成長により形成し、
このエピタキシヤル層2の主要面において、大略
平行な2列の縦孔すなわち凹部11〜15及び2
1〜25をそれぞれ周知のエツチング法により形成
する。そして凹部を含む表面に所定厚さの酸化膜
を形成してゲート絶縁膜3とする。しかる後に、
両列の凹部のうち互いに隣接対向する凹部、例え
ば11と12で示される凹部内及びこの凹部間の
シリコン層表面上に共通ゲート電極G1を被着形
成する。凹部12と22,13と23,14と2
4,……についても同様にそれぞれ共通ゲート電
極G2,G3,G4……を被着し、所望配線を行つて
なる。
FIG. 5 shows the structure of one embodiment of the present invention, where A is a sectional view taken along line A-A in plan view C, and B is a cross-sectional view taken along line A-A in plan view C.
B is a sectional view taken along line C, and C is a plan view. For example, high concentration N
A low concentration P-type silicon layer 2 is formed on the negative main surface of a type silicon substrate 1 by epitaxial growth,
On the main surface of this epitaxial layer 2, there are two approximately parallel rows of vertical holes, that is, recesses 11 to 15 and 2.
1 to 25 are each formed by a well-known etching method. Then, an oxide film of a predetermined thickness is formed on the surface including the recessed portions to form the gate insulating film 3. After that,
A common gate electrode G1 is deposited within adjacent and opposing recesses of both rows of recesses, for example, the recesses indicated by 11 and 12, and on the surface of the silicon layer between these recesses. Recesses 12 and 22, 13 and 23, 14 and 2
Similarly, common gate electrodes G 2 , G 3 , G 4 , .

かかる構成において、各凹部直下のシリコン層
2は、第2図に示すゲートバイアス状態如何にか
かわらず常に完全な空乏状態となつており、よつ
て当該部分からは自由電荷は逃げられないことに
なる。従つて、蓄積及び伝送領域は2列の対向凹
部間及びPN接合面によるポテンシヤルの山によ
り囲まれることになつて、ほぼすべての蓄積電荷
を転送することが可能となり、転送効率の向上が
図れる。
In such a configuration, the silicon layer 2 immediately below each recess is always in a completely depleted state regardless of the gate bias state shown in FIG. 2, and therefore free charges cannot escape from that part. . Therefore, the storage and transmission region is surrounded by the peaks of potential between the two rows of opposing recesses and the PN junction surface, making it possible to transfer almost all of the stored charge, thereby improving transfer efficiency.

第6図はBBD(バケツト・ブリゲート・デバ
イス)構造に本考案を適正した場合の平面図を示
しており、第5図と同等部分は同一符号により示
されている。図において、各ゲート電極間のエピ
タキシヤル層内にチヤンネル深さに達する如き高
濃度のP型不純物領域5,6,7及び8を形成し
てソース・ドレイン領域としたものであり、他の
構造及び動作原理は第5図と同等である。
FIG. 6 shows a plan view when the present invention is applied to a BBD (bucket brigade device) structure, and parts equivalent to those in FIG. 5 are designated by the same reference numerals. In the figure, highly concentrated P-type impurity regions 5, 6, 7, and 8 reaching the channel depth are formed in the epitaxial layer between each gate electrode to serve as source/drain regions. The operating principle is the same as that shown in FIG.

尚、上記においては、基板をN型、エビ層をP
型としたが互いに逆の導電型としてもよく、また
ゲート電極の数、凹部の数は実施例に限定される
ものではない。更に個々の凹部ではなく連続した
いわゆる溝構造とすることも可能である。
In the above, the substrate is N type and the shrimp layer is P type.
However, the conductivity types may be opposite to each other, and the number of gate electrodes and the number of recesses are not limited to those in the embodiment. Furthermore, it is also possible to have a so-called continuous groove structure instead of individual recesses.

〔考案の効果〕[Effect of idea]

以上の如く、本考案によればバルク中を蓄積及
び転送領域とする如きいわゆるBCCD装置の転送
効率を著しくしく向上することができ、雑音余裕
度も大となり、高性能の電荷転送装置が得られ
る。
As described above, according to the present invention, it is possible to significantly improve the transfer efficiency of a so-called BCCD device in which the storage and transfer region is in the bulk, the noise margin is also increased, and a high-performance charge transfer device can be obtained. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のBCCDの1部断面図、第2図は
第1図の装置のためゲートバイアス波形図、第3
図は第1図の装置の動作を説明するためのエネル
ギバンド模式図であり、Aは無バイアス状態、B
はバイアス状態の場合をそれぞれ示す図、第4図
は第1図の装置の動作を説明するためのポテンシ
ヤル分布図であり、Aは無バイアス状態、Bはバ
イアス状態の場合をそれぞれ示す図、第5図は本
考案の実施例を示す図であり、Aは平面図CのA
−A線断面図、Bは平面図CのB−B線断面図、
Cは平面図、第6図は本考案の他の実施例の平面
図である。 主要部分の符号の説明、1……半導体基板、2
……エピタキシヤル層、3……酸化膜、11〜1
5,21〜25……凹部、G……ゲート電極。
Figure 1 is a partial sectional view of a conventional BCCD, Figure 2 is a gate bias waveform diagram for the device shown in Figure 1, and Figure 3 is a diagram of the gate bias waveform for the device shown in Figure 1.
The figure is a schematic energy band diagram for explaining the operation of the device in Figure 1, where A is a non-biased state and B is a non-biased state.
4 is a potential distribution diagram for explaining the operation of the device shown in FIG. Figure 5 is a diagram showing an embodiment of the present invention, and A is A in the plan view C.
-A sectional view, B is a BB sectional view of plan view C,
C is a plan view, and FIG. 6 is a plan view of another embodiment of the present invention. Explanation of symbols of main parts, 1...Semiconductor substrate, 2
...Epitaxial layer, 3...Oxide film, 11-1
5, 21-25... recess, G... gate electrode.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 半導体基板と、前記半導体基板の一主面上に設
けられこの基板とPN接合部を形成する半導体層
と、所定情報を示すキヤリアを前記半導体層中の
互いに分離された蓄積領域に沿い転送すべき前記
半導体層の主要面上に設けられたゲート電極とを
含む電荷転送装置であつて、前記半導体層の主要
面上において前記ゲート電極の端部に前記蓄積領
域をはさんで互いに略平行に設けられかつ各々が
1または複数個の凹部からなる2つの凹部列を有
し、この各凹部列に前記ゲート電極を埋設したこ
とを特徴とする電荷転送装置。
a semiconductor substrate, a semiconductor layer provided on one main surface of the semiconductor substrate and forming a PN junction with the substrate, and a carrier representing predetermined information to be transferred along storage regions separated from each other in the semiconductor layer. A charge transfer device including a gate electrode provided on a main surface of the semiconductor layer, the charge transfer device being provided substantially parallel to each other on the main surface of the semiconductor layer with the storage region sandwiched between the ends of the gate electrode. 1. A charge transfer device comprising two rows of recesses each comprising one or more recesses, the gate electrode being buried in each row of recesses.
JP14374585U 1985-09-20 1985-09-20 Expired JPS6127190Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14374585U JPS6127190Y2 (en) 1985-09-20 1985-09-20

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14374585U JPS6127190Y2 (en) 1985-09-20 1985-09-20

Publications (2)

Publication Number Publication Date
JPS6176974U JPS6176974U (en) 1986-05-23
JPS6127190Y2 true JPS6127190Y2 (en) 1986-08-13

Family

ID=30702036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14374585U Expired JPS6127190Y2 (en) 1985-09-20 1985-09-20

Country Status (1)

Country Link
JP (1) JPS6127190Y2 (en)

Also Published As

Publication number Publication date
JPS6176974U (en) 1986-05-23

Similar Documents

Publication Publication Date Title
US6818947B2 (en) Buried gate-field termination structure
JP2825004B2 (en) Sidewall charge-coupled imaging device and method of manufacturing the same
JPH0458700B2 (en)
JPS596072B2 (en) charge transfer device
US5675158A (en) Linear solid state imaging device with trapizoid type photodiodes
JPH02263473A (en) Semiconductor device and semiconductor storage device
JPS6042634B2 (en) charge coupled device
US4910569A (en) Charge-coupled device having improved transfer efficiency
JPS6127190Y2 (en)
GB1224801A (en) Methods of manufacturing semiconductor devices
US5114833A (en) Charge-coupled device and process of making the device
JPH10125904A (en) Silicon carbide semiconductor device
JPS6048111B2 (en) Non-volatile semiconductor memory device
JPS59218700A (en) Charge transfer device
US6891243B2 (en) Solid-state image pick-up device
US4042949A (en) Semiconductor devices
JPH0714050B2 (en) Charge transfer device
JPS63204770A (en) Semiconductor storage device and manufacture thereof
US5302544A (en) Method of making CCD having a single level electrode of single crystalline silicon
JPS6155938A (en) Method for isoration of electronic element
JPS61158187A (en) Superconductive three terminal element and manufacture thereof
JPS5947760A (en) Semiconductor device
JP2601446B2 (en) Gate structure of buried channel semiconductor device and its manufacturing method.
JPS598987B2 (en) charge transfer device
JPS63302553A (en) Manufacture of charge transfer device