JPS61271744A - Battery - Google Patents

Battery

Info

Publication number
JPS61271744A
JPS61271744A JP60113675A JP11367585A JPS61271744A JP S61271744 A JPS61271744 A JP S61271744A JP 60113675 A JP60113675 A JP 60113675A JP 11367585 A JP11367585 A JP 11367585A JP S61271744 A JPS61271744 A JP S61271744A
Authority
JP
Japan
Prior art keywords
battery
electrolyte
solvent
aniline
hexafluoride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60113675A
Other languages
Japanese (ja)
Inventor
Kenji Shinozaki
研二 篠崎
Akio Nojiri
昭夫 野尻
Yukio Tomizuka
冨塚 行雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP60113675A priority Critical patent/JPS61271744A/en
Publication of JPS61271744A publication Critical patent/JPS61271744A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/137Electrodes based on electro-active polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain the high coulomb efficiency, energy density, and long-term cycle life of a battery by comprising the battery with an optimum combination of active material, electrolyte, and solvent. CONSTITUTION:This battery uses a deposit obtained by anode-oxidizing aniline, pyrrole, and azulene in an electrolytic solution that contains phosphate hexafluoride as the supporting salt, or polypyrrole and aniline black as the active material of an electrode. The battery also uses phosphatehexafluoride as the electrolyte and a mixture of propylenecarbonate and dimethoxyethane as the solvent of the electrolyte. In this case, for example, lithium phosphate hexafluoride and the like can be used as the phosphate hexafluoride in the anode oxidation of pyrrole and azulene. Propylenecarbonate and the like or a hexafluoride phospheric solution can be used as the solvent in this oxidation. In addition, when aniline is anode-oxidized, the hexafluoride phospheric solution should be used.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ボリビσ−ル等の有機材料な電極活物質とし
て用いる電池〈関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a battery using an organic material such as volivyl as an electrode active material.

〔従来の技術とその問題点〕[Conventional technology and its problems]

近年、ポリアセチレン、ポリバラフェニシンなどの電極
活物質として優れた特性を示す有機材料が見出され、そ
の実用化が期待されている。
In recent years, organic materials such as polyacetylene and polyvarapehenicin that exhibit excellent properties as electrode active materials have been discovered, and their practical application is expected.

しかし、これらの有機材料は、劣化し易かり九シ、導電
性を高めるために不安電々電子受容体または電子供与体
をドープしなければならない等の問題を有している。
However, these organic materials have problems such as being easily degraded and having to be doped with unstable electron acceptors or electron donors to increase conductivity.

一方、ビロール、アニリン、アズレン、チオフェン等の
芳香族有機化合物のいわゆる電解酸化重合体、または化
学的方法で合成されたポリピロール、ポリエチレン等は
、過塩素酸イオン、六フッ化リン酸イオン、四フッ化ホ
ウ酸イオン等でドープすることによシ、その電気伝導度
を高めることができ、しかも安定であることが最近知ら
れている。このためこのような有機材料の電極活物質で
一方の電極を構成し、電解液として後述する電解質のい
ずれかまたはその混合物を後述する溶媒のいずれかま九
は混合物に溶解したものを用いて、二次電池を作製する
ことが理論的に可能である。しかしながら、現実には実
用に供し得る電池を構成するような最適の活物質、電解
質、溶媒の組合せは全く知られていなh0 ここで、電解質は、過塩素酸リチウム、四フッ化ホウ酸
リチウム、六フッ化リン酸リチウム、六フッ化ヒ素リチ
ウム、過塩素酸テトラアルキルアンモニウム、四フッ化
ホウ酸テトラアルキルアンモニウム、六ブッ化ヒ素テト
ラアルキルアンモニウムである。溶媒は、プaビレンヵ
ーボ木−ト、ジメトキシエタン、テトラヒトσプラン、
アセトニトリル、rブチロラクトン、ニトロメタン、ニ
トロベンゼン、N、N−ジメチルフォルムアミド、リン
酸ヘキサメチルトリアミド、ジメチルスルホオキサイド
、ジメチルサルファイド、スルホラン、1.3−ジオキ
ソランである。
On the other hand, so-called electrolytically oxidized polymers of aromatic organic compounds such as virole, aniline, azulene, and thiophene, or polypyrrole and polyethylene synthesized by chemical methods, contain perchlorate ions, hexafluorophosphate ions, tetrafluorophosphate ions, etc. It has recently been known that by doping with borate ions or the like, its electrical conductivity can be increased and, moreover, it is stable. For this reason, one electrode is composed of such an electrode active material of an organic material, and one of the electrolytes described later or a mixture thereof is used as the electrolytic solution, and one of the solvents described later is dissolved in the mixture. It is theoretically possible to create a secondary battery. However, in reality, the optimal combination of active material, electrolyte, and solvent that constitutes a battery that can be put to practical use is completely unknown. These are lithium hexafluorophosphate, lithium arsenic hexafluoride, tetraalkylammonium perchlorate, tetraalkylammonium tetrafluoroborate, and tetraalkylammonium arsenic hexabutide. Solvents include polypylene carbide, dimethoxyethane, tetrahedral sigma plan,
They are acetonitrile, r-butyrolactone, nitromethane, nitrobenzene, N,N-dimethylformamide, hexamethyltriamide phosphate, dimethylsulfoxide, dimethylsulfide, sulfolane, and 1,3-dioxolane.

本発明は、かかる点に鑑みてなされたものであシ、高h
クーロン効率、エネルギー密度、長期サイクル寿命を有
する電池を開発したものである。
The present invention has been made in view of these points.
The company has developed a battery with coulombic efficiency, energy density, and long cycle life.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、少なくとも一方の電極の活物質にアニリン、
ピロール、アズレンを六フッ化リン酸塩を支持塩として
含む電解液中でアノード酸化して得られる析出物、また
は、ポリピロール、アニリンブラックを用い、電解質が
六フッ化リン酸塩であり、該電解質の溶媒がプロピレン
カーボネートとiンメトキシェタンの混合物であること
を特徴とする電池である。
In the present invention, aniline is used as the active material of at least one electrode.
A precipitate obtained by anodizing pyrrole or azulene in an electrolytic solution containing hexafluorophosphate as a supporting salt, or a precipitate obtained by anodizing pyrrole or azulene in an electrolyte containing hexafluorophosphate as a supporting salt, or using polypyrrole or aniline black and using a hexafluorophosphate as the electrolyte. The battery is characterized in that the solvent is a mixture of propylene carbonate and inmethoxychetane.

ここで、本発明におけるピロール、アズレンのアノード
酸化における六フフ化リン酸塩としては、例えば六フッ
化リン酸リチウム、六フフ化リン酸テトラアルキルアン
モニウム等を使用することができる。また、この酸化の
際の溶媒としては、プロピレンカーボネート、ジメトキ
シエタン、アセトニトリル、ニトロメタン等や六フッ化
リン酸水溶液を用いることができる。
Here, as the hexafluorophosphate in the anodic oxidation of pyrrole and azulene in the present invention, for example, lithium hexafluorophosphate, tetraalkylammonium hexafluorophosphate, etc. can be used. Further, as a solvent for this oxidation, propylene carbonate, dimethoxyethane, acetonitrile, nitromethane, etc. or an aqueous hexafluorophosphoric acid solution can be used.

また、本発明においてアニリンをアノード酸化する際に
は、六フッ化リン酸水溶液を用いるのが好ましい。また
、酸化の際の支持塩の濃度は、0.1モル/j〜lOモ
ル/ノが好ましく、七ツマ−(ピロール、アニリン、ア
ズレン)の濃度は、0.01モル/l〜10モル/lが
好ましい。
Further, in the present invention, when aniline is anodically oxidized, it is preferable to use an aqueous hexafluorophosphoric acid solution. Further, the concentration of the supporting salt during oxidation is preferably 0.1 mol/j to 10 mol/no, and the concentration of the 7-mer (pyrrole, aniline, azulene) is 0.01 mol/l to 10 mol/l. l is preferred.

また、電解液の組成は、プロピレンカーボネートの全溶
媒中での割合が体積比で0.2〜0.8の範囲にあるの
が好ましく、特に0.2〜0.6の範囲が好ましい。六
7ツ化リン酸塩の濃度としては、0.1モル/l−1モ
ル/lの範囲が好ましい。
Further, the composition of the electrolytic solution is such that the proportion of propylene carbonate in the total solvent is preferably in the range of 0.2 to 0.8 in terms of volume ratio, particularly preferably in the range of 0.2 to 0.6. The concentration of the hexagonal phosphate is preferably in the range of 0.1 mol/l to 1 mol/l.

〔発明の作用・効果〕[Action/effect of the invention]

本発明に係る電池によれば、最適の組合せによる活物質
、電解質、溶媒によって電池が構成されているので、高
いクーロン効率、エネルギー密度、長期サイクル寿命を
得ることができるものである。
According to the battery according to the present invention, since the battery is constituted by an optimal combination of active material, electrolyte, and solvent, high coulombic efficiency, energy density, and long cycle life can be obtained.

〔実権例、比較例〕[Examples of real rights, comparative examples]

以下、本発明の実権例及びこれと比較するために行った
比較例について説明する。
Hereinafter, practical examples of the present invention and comparative examples conducted for comparison thereto will be explained.

実権例1゜ プロピレンカーボネート中に六フッ化リン酸リチウムと
ピロールを′夫々o−5モル/11,0.5モル/jの
濃度で溶解させた。これに1傷×1傷の大きさの白金板
をアノードとして設置し、1mAの定電流で7000通
電後、白金表面なブaビレンカーボ木−トで洗浄して乾
燥させた。この結果、白金板表面に黒色の析出物的5〜
を得た。而して得た白金板を六フッ化リン酸リチウムを
1モル/jの濃度で含むプロピレンカーボネート:ジメ
トキシエタン=1:1の混合溶媒に溶解して得た電解液
中に電極として設置し、対極トシてニッケルエキスバン
ドメタルに埋込んだリチウム板を設置し、両極間にボリ
ブaピレンのセパレータを挾み、全体をガラスケール内
に密封して電池を作成した。
Practical Example 1 Lithium hexafluorophosphate and pyrrole were dissolved in propylene carbonate at concentrations of 0-5 mol/11 and 0.5 mol/j, respectively. A platinum plate with a size of 1 scratch x 1 scratch was installed as an anode, and after 7,000 cycles of current was applied at a constant current of 1 mA, the plate was washed with a platinum surface made of aluminum carbide and dried. As a result, black precipitates appeared on the surface of the platinum plate.
I got it. The thus obtained platinum plate was placed as an electrode in an electrolytic solution obtained by dissolving the platinum plate in a mixed solvent of propylene carbonate: dimethoxyethane = 1:1 containing lithium hexafluorophosphate at a concentration of 1 mol/j, A lithium plate embedded in nickel expanded metal was placed as a counter electrode, a vol-a-pyrene separator was sandwiched between the two electrodes, and the whole was sealed in a glass scale to prepare a battery.

次いで、この電池を白金板側を正極、リチウム側を負極
として3.5〜2.0ボルトの電圧範囲で充放電させた
ところ、0.12Ah/7  の容量、クーロン効率1
00%が得られた。次に、上述の電極範囲で充放電サイ
クルを繰返したところ、1000回以上サイクルを重ね
ても、容量の低下は10%以下に溜まっていた。また、
0.12Ah/Iの充電後30日放置してから放電させ
たところ、放電容量は0.11Ah/7であシ、自己放
電率は8.3%であった。
Next, this battery was charged and discharged in a voltage range of 3.5 to 2.0 volts with the platinum plate side as the positive electrode and the lithium side as the negative electrode, resulting in a capacity of 0.12Ah/7 and a coulombic efficiency of 1.
00% was obtained. Next, when charging and discharging cycles were repeated in the above electrode range, the decrease in capacity remained at 10% or less even after 1000 cycles or more. Also,
When the battery was charged at 0.12Ah/I, left for 30 days, and then discharged, the discharge capacity was 0.11Ah/7, and the self-discharge rate was 8.3%.

実施例2゜ プロピレンカーボネート中に六フッ化リン酸リチウムと
アズレンを夫々0.5モル/1,0.5モル/!の濃度
で溶解させた。これにlcs<X1cmの大きさの白金
板をアノードとして設置し、1mA の定電流で700
c通電後、白金表面をプロピレンカーボネートで洗浄し
て乾燥させた。この結果、白金板表面に黒色の析出物約
4.5■を得た。而して得た白金板を六フッ化リン酸リ
チウムを1モル/lの濃度でブaピレンカーボネート:
ジメトキシエタン=1:1の混合溶媒に溶解して得た電
解液中に電極として設置し、対極トシてニッケルエキス
バンドメタルに埋込んだリチウム板を設置し、両極間に
ポリプロピレンのセパレータを挾み、全体をガラスケー
ル内に密封して電池を作成した。
Example 2゜Lithium hexafluorophosphate and azulene in propylene carbonate are each 0.5 mol/1,0.5 mol/! It was dissolved at a concentration of A platinum plate with a size of lcs<X1cm was installed on this as an anode, and a constant current of 1mA was applied to
c After energization, the platinum surface was washed with propylene carbonate and dried. As a result, about 4.5 square meters of black precipitate was obtained on the surface of the platinum plate. The thus obtained platinum plate was mixed with lithium hexafluorophosphate at a concentration of 1 mol/l and pyrene carbonate:
An electrode was placed in an electrolytic solution obtained by dissolving it in a mixed solvent of dimethoxyethane = 1:1, a lithium plate embedded in nickel extract band metal was placed as a counter electrode, and a polypropylene separator was sandwiched between the two electrodes. , the whole was sealed inside a glass scale to create a battery.

次いで、この電池を白金板側を正極、リチウム側を負極
として4.0〜2.5ボルトの電圧範囲で充放電させた
ところ、0.14 Ah /Elの容量、クーロン効率
100%が得られた。次に1上述の電極範囲で充放電サ
イクルを繰返したところ、1000回以上サイクルを重
ねても、容量の低下は10%以下に溜まってい友。また
、0.14人h/gの充電後30日放置してから放電さ
せたところ、放電容量は0.12 Ah /11であり
、自己放電率は14.3%であった。
Next, when this battery was charged and discharged in a voltage range of 4.0 to 2.5 volts with the platinum plate side as the positive electrode and the lithium side as the negative electrode, a capacity of 0.14 Ah/El and a coulombic efficiency of 100% were obtained. Ta. Next, when charging and discharging cycles were repeated in the electrode range mentioned above, the decrease in capacity remained below 10% even after 1000 cycles or more. Further, when the battery was charged at 0.14 person h/g, left for 30 days, and then discharged, the discharge capacity was 0.12 Ah/11, and the self-discharge rate was 14.3%.

実権例3゜ 0、5モル/lの濃度の六フッ化ホウ酸水溶液中に0.
1モル/lの濃度でアニリンを溶解させ、これVcl 
m X 1 csの大きさの白金板をアノードとして設
置し、1.5CIIX2CIIのニッケルメツシュを対
極として設置し、白金板にニッケルメツシュ側に対して
1.2ボルトの定電圧を印加して電解合成を行った。3
時間後電解を停止し、白金板を水洗して乾燥した。この
結果、白金板表面に深緑色の析出物6.5 *を得た。
Practical Example 3: 0.0.0.0% in an aqueous hexafluoroboric acid solution with a concentration of 0.5 mol/l.
Aniline is dissolved at a concentration of 1 mol/l, and this
A platinum plate with a size of m x 1 cs was installed as an anode, a nickel mesh of 1.5CIIX2CII was installed as a counter electrode, and a constant voltage of 1.2 volts was applied to the platinum plate with respect to the nickel mesh side. Electrolytic synthesis was performed. 3
After a period of time, electrolysis was stopped, and the platinum plate was washed with water and dried. As a result, 6.5* deep green precipitates were obtained on the surface of the platinum plate.

而して得た白金板を一方の電極として用いて実施例1と
同様にして電池を作成lた。
A battery was prepared in the same manner as in Example 1 using the platinum plate thus obtained as one electrode.

次いで、この電池を白金板側を正極、リチウム側な負極
として4.0〜2.6ボルトの電圧範囲で充放電させた
ところ、0.14 Ah 、Jの容量、クーロン効率1
00%が得られた。次に1上述の電極範囲で充放電サイ
クルを繰返したところ、1000回以上サイクルを重ね
ても、容量の低下は10%以下に溜まっていた。また、
0.14^h/2の充踵後30日放置してから放電させ
たところ、放電容量は0.121h/11であり、自己
放電率は14.3%であった。
Next, when this battery was charged and discharged in a voltage range of 4.0 to 2.6 volts with the platinum plate side as the positive electrode and the lithium side as the negative electrode, it had a capacity of 0.14 Ah, J, and a coulombic efficiency of 1.
00% was obtained. Next, when charging and discharging cycles were repeated in the above-mentioned electrode range, the decrease in capacity remained below 10% even after 1000 cycles or more. Also,
When the battery was left to stand for 30 days after being charged for 0.14 h/2 and then discharged, the discharge capacity was 0.121 h/11, and the self-discharge rate was 14.3%.

比較例1〜5 電解合成する際の支持電解質として過塩素酸リチウムを
使用し、電解液として下記第1表の組成のものを使用し
た点以外は実権例1と同様にして5種類の電池を作製し
た。
Comparative Examples 1 to 5 Five types of batteries were prepared in the same manner as in Practical Example 1, except that lithium perchlorate was used as the supporting electrolyte during electrolytic synthesis, and the composition shown in Table 1 below was used as the electrolyte. Created.

これらの5種類の電池について実施例1と同様の電池試
験を行ったところ、下記第2表に示す結果であっ九。
When these five types of batteries were subjected to the same battery test as in Example 1, the results were shown in Table 2 below.

第2表の結果から明らかなように本発明に係る電池は高
いクーロン効率、エネルギー密度、長期サイクル寿命を
有することが判る。
As is clear from the results in Table 2, the battery according to the present invention has high coulombic efficiency, high energy density, and long cycle life.

第  1  表 ■ PC:プロピレンカーボネート DME:ジメトキシエタン PC+ DME : PCとDMEの1対1(体檀比)
の混合溶媒筒  2  表 以上実總例から明らかな如く、本発明の電池は高いクー
ロン効率、二本ルギー密度及び長期讐イクル寿命を有す
るものでありその実用的価値は極めて大きいものである
Table 1■ PC: Propylene carbonate DME: Dimethoxyethane PC+DME: 1:1 (body ratio) of PC and DME
As is clear from the above-mentioned examples, the battery of the present invention has a high Coulombic efficiency, a double energy density, and a long cycle life, and its practical value is extremely great.

出願人代理人  弁理士 鈴 江 武 彦手続補正書 昭和 年61・2.21 特許庁長官  宇 賀 道 部  殿 1、事件の表示 特願昭60−113675号 2、発明の名称 電    池 3、補正をする者 事件との関係 特許出願人 (529)  古河電気工業株式会社 4、代理人 5自発補正 6、補正の対象 明細書 7、補正の内容 (1)  明細書、第6頁第10行目及び第7頁第16
行目VCrfラスケール」とあるのを「ガラスケース」
と訂正する。
Applicant's agent Patent attorney Takehiko Suzue Procedural amendment February 21, 1949 Director General of the Patent Office Michibe Uga 1, Indication of the case Patent application No. 113675 1988 2, Name of the invention Battery 3, Amendment Relationship with the case of a person who does and page 7 no. 16
Line VCrf Rascale" is "Glass case"
I am corrected.

(2)同、第6頁第16行目に「電極範囲」とあるのを
「電圧範囲」と訂正する。
(2) ``Electrode range'' on page 6, line 16 is corrected to ``voltage range.''

(3)同、第10頁第1表中にr LicJQ4 Jと
あるのを[LiCl0* Jと訂正する。
(3) Same, page 10, table 1, r LicJQ4 J is corrected to [LiCl0* J.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも一方の電極の活物質に、アニリン、ピロール
、アズレンを六フッ化リン酸塩を支持塩として含む電解
液中でアノード酸化して得られる析出物、または、ポリ
ピロール、アニリンブラックを用い、電解質が六フッ化
リン酸塩であり、該電解質の溶媒がプロピレンカーボネ
ートとジメトキシエタンの混合物であることを特徴とす
る電池。
The active material of at least one electrode is a precipitate obtained by anodic oxidation of aniline, pyrrole, or azulene in an electrolytic solution containing hexafluorophosphate as a supporting salt, or polypyrrole or aniline black, and the electrolyte is 1. A battery characterized in that the electrolyte is made of hexafluorophosphate and the solvent of the electrolyte is a mixture of propylene carbonate and dimethoxyethane.
JP60113675A 1985-05-27 1985-05-27 Battery Pending JPS61271744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60113675A JPS61271744A (en) 1985-05-27 1985-05-27 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60113675A JPS61271744A (en) 1985-05-27 1985-05-27 Battery

Publications (1)

Publication Number Publication Date
JPS61271744A true JPS61271744A (en) 1986-12-02

Family

ID=14618316

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60113675A Pending JPS61271744A (en) 1985-05-27 1985-05-27 Battery

Country Status (1)

Country Link
JP (1) JPS61271744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290879A (en) * 1985-10-16 1987-04-25 Showa Denko Kk Electrochemical device
CN109411755A (en) * 2018-09-13 2019-03-01 浙江工业大学 Application and negative electrode of lithium ion battery, lithium ion battery of the nigrosine as lithium ion battery negative material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6290879A (en) * 1985-10-16 1987-04-25 Showa Denko Kk Electrochemical device
CN109411755A (en) * 2018-09-13 2019-03-01 浙江工业大学 Application and negative electrode of lithium ion battery, lithium ion battery of the nigrosine as lithium ion battery negative material

Similar Documents

Publication Publication Date Title
US9130218B2 (en) Hybrid energy storage systems utilizing redox active organic compounds
JPH0815084B2 (en) High capacity polyaniline electrode
US4609600A (en) Electrochemical cell containing electrode made of polymeric compound and electrolyte containing organic complex ligand
US8377546B2 (en) Plastics electrode material and secondary cell using the material
EP3439086B1 (en) Aqueous secondary cell
JPH0454350B2 (en)
JPS6215770A (en) Redox secondary battery
JPH07272755A (en) Aluminum nonaqueous electrolytic secondary battery
JPS6289749A (en) Electrode material
JPH05314979A (en) Reversible electrode
US4128702A (en) Cell with N,N-bis (substituted phenyl)-4,4- dipyridinium salt depolarizer
JPS61271744A (en) Battery
GB2385706A (en) Secondary battery and capacitor utilizing indole compounds
JPS61203565A (en) Secondary battery and its electrode
JPH01230216A (en) Energy storing apparatus for nonaqueous electrolyte
JPS61206170A (en) Secondary battery and its electrode
Changzhi et al. A wound-type lithium/polyaniline secondary cell
Hishinuma et al. Zinc—iodine secondary cell using 6-nylon or poly (ether) based electrode. Basic research for industrial use of the secondary cell
JPH0821430B2 (en) Secondary battery
JP2653048B2 (en) Conductive polymer composite and method for producing the same
JPH04359865A (en) Solid electrode composition
JP2530428B2 (en) Secondary battery using polyaniline as electrode material
JPH05314978A (en) Reversible electrode
JPH0660906A (en) Organic compound battery
JPH02256176A (en) Battery